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A theoretical analysis of laser cooling of atoms by velocity-selective coherent population 
trapping in a three-level cascade system is presented. We show that the temperature of the cooled 
atoms can be well below the value determined by the recoil energy. Conditions for coherent 
population trapping in the cascade scheme to be established are derived and different 
implementations of cascade schemes are discussed. The analysis of laser cooling dynamics is 
performed with both full quantum and quasiclassical (for translational motion of atoms) 
approaches. We study the temporal evolution of the atomic momentum distribution and the 
efficiency of the cooling method considered. The analytical solution for the atomic density matrix 
is obtained in the limit of large interaction time and small kinetic momentum of the 
atom. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Laser cooling by means of velocity-selective coherent 
population trapping (VSCPT) has attracted a lot of attention 
in last few years. There are some important reasons to study 
this cooling method in detail. First of all, the mechanism 
permits the cooling of atoms below not only the Doppler 
limit temperature TD=fiy/2k,, but also below the photon 
recoil temperature TR=R/kB, where k, is the Boltzmann 
constant, y is the relaxation rate of the atomic transition, 
R = h 2 k 2 / 2 ~  is the one-photon recoil energy, M is the mass 
of the atom, and k is the wave number of the 
Another circumstance is that VSCPT, being a general quan- 
tum mechanical phenomenon, can be realized in a wide va- 
riety of atom-field interaction schemes. Therefore VSCPT 
can be applied to get very low temperatures for ensembles of 
quite different quantum objects including atoms, ions and 
molecules, and to achieve t w ~ - ~ - ~  and three-dimensional5 
cooling by proper choice of laser and atomic configurations. 
VSCPT provides an interesting example of a physical 
mechanism performing local (in momentum and, possibly, in 
coordinate space and in time) freezing of the degrees of free- 
dom of quantum objects by means of diffusion redistribution. 

The phenomenon of coherent population trapping (CPT) 
is based on destructive quantum interference between the 
amplitudes of transitions in a laser-irradiated multilevel 
atom. This interference occurs under certain conditions of 
interaction, in particular, for certain values of the velocities 
of the atom. As a result, superpositional 'dark' states I*,,) 
appear, which are not coupled to the rest of the system by 
laser radiation but can be filled by means of spontaneous 
emission. Thus, after some fluorescence cycles most of the 
atomic population is optically pumped into I*,,) and 
trapped there. 

Up to now all the experimental realizations and perspec- 
tive proposals of VSCPT have exploited the configurations 

of laser-atom interaction, where superpositions I*N,-) are 
generated by radiative-stable lower states (such as three-level 
A-system and various multilevel systems of the magnetical 
sublevels of two states).'-lo The use of such configurations 
allows one to avoid completely the decay of the population 
of I*,,) through spontaneous relaxation, but it restricts, in 
some respects, the possible applications of laser cooling by 
VSCPT. At the same time, the phenomenon of CPT occurs in 
cascade system of excited states (Fig. 1)"-l4 as well. The 
present paper is designed to show the feasibility of laser 
cooling with VSCPT in a three-level cascade scheme for the 
interaction of an atom with laser radiation. This scheme al- 
lows the number of quantum objects which can be cooled 
down to sub-recoil temperatures to be extended considerably. 

In general, the states I*,,) are never 'perfect traps' for 
the population even if they are superpositions of stable 
ground states. There always exist processes (laser fluctua- 
tions, collisions, etc.) violating the phase correlation between 
transition amplitudes and thereby destroying the interference. 
These processes cause the atomic coherence to relax with the 
rate r. Therefore the trap states I*,,) are always decaying 
ones, that leads to incomplete population trapping. Another 
reason for instability is that the I*,,) are not exact eigen- 
states of the Hamiltonian of the unperturbed atom for some 
interaction Nevertheless, if the loss rate from the 
trap state is low enough, the population trapping is coherent 
in the sense that a large fraction of the atomic population is 
trapped in I*Nc) for rather a long time. In particular, atoms 
can be laser-cooled to temperatures lower than the recoil 
limit TR .137,10 

One can estimate the temperature limit for cooling by 
VSCPT with the following simple qualitative considerations. 
For moving atoms the state is real trap for popula- 
tion only at certain value p, of atomic momentum. The loss 
rate rNC(p) of ITNC(P)) is close to zero (but not equal to 
zero) for p =po and increases with momentum as ( p  
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FIG. 1. Three-level (or E-)  scheme of interaction of an atom with the two 
travelling electromagnetic waves with the wave vectors km and frequencies 
wm . Detuning and spontaneous relaxation rate for the (m)-13) transitions 
are denoted by R, and 2ym respectively (m = 1,2). 

(for the range of p  close to p ,  the rate is 
r ~ ~ ( p ) = 2 [ k ( ~  - p o ) l ~ ] 2 / ( g 2 / Y ) ,  with g  being the Rabi 
frequency of the optical transition; see, e.g., Eq. (3.16) in 
Ref. 3). The minimum value of TNc(p)  is equal to r, the 
decay rate of the coherence between the states generating the 
trap state s ~ ~ e r ~ o s i t i o n . ~ ~ ~ ~ ~  During the interaction with light 
the atoms accumulate in I*NC(P=PO)) SO that the width Sp 
of the atomic momentum distribution asymptotically tends to 
the value which determines the minimum loss rate, 
r N C ( p )  2 ( k ~ p l M ) ~ / ( ~ ' /  y )  a'. Therefore the minimum 
width attainable in VSCPT cooling is Sp 

i i k ( g m / 2 w R ) ,  where oR=Rlfi is the recoil fre- 
quency, with a corresponding effective temperature 
~ = ( ~ p ) ' / 2 ~ k , ~ ( ~ ' ~ / 8 w ~  y ) T R .  The CPT establishment 
process has a threshold: the saturation parameter g2/2? has 
to be larger than the small quantity r / 2 y  to allow CPT to 
occur.14 Therefore the lowest temperature to which atoms 
can be cooled by the VSCPT method is ~ , ~ , = ( r ' / 8 w i ) ~ ~ .  
A rigorous derivation of these formulas on the basis of the 
quantum kinetic equations for atomic density matrix is pre- 
sented in Ref. 10. Thus, the atoms are cooled below the 
recoil limit when the parameter r /wR is less then unity. 

In case of a cascade atomic system (Fig. 1) the 'dark' 
state is a superposition of the ground state 11) and the highest 
excited state 12) which decays spontaneously, so that the loss 
rate r is increased by the contribution of the spontaneous 
emission. However, under certain conditions CPT in cascade 
scheme is as well as in schemes where I*N,) is 
composed only of ground stable states.'-'' In this paper we 
give explicit expressions for these conditions and extend the 
study of coherent population trapping in cascade schemes to 
VSCPT and to laser cooling by VSCPT. Apart from the pos- 
sibility of subrecoil cooling of a new class of atoms, VSCPT 
in cascade schemes deserves attention since the 'usual' 
mechanism of VSCPT cooling by diffusion redistribution in 
momentum  ace''^"^ is mediated by the radiation force, as 
in asymmetrical schemes of in te ra~ t ion .~"~  The force has a 
special dependence on atomic velocity that causes strong de- 
celeration of the cooled atoms. The presence of such a force 
considerably improves the cooling efficiency, allowing us to 
consider this method as a powerful tool to manipulate atomic 
motion. 

The paper is organized as follows. In Sec. 2  we derive 
the explicit form of the trap state I*Nc). The state I*Nc) is 

really non-coupled only for atoms with a center-of-mass ve- 
locity satisfying the condition of Doppler-shifted two-photon 
resonance in the cascade scheme. The conditions for the 
atomic parameters and the laser radiation to establish CPT 
are presented and discussed in Sec. 3. Dynamics of laser 
cooling by VSCPT in cascade systems is examined in this 
paper by use of both full quantum and quasiclassical (for the 
translational motion of atoms) approaches. It allows us to 
study the process of cooling in different regimes for a wide 
range of interaction parameters, as well as to find explicit 
expressions for the temperature limit of this cooling method. 
In Sec. 4 a quasiclassical approach is used to analyze the 
action of radiation force and momentum diffusion and the 
influence of different parameters on the efficiency of the 
cooling mechanism and to find the time scales of the process 
under study. We further propose two regimes of interaction 
of atoms with laser beams dramatically improving the effi- 
ciency, so that an atomic ensemble can be cooled almost 
without losses. Finally, we present in Sec. 5 an analytical 
solution for the atomic density matrix, treating both internal 
and translational degrees of freedom of the atoms quantum 
mechanically. The solution is obtained in the asymptotic 
limit of large interaction times and small atomic momenta. 
As a result we get the expressions for the asymptotic depen- 
dence of populations on time and momentum as well as for 
the width of the momentum distribution (temperature) and 
for the number of cold atoms. Appendix A contains the gen- 
eral expressions for the force and for the diffusion coefficient 
in the quasiclassical approach, while the analytical calcula- 
tions presented in the last Section are developed in Appendix 
B. 

2. STATE OF VELOCITY-SELECTIVE TRAP FOR THREE- 
LEVEL CASCADE SYSTEM 

In the present paper we consider an atom-interacting 
with two travelling electromagnetic waves as a three-level 
cascade (E) quantum system (Fig. 1). The Hamiltonian of 
the system under consideration has the form 

where the first two terms in the right-hand side constitute the 
Hamiltonian 6 of an unperturbed atom with the energies cp 

of the time-independent states I,u) and with the kinetic en- 
ergy operator i 2 / 2 ~ .  The last two terms describe the inter- 
action of the atom with the applied fields. We assume that the 
interaction is an electric-dipole one for the 11)-13) transition 
and that it can be electric- or magnetic-dipole one for the 
12)- 13) transition (Fig. 1). 

The aim of this Section is to find explicit expression for 
the trap state IqNC(p))  uncoupled to the other states by the 
laser-atom interaction. The state I*,,) responsible for the 
CPT is a solution of the Schrodinger equation (in the inter- 
action representation): 
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with 

which satisfies the condition 

We will solve for as a superposition of the eigenfunc- 
tions of the unperturbed Hamiltonian and the kinetic energy 
operator, requiring this state to be strictly stationary with 
respect to free motion of the atom: 

Here a,(r) are the eigenfunctions of the kinetic-energy op- 
erator and h2b;/2M are the respective eigenvalues: 

where A is the Laplace operator. The solutions of Eq. (6) are 
the functions 

where the amplitudes A, do not depend on r and t .  The 
interaction operator fi(r,t) in the resonance approximation 
has the form 

In the expression (8) we denote the Rabi frequencies by 
g, = ( 3  1 el CL)/2h, the detunings by flI = w1 - ( E ~ - E ~ ) / ~ ,  
f l , = % - ( ~ ~ - & ~ ) l f i  and the recoil frequencies of the atom by 
wR,=hk;/2M (,u=1,2). Substitution of (7) and (8) into (4) 
gives 

Equations (9) for the amplitudes A, have a solution only 
when the oscillation frequencies of the summands in (9) are 
equal: 

Conditions (lo), (11) are satisfied for 

b2=bo+k2 ,  (12b) 

f l l - k l ~ o = - f 1 2 + k 2 ~ o ,  (13) 

where the vector vo=hb@l is the velocity of the center of 
mass of the atom. Normalizing ITNC) by ('PNCI(TNC)=1 we 
obtain A,=g21go, A2= -gl /go,  where gi=lgl12+lg212. 
Thus, 

In the momentum representation the wave function of the 
trap state is a superposition of the lowest ground state (1) and 
the highest excited one 12), each multiplied by a Sfunction: 

Velocity selectivity of the trap state is provided by the con- 
dition (13) for Doppler-shifted two-photon resonance. Note 
that CPT in cascade scheme is velocity-selective only for 
co-propagating light waves in the case of Ikll~lk21, in con- 
trast to the A-scheme where laser cooling by VSCPT is usu- 
ally realized by counterpropagating waves. In particular, the 
velocity-selective trap state ITNc) can arise when the =-atom 
is excited by only one travelling laser wave. The problem is 
that such a trap state can not be populated by optical pump- 
ing cycles, so that actually VSCPT is not realized for the 
case of one exciting wave. This conclusion follows from the 
conditions under which CPT in the cascade scheme is estab- 
lished. We present and discuss these conditions in the next 
Section. 

3. CONDITIONS FOR CPT IN CASCADE SYSTEMS 

In order to describe the dynamics of the =-atoms we use 
as a basis the formalism of the density matrix in the Wigner 
representation. This permits us to present both the full quan- 
tum and the quasiclassical (for translational motion of atoms) 
approaches to the problem of laser cooling by VSCPT. The 
relevant set of equations for the density matrix elements in 
the basis of the bare states 11),12),13) (Fig. 1) is given (in the 
rotating-wave approximation) by 
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Here we have used the notation 

d a p a  
- +- -  --- 

dt at M ar' 

The functions @3,(n) and Q23(n) determine the relative prob- 
ability of spontaneous photon emission in the direction of the 
unit vector n for spontaneous atomic decay through the 13) 
-11) and 12)-13) channels. However, for the analysis of one- 
dimensional VSCPT the spherical symmetry approximation 
is sufficient for these  function^.^"^"^ 

We denote by r the cumulative decay rate of the coherence 
p12: 

where the value of To includes collisional (TColl), laser fluc- 
tuations (rfl), and transit-time (r,,) broadening and other fac- 
tors destroying the laser-induced coherence. 

If the trap state is absolutely stable against any relax- 
ation process, then once the atomic population falls into the 
ITNc) state it remains in it forever. Thus, after a few fluores- 
cent cycles a large fraction of atomic population will be 
trapped in ITNc). 

The peculiarity of CPT in cascade scheme is that I*,,) 
is a superposition of the stable lower state (1) and the upper- 
most excited one 12), which decays to the intermediate state 
13) with the rate 2y2. Nevertheless, establishment of CPT in 
cascade scheme is possible, if the rate at which ITNc) fills is 
much higher than its relaxation rate. This requirement results 
in specific conditions on the laser field parameters and relax- 
ation constants. 

The conditions are analyzed by means of the density 
matrix equations in the basis of the states ITNC), ITc),13) 
(ITc) is the 'coupled' state orthogonal to ITNc) and 13)), so 
that the matrix element ('PNcljlTNc) is equal to the popula- 
tion of the trap state. CPT occurs in a quantum system when 
most of the population is in ITNc) in the steady state. Thus, 
solving the steady-state equations for the atoms with velocity 
satisfying Eq. (13) (e.g., v  = v o = O  for R1= -R2=R) we 
obtain (TNcI j ITNC)~ l  under the following conditions: 

These conditions are in good agreement with the quali- 
tative picture of filling the weakly-decaying state I*Nc) by 
optical pumping through the intermediate state 13). Hence, 
the atomic population is largely trapped in ITNc) when the 
relaxation rate (which is proportional to T) of ITNc) is much 
lower than its pumping rate (which is proportional to yl for 
strong saturation of optical transition and to ggyll($+~2) 
for weak saturation), resulting in the conditions (19a), (19b). 
The inequality (19c) reflects the asymmetry between the 13) 
-11) and 12)-13) channels with respect to the filling of the 
ITNc) state, taking place because of the nonzero natural 
width 2 y2 of the state 12). 

The conditions (19) impose specific limitations on the 
parameters of both the atomic systems and the applied radia- 
tion, allowing CPT to occur in the cascade scheme. The 
value of r0 can be substantially reduced by the use of corre- 
lated laser  field^.'^.'^.^^ Note that for the cascade scheme 
I ' f i = ~ l + ~ 2 + 2 ~ 1 2  (where A, is the bandwidth of a laser 
with frequency a,,, and A,, is the cross-spectral bandwidth) 
is reduced with negative critical cross-correlation 
6 -A - ,--A12,12 - in contrast to the A-system where positive 
cross-correlation should be used.19 The value of T,, can be 
reduced by preliminary deceleration of the atomic beam. 
However, the total magnitude of I? (18) can not be as small 
as desirable because of the presence of the transverse damp- 
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ing rate y2. Thus, it follows from (19a) and (18) that the 
natural width of the state 12) should be well below than that 
of the state 13): 

7'247'1. (20) 

There are two ways to satisfy the inequality (20). The 
first, "natural," way is to use atomic schemes where the 
13)-12) transition is weak because it is an intercombinational 
or electric quadrupole, or magnetic dipole transition. In this 
paper we consider the example of alkaline-earth metals Mg, 
Ca, Zn, Cd, Hg, where the intercombinational optical transi- 
tion ' S ~ - ~ P ,  corresponds to the 11)-(3) transition, whereas 
the magnetic dipole microwave (infrared) transition 
3 ~ 1 - 3 ~ 2  corresponds to the 13)-12) one. In this scheme 
y, = lo3-lo7 sec-' and y2= 10-~-10-' sec-'. The second, 
"artificial," way is to use the so-called combinational transi- 
tion as the upper 13)- 12) one, which becomes electric-dipole 
allowed only by applying an external dc electric field.21 The 
probability of such a transition is proportional to the squared 
electrical field strength, allowing the conditions (19), (20) to 
be satisfied by a proper choice of the field strength. 

We note finally that the condition (19c) cannot be satis- 
fied if both transitions are driven by one laser wave. One can 
reduce (19c) to the following form: ~ $ / k i % - ~ : / k :  (where E m  
and km are the amplitude and the wave number of the laser 
wave applied to the transition lm) -13)), SO that for one laser 
wave (E l  = E 2 ,  k, = k2) above condition is not satisfied. 

4. QUASICLASSICAL APPROACH TO LASER COOLING BY 
VSCPT 

VSCPT provides a mechanism for laser cooling which 
works rather effectively in both the sub-Doppler and subre- 
coil temperature ranges.1'2~'6~22 The physical content of this 
mechanism can be described by the action of the light pres- 
sure force and momentum exactly as for 
other cooling mechanisms. This fact is in accord with Bogol- 
ubov's well known conclusion on the simplification of statis- 
tical systems description as time increases (see, e.g. Ref. 17). 
In the case of laser cooling phenomena this is possible due to 
the large number of induced and spontaneous photons re- 
emitted by atoms during the interaction. The most natural 
(and usual) way to study the dynamics of laser cooling is to 
use the quasiclassical approach, assuming the atomic trans- 
lational motion to be the classical motion of Brownian par- 
ticles. Unfortunately, such a classical treatment of atomic 
translational motion leads to some essential restrictions to 
the theory. First of all, the quasiclassical theory can not de- 
scribe variations of momentum distribution function on a 
scale smaller than the photon momentum fik, which is the 
measure of quantum fluctuations of atomic momentum. 
Therefore, in particular, the temperature limit of the ap- 
proach is the recoil temperature TR . However, quasiclassical 
analysis has the advantage of c lady  of the physical picture 
of the cooling process. Besides, it permits one to study dif- 
ferent regimes of the dynamics in a wide range of interaction 
parameters. 

The characteristic feature of VSCPT is a sharp narrow 
dip, centered at the velocity vo (13), in the velocity depen- 
dence of the fluorescence rate of the trap ~ t a t e . ' ~ , ~ ~ , ~ ~  This dip 

is a consequence of destructive interference between the am- 
plitudes of the 11)- 13) and 12)- 13) transitions which prevents 
the incident light being absorbed by atoms with velocity 
close to vo. Therefore the atoms are affected by radiation and 
change their translational and internal state as their velocities 
become weaker or closer to the value vo (or, in other words, 
the closer the atoms are to the 'bottom' of the velocity dip). 
At the same time, the atoms at the edges of the dip are 
affected most by light. For these reasons, one should con- 
sider the width 6vc of the dip as a "first velocity scale" or as 
the velocity capture range of laser cooling by VSCPT. It is 
therefore worthwhile to consider quasiclassically the evolu- 
tion of the atomic velocity distribution, when both 6vc and 
the width avo of the initial distribution are much larger than 
the recoil velocity v~ = fiklM. 

Quasiclassical analysis usually starts with the equations 
(16) for the Wigner density matrix p(r,p,t). For times t + ~ '  
(T' is the time scale on which the atomic internal degrees of 
freedom change for =-atoms it is T' = y ~ '  for large laser 
intensities (gt%-$) and r' = y I l g ~  for $ ~ g ; +  y , ~ ' ~ )  one can 
reduce the density matrix equations to a single Fokker- 
Planck equation (FPE) for the atomic distribution function 
w(r,p,t)= ~ ~ , ( r , p , t ) + p ~ ~ ( r , p , t )  + ~ ~ ~ ( r , p , t ) ,  where r and p are 
the position and momentum of the atomic center of mass.'"17 
Considering the one-dimensional problem of atomic motion 
along the z-axis and supposing that the distribution function 
w is spatially uniform, w(r,p,t) =w(p, , t) ,  we write the FPE 
in the following form: 

where p, is the z-projection of the atomic center-of-mass 
momentum, F, is the z component of the radiation force 
affecting the atoms and D,, is the diagonal z component of 
the momentum diffusion tensor. 

To derive the FPE we expand the Wigner density matrix 
elements in a power series in the small parameters hk,lAp, 
where Ap is the characteristic momentum scale of the varia- 
tion of the density matrix elements. In the presence of CPT, 
Ap is determined by the width k16vc=I'/2+g;l y124325 of 
the coherent trapping resonance: IApl = M  Svc= M ( r / 2  + g;/ 
yl)lkl  . Therefore the condition for the applicability of ex- 
pansion (hk,/ApGl) limits the intensities for which the qua- 
siclassical approach is valid: 

where the condition (19b) is assumed to be fulfilled. 
The light pressure force and the elements of the momen- 

tum diffusion tensor are determined by the steady-state popu- 
lations p:, and p:, of the excited states in the E-atom: 

For simplicity we neglect in (23) the small nonadiabatic cor- 
rections related to the statistics of reemitted photons and sup- 
pose the photon emission to be isotropic. 
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FIG. 2. Time evolution of atomic velocity distribution w(u , t ) .  Time is 
measured in units of mi: ( F ~ W ; : ) .  Inset shows the velocity dependence of 
the radiation force F,  acting on =-atom. Recoil frequency wRl =O.Oll y, 
( " I H ~ ) ,  Rabi frequencies g l  =g2=0 .3  y , ,  detuning Rl=R2=0,  transverse 
relaxation rate T=0.001 yl , initial distribution width k,6u0=0.5 yl , corre- 
sponding to the Doppler precooled atomic beam. 

Explicit expressions for the velocity dependence of the 
force F, and the diffusion coefficient D,, are given in Ap- 
pendix A. It is essential to note that both functions have the 
same shape, with a narrow sharp dip centered at the velocity 
vo (see formula (Al) and inset in Fig. 2). Force and diffusion 
coefficients of this shape are known16322 to cause rapid for- 
mation of a narrow atomic velocity distribution peak near the 
velocity vo, i.e., atomic cooling. When this takes place, the 
diffusion plays a constructive role in the cooling process15316 
at the initial stage of atomic evolution in contrast to other 
cooling mechanisms (such as ~ o ~ ~ l e r ~ ~  or polarization- 
gradient27 cooling) where diffusion broadens the atomic ve- 
locity distribution at any time. It is characteristic of the 
E-scheme that the pure diffusion regime of cooling can not 
be recognized, as it can for A-scheme of interaction, since 
the 2-scheme is inherently asymmetric. Therefore the force 
affecting the 2-atoms under CPT conditions gives the main 
contribution to the Computer calculations of the 
evolution of the velocity distribution of Hg atoms are pre- 
sented in Fig. 2. It is seen that the atomic ensemble is effec- 
tively cooled in times of order (1-10)wi,', that is, about 
(10-~-10-~) sec for 2 0 1 ~ g  atoms cooled by CPT in the cas- 
cade scheme 6 1 ~ , - 6 3 ~ l - 6 3 ~ 2 .  This time corresponds to 
the time scale rfi=P-l for the action of the frictional force 
determined by the value of friction coefficient P: 
MP= - (dF,ldv),,(,) for mean atomic velocity (v) close 
to zero.22 

However, the peak of the cold atoms can not be in- 
creased and narrowed indefinitely because of the incomplete 
trapping of population in the state. The degree of the 
incompleteness of trapping is determined in general by the 
ratio Tly (Section 3 of this paper; see also Ref. 16). With 
respect to the quasiclassical description of cooling by 
VSCPT, this fact is reflected by nonzero values of the radia- 

tion force and diffusion coefficient at the velocity corre- 
sponding to the bottom of the dip in the velocity dependence 
(e.g. at v = v o =  0 for R1 =R2=O). Hence the peak of the cold 
atoms is shifted by a constant force F:(F:=F,(v = 0)  for 
R1=R2=0) and smeared out by the diffusion 
D:,(D:,= D,,(v = 0) for R1 =R2=0). One can estimate the 
time required for the atoms to be removed from the dip by 
the force F: as TF= (AP).(F;)-' and by the diffusion D: 
as %= (A~)~(D:,)-', where Ap is determined by the width 
of the dip: ~ p ~ ~ ~ ~ l ( ~ , k ~ ) .  For the case when 13)-12) is a 
magnetic-dipole transition (kl G kl)  these times are: 

In the case of 2 0 1 ~ g  atoms the values of the time scales are 
rF=rD= sec for the parameters of Fig. 2. Thus, over 
the interaction times rfiStG TD, rF the atomic ensemble is 
cooled down to very low temperatures. 

One of the most important questions of any cooling 
method is the cooling efficiency, which is generally speci- 
fied: i) by the limiting value of the width of the velocity 
distribution of the cold atoms or by the 'temperature limit' 
reachable in a given method, ii) by the fraction of cold atoms 
with respect to initial number of atoms, and iii) by the den- 
sity of cold atoms in velocity space. In order to improve the 
efficiency of laser cooling by VSCPT some methods of so- 
called 'pre-cooling' have been proposed4,28-30 The main 
principle is to supplement the VSCPT mechanism by a force 
accumulating atoms in the range of velocities near vo and to 
provide in this way a constant rate of pumping into the trap 
state. Quasiclassical analysis allows us to consider this prob- 
lem in the simplest way and to propose new facilities that 
will considerably improve the cooling efficiency. 

The above qualitative analysis and computer calculations 
(Fig. 2) clearly demonstrate that the narrow peak of 'cold' 
atoms is formed in the range of velocities close to vo, i.e., 
inside the CPT-dip. The number of cold atoms (calculated 
from the area of the peak) is determined by the relation be- 
tween the initial distribution width avo and the value of the 
dip width 6vc. Under CPT conditions (19a) the width Svc is 
determined only by the intensity of the applied fields. In- 
creasing the laser intensity thus leads to an increase of the 
fraction of cooled atoms, accompanied by an increase in the 
width of the peak (Fig. 3). Hence it would be possible to 
accumulate most of the atoms in the narrow peak, if the laser 
intensity (which is proportional to gg) is adiabatically de- 
creased from the value giz ylklSuo (so that initial CPT-dip 
width is of order of initial distribution width) to the value 
gi= y , ~  (the threshold value for CPT to be established). 

Another effective method for intense one-dimensional 
cooling of the whole atomic ensemble (in most experimental 
realizations the one-dimensional cooling is the transverse 
cooling of an atomic beam) is proposed here on the basis of 
the following considerations. One of the characteristic fea- 
tures of cooling with VSCPT is that the sign of the light 
pressure force F, is the same in the whole range of velocity 
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FIG. 3. Parameters of the cold atoms peak as a function of time r = t .  
for different values of the Rabi frequencies g = g l = g 2 .  (a) The height of the 
peak (normalized to the height of initial distribution); (b) The width of the 
peak; (c) The fraction of atoms in the peak (normalized to the number of 
atoms in initial distribution). Recoil frequency w,, =0.011 y, ('''H~), detun- 
ing Sll=S12=0; transverse relaxation rate T=0.001 yl . 

FIG. 4. Wo-zone scheme for the production of intensive well-collimated 
atomic beam. 

variation. Therefore, decelerating the atoms with u,<O, the 
same force accelerates atoms with positive velocities, leading 
to a considerable loss in the final intensity of the atomic 
beam. 

We consider here a technique which yields a collimated 
atomic beam almost without intensity loss. The production of 
such a beam is possible using the two-zone interaction 
scheme shown in Fig. 4. In zone A the frequency detuning of 
the exciting fields is shifted so that the narrow CPT reso- 
nance is in the region of positive velocities at 
vA = ( a ,  + R,)l(k,  + k,).  As a result, narrow peak in the 
velocity distribution develops for v  = v A  (Fig. 5a). The peak 
accumulates the atoms with initial velocity u,<uA.  In order 
to concentrate the whole Maxwellian distribution in this 
peak, values v A ~ ( 2 - 3 ) S v o  are necessary. On the other 
hand, the atomic beam is now deflected after the interaction 
in the zone A .  The narrow peak of atoms returns to the re- 
gion of small transverse velocities in zone B. Here the 
atomic beam interacts with light fields, the wave vector di- 
rections of which are opposite to those of zone A ,  and the 
detunings are equal (a = - a; = a) .  The light-pressure 
force F,  in zone B is negative and the CPT resonance is in 
the zero-velocity region (see inset of Fig. 5b). The effect of 
F,  shifts the velocity distribution peak formed in zone A to 
the zero-velocity region and further narrows it. As can be 
seen from Fig. 5b, almost all the atoms of the beam are 
concentrated in a narrow velocity region with the width 
Av 0.01 ( y l lk l )  (corresponding to =2 cm/s for Hg) near 
v  =o. 

Note also that the momentum diffusion sl;yhtly affects 
the implementation of this technique, since the transit time of 
atoms through zones A and B is small, so that the diffusive 
broadening of the transverse velocity distribution is slight. 

Concluding this Section we point out that in the quasi- 
classical description of laser cooling the final temperature of 
the cooled atoms can be evaluated by the Einstein formula 
for Brownian motion. We recall that the quasiclassical ap- 
proach is valid in the temperature range T+T, ,  while the 
mechanism of laser cooling by VSCPT provides tempera- 
tures well below T,  . In order to obtain an explicit expression 
for the temperature of VSCPT-cooled atoms one should 
solve the full quantum equations (16) rather then the 
Fokker-Planck equation (21). This is what we do in the next 
Section. 
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FIG. 5. Time evolution of the atomic velocity distribution w(u, t )  for the 
two-zone laser-atom interaction scheme. (a) Interaction in zone A :  wave 
vectors k, = k,e,, k,>O; detunings Cl, =R2=0.5 y, ; (b) Interaction in zone 
B: wave vectors k,= - k,e, , k,>O; detunings Cll=Cl,=O. Insets show the 
velocity dependence of the radiation force F ,  acting on the E atom (upper 
right corner) and the time dependence of the number of cold atoms (normal- 
ized to the number of atoms in initial distribution). Recoil frequency 
w,, =0.011 y, (20 '~g) ,  Rabi frequencies g,  = g 2 = 0 . 3  yl , transverse relax- 
ation rate T=0.001 y, , and initial distribution width k1 6uo=0.5 yl , corre- 
sponding to the Doppler precooled atomic beam. 

5. ASYMPTOTIC BEHAVIOR AND THE LIMIT OF SUBRECOIL 
COOLING BY VSCPT 

As we pointed out before, there is an evident shortcom- 
ing of the quasiclassical theory: it is impossible to describe 
structures in the atomic momentum distribution narrower 
than the photon momentum hk. However, VSCPT is known 
to permit the atoms to be cooled below the recoil limit' in 
such a way that the width of the distribution is decreased to 
very low magnitudes when the laser-atom interaction time is 
increased. Therefore the asymptotic behavior of the momen- 
tum distribution, which is of great importance in the theory 
of cooling by VSCPT, should be studied without making the 
approximation that the atomic translational motion is classi- 
cal. The aim of this Section is to study the asymptotic evo- 

lution of the atomic density matrix. In order to obtain the full 
quantum solution to the problem under consideration, we 
introduce new definitions for the density matrix elements: 

After this substitution, which corresponds to a transition to 
the "closed family" basis,3 one gets from (16) the following 
set of equations for uij(p,t): 
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where GR =h(klk2/2M). 
Because of the substitution (25) the distribution function 

w(r,p,t) of atoms is expressed in the "closed family" basis 
as (see also Ref. 3): 

Therefore it is necessary to calculate the time and momen- 
tum dependence of the diagonal elements uii(p,t) in order to 
investigate the dynamics of atomic cooling. We recall that 
due to (15) the atoms being cooled by VSCPT, are accumu- 
lated in the superposition of the states 11) and 12) localized in 
momentum space in the two planes p=Mvo-hkl and 
p=Mvo+hk2. This is the reason why we, anticipating the 
cooling by VSCPT, are interested mostly in the behavior of 
the diagonal elements all(p,t) and u2,(p,t) in the range of 
momenta close to p=Mvo [in particular, close to p=O for 
f l l= -a2 ;  see (13)l. 

In the last few years some analytica110318~23 and 
numerical3' techniques for solving the problem of cooling by 
VSCPT in the limit of large interaction time have been de- 
veloped. Here we use an approach based on that of Refs. 10 
and 18. We were forced, however, to modify this method 
substantially because of the strong asymmetry of the cascade 
scheme, so that the solution algorithm was totally changed. 
In the present form this technique can be used for a number 
of different laser-atom interaction schemes. 

An exact algorithm for the asymptotic solution of Eqs. 
(26) is given in Appendix B. Thus, we obtain the following 
formula describing populations for small values of atomic 
momentum and for large interaction time: 

for the case of equal frequency detuning ill = -a2=- ij 
and Rabi frequencies g1 = g2=g.  In deriving (28) we assume 
the conditions (19) of CPT in 3-system to be fulfilled. 

Equation (28) shows that the momentum distribution 
peaks at time t a r - '  have Lorentzian shape. The time depen- 
dence of the distribution is described by an exponential de- 

crease with the rate ( r +  y2)/2, combined with slow increase 
defined by the modified Bessel function Zo((T- 

The half-width 6p (29) of the peak is constant in time. 
This is in contrast to the conclusions of Refs. 3,18,23, where 
the relaxation of the coherence u12 is not taken into account, 
thus resulting in a t-'I2 dependence of the width. The relative 
number of atoms N involved in the cooling process is given 
by N=Jull(p)dp,  where the integral is taken over the peak 
of the trapped atoms only. From (28) it is easy to find that 

It is interesting that neither the half-width of the peaks nor 
the number of cold atoms depends on the initial atomic dis- 
tribution width in agreement with the conclusions of other 
studies of the asymptotic behavior of the pro~ess.10318~23331 
The reason is that the atomic distribution is divided into two 
parts during cooling by VSCPT: an ensemble of 'cold' atoms 
and another one of 'hot' atoms, with substantially different 
temporal evolution (this is clearly seen from Fig. 2; see also 
discussions in Refs. 9, 15, and 18). In the initial stage the 
narrow peaks of cold atoms are formed and the remaining 
(which we call 'hot') part of the distribution is a reservoir for 
the process of accumulation of atoms in I'3!,,-). At the same 
time, atoms from the 'hot' ensemble diffuse in momentum 
space to the range of large momenta as well. Therefore, be- 
ginning at a certain time (estimates of its value are presented 
in1') the two parts of the atomic distribution are more and 
more weakly coupled to each other as the interaction time 
increases, so that for large (asymptotic) times their mutual 
influence is negligible. 

Note that the atomic momentum distribution given by 
Eq. (28) does not permit us to calculate the mean value of p2, 
because the integral J ~ p 2 u l l ( p ) d p  diverges. This diffi- 
culty arises because of the asymptotic meaning of (28), 
where p is assumed to be small. The "wings7' of the atomic 
momentum distribution, of course, decrease more rapidly 
than p-2 at large p. But the half-width (29) of the distribu- 
tion can be associated with the effective temperature of the 3 
atoms cooled by VSCPT: 

Thus, the temperature can be much less than the recoil limit 
for a wide range of laser intensities. The process of CPT 
establishment has a threshold (19b): the saturation parameter 
g 2 / d  has to be larger than the small quantity T/yl to allow 
CPT to occur. Therefore the lowest temperature of cold at- 
oms that can be achieved by VSCPT method is 

and the minimum achievable half-width of the momentum 
distribution is, accordingly, 
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Note that the formulas (29), (31)-(33) agree very well with 
those derived in the Introduction from qualitative consider- 
ations. In the case of alkaline-earth atoms cooled by CPT in 
the ' S , -~P , -~P~  cascade scheme one can estimate the lim- 
iting values of temperature as 10-l5 K, corresponding to an 
atomic distribution with velocity spread (in one dimension) 
of lop5 cmlsec and a minimum wave-packet width of 0.05 
cm for 'O'H~, 0.1 cm for 4 0 ~ a ,  and 0.3 cm for 2 4 ~ g  at r = 1 0  
sec-' . 

On the whole, the asymptotic behavior of the momentum 
distribution of the cooled 8-atoms is similar to that of a 
symmetric A-system when relaxation of the coherence u12 
with the rate r is introduced.1° The narrow peaks of the 
distribution, formed at the early stage of evolution, is 
smeared out so that width of a narrow peak is constant as the 
number of cooled atoms decreases with time. The values of 
Sp and N depend on the value of r in such a way that the 
smaller the value of r the more efficient the cooling process. 
Note that the values of both Sp and N are proportional to the 
Rabi frequency. It is interesting also that the related fre- 
quency parameter for the cooling of E-atoms is the 'sum' 
recoil frequency wR12 = h(kl + k 2 ) ' / 2 ~  rather than the indi- 
vidual ones w~~ and w,,. 

6. CONCLUSIONS 

We have investigated the feasibility of one-dimensional 
laser cooling of atoms by the use of VSCPT in the three-level 
(8-) cascade interaction scheme. We have demonstrated that 
the temperature of cooled 8-atoms can reach values much 
lower than the recoil limit obtained for interaction schemes 
with the trap state superposition composed only of stable 
ground states. However, to implement VSCPT in a cascade 
system, one has to satisfy specific conditions (19) imposed 
on both the atomic level scheme and the laser radiation pa- 
rameters. The conditions are due to restrictions induced by 
the presence of spontaneous decay of the upper state 12) in- 
volved to the trap state ITNc) as well as by relaxation of 
coherence between states 11) and 12). These processes destroy 
the superposition IqNc) and modify the dynamics of cooling 
as compared with cooling by VSCPT in the case of an abso- 
lutely stable state The evolution of the atomic mo- 
mentum distribution consists of the rapid formation of nar- 
row peaks of cold atoms, followed by a slow decrease in 
their height and the number of cold atoms. In the asymptotic 
limit of large interaction times the width of the peaks 
reaches, a constant value. Both the time scales of the evolu- 
tion and the limiting value of the width are determined by the 
relaxation rates of the 12) state and of coherence between the 
11) and 12) states. It is important that under the conditions 
(19) of CPT the atoms are cooled down to subrecoil tempera- 
tures for rather a long time. We have also demonstrated, 
using the quasiclassical approach, some schemes of interac- 
tion permitting a substantial improvement in the effective- 
ness of the cooling. 

Thus, we have shown that effective subrecoil cooling in 
one dimension can be achieved by the use of VSCPT in 

cascade systems where one atomic transition is optical while 
the second one can be in the optical or the microwave (in- 
frared) band. As an example, we have considered in this 
paper the subrecoil cooling of the alkaline-earth atoms Ca, 
Mg, Zn, Cd, Hg, which have attracted attention in recent 
years because of their application to high-quality infrared 
frequency standards (see, e.g., Ref. 33 and references 
therein). We believe that the cascade scheme of laser-atom 
interaction can be preferable for subrecoil cooling of some 
other types of atoms and possibly molecules. 
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APPENDIX A 

In this Appendix we present exact expressions for the 
force F, and diffusion coefficient D,, in the quasiclassical 
approach: 
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Here v = p , / M  is the z-projection of the atomic velocity. 
For simplicity the detuning and the Rabi frequency are taken 

3 

the same for both transitions in the 3-atom: in1= -in2=R 
and g = g l  = g 2 .  In deriving ( A l )  we also assume the condi- 

3 

tions (19) for coherent population trapping in the 3-system 
to be fulfilled. 

APPENDIX B 

Here we present the asymptotic solution of the set of 
equations (26).  First, the Laplace transformation is taken: 

with the initial conditions 

a l l ( p , t = o ) = W l ( p ) ,  (+22(p7t=O)= W 2 ( p ) ,  (B1) 

while the other initial density matrix elements are equal to 
zero. 

In the one-dimensional approximation the equations for 
the Laplace transforms read as follows: 

+ hk,  

dua33(p - f ik l+u , s ) ,  

sa12(p , s )=  - [ r + i ( A l - A 2 ) 1 u 1 2 ( ~ 7 ~ ) + i g 2 f l 1 3 ( ~ , ~ )  

- i g : a 3 2 ( ~ , s ) ,  (B2)  

where the integration over the direction n of spontaneous 
decay in the spontaneous feeding terms for a l l ( p , s )  and 
a2, (p ,s )  is changed by the integration over the spontaneous 
photon momentum u along the z-axis and the approximation 
(17) is used. Here p is the z-projection of the momentum p, 
and we consider the case when both e.m. waves propagate 

along the positive z-axis: k 1  = k l e z ,  k2=k2e,, k,>O. 
From the fourth, fifth and sixth equations of (B2) one can 
write 

Throughout this article we consider the case of laser intensi- 
ties, weakly saturating atomic transitions: g 2 ( $ + ~ E ) 4 1 ,  
so that at any time a33-Gull, a,, holds and one can write 
all- a33ga11, a33=u22. Therefore the coefficients a , ,  
b ,  for interaction times t+  yyl are given by: 

a l  = Re[- 2 g i ( ~ 2 r p + g i ) ~ - 1 ] ,  

& 2 = ~ 1 +  Y ~ - ~ ( A ~ + O R ) ,  

r p = s + r + i ( A l - A 2 ) ,  

2 D = E ~ ~ ~ + E ~ ~ ~ + E ~ E ~ ~ ~ .  034) 

After inserting (B3) into the first three equations of (B2) ,  for 
the function a 2 @ , s )  defined as 

we get the integral equation: 

while the Laplace transform a l l ( p , s )  of the population of 
lower state 11) is expressed in terms of u ~ ~ ( P , s )  as 

where we assume for the sake of simplicity that there is no 
initial population in the uppermost state 12): W 2 ( p )  =O. 

The next step in obtaining the asymptotic solution to the 
set of equations (26) is the Fourier transformation of (B6): 
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Introducing the operators ~ 1 ( ~ ) , ~ 2 ( ~ ) , ~ 1 ( ~ , ~ ) , ~ 2 ( ~ , ~ ) ,  
which act on arbitrary function d x )  so that 

we obtain from (B6) an equation for the Fourier transform 
u2(x,s):  

The solution to (B9) can be written as the operator relation 

u2(x7s )  = i ( x , s ) w l ( x )  

with the operator i ( x , s )  defined by 

Thus, the solution to (B2)  is expressed as 

~ 2 2 ( ~ t s ) = J ( p , s ) 4 2 ( p , s ) >  

a l l ( p ? s )  = J ( P , ~ ) + I ( P , ~ ) ,  

where 

and functions 4 ,  ( p , s ) ,  4 2 ( p , s )  are 
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It is easy to obtain explicit forms of the operators i l ( x )  and 
i 2 ( x ) ,  just by changing the order of integration in (B8): 

AS for the operators K l ( x , s ) ,  K2(x , s ) ,  one can find only 
their asymptotic representation. 

We investigate now the dynamics of atomic populations 
in the asymptotic limit of long interaction times t-+m (cor- 
responding to s+O [lo]) and small atomic momenta p+O 
(corresponding to A x-+w). Thus, we see that 

il(x)lt>:k,) + O  and S2(x)lx-m (p9fik2) -+0 for the case when both 
k ,  and k2 belongs to the optical frequency range. For the case 
when k2 belongs to the microwave range, we have - A 

( Y z / h k 2 ) ~ 2 K l I x , m - + ~ ,  since the value of y2 is very small. 
The latter expression corresponds just to neglect of the 
'feeding-by-spontaneous-relaxation' term for q 3 ( p , s )  in Eq. 
(B.2). Therefore in both cases one can write the asymptotic 
(for small values of atom momenta) expression for the op- 
erator L ( x , s ) :  

where K l y  denote the asymptotic forms of the operators 
K ,  ( x , s ) , ~ ~ ( x , s ) .  From (B8) one can easily find 

0317) 
Thus the asymptotic form of the operator i ( x , s )  is 

so that i ( x , s ) ( , , ,  is equivalent to the multiplication opera- 
tor. 

For small values of momenta one can approximate the 
integral J ( p , s )  in (B13) by its asymptotic function J ( p  
= O , s ) .  At the same time, the functions ( 6 1 ( p , ~ ) , 4 2 ( p , ~ )  
tend to nonzero functions of p  for s+O. Thus, retaining only 
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the leading functions, one can separate the variables p and s 
in expressions (B12) for all@,s) and uz2(p,s), factoring 
them in the asymptotic limit: 

~ 2 2 ( ~ . s )  p ~ g = J ( ~ = 0 . ~ ) 4 2 ( ~ , ~ = O ) ,  S-o 

~l l (~?s) l~_' ;=J(p=o,s )4 l (p ,s=o) .  0319) 

Setting 

(B20) 

and supposing the initial distribution to be Maxwellian, 
~ ( p )  =exp(-p2/26p2) so that ~ ( x )  =exp(-cx2), C>O, 
we obtain for J(p=O,s)ls+, from (B13) 

J(P=o,s)ls-0 

- - exp( - cx2)dx 
1 + e x p ( i k l x ) O ( x ) [ s i n ( k , x ) / k l x ]  

In deriving (B21) we have taken into account that the func- 

tion W(x)=exp(-cx2) is negligible except for x close to 
zero, thus acting as a filter in x space. This enables us to 
consider the integrand only for x+O. 

Now we find, assuming SZ1= -a2= -hR, that under the 
conditions of CPT (19) and of weak saturation, 
g2,1($+~t)+1, the functions for the asymptotic solution are 

and the integral J(p=O,s)ls,, takes the form 

Thus, inserting (B24) and (B22) into the asymptotic rep- 
resentation (B19) of uii(p,s), after the corresponding in- 
verse Laplace transformation one obtains formulas for the 
populations of the E-atoms. In order to simplify the analysis 
it is convenient to use the expressions for J(p=O,s)l,,, and 
~ $ ~ ( p , s  = 0 )  for different limiting cases. For example, in the 
case of equal Rabi frequencies g ,  = g 2 = g  

and, taking reciprocal Laplace transformation, one obtains 

(B26) 

where I&) is the modified Bessel function of order zero and 

The case of laser fields with substantially different intensities 
gives for g ; ~ g :  
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and 

In the opposite case of g : s g ; s  y1 we have 

and 
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