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We propose a new kinetic approach to the problem of the interaction of light with disordered 
atomic substances. Starting from the equation for the density matrix we derive kinetic 
equations for the components of the polarization vector .Y'(t); together with the Maxwell- 
Lorentz equations these form a closed system. In obtaining the kinetic equations we take into 
account the contributions to the rate of change of .Y'(t) from the classical precession of 
the dipoles in the local fields produced by the neighboring atomic dipoles and the quantum 
fluctuations of the dipole motion in the form of sequences of virtual transitions induced 
by the light field. The multilevel effects caused by these sequences of nonresonant transitions 
leading to small-amplitude, high-frequency scintillations of the dipole trajectories are 
taken into account through canonical transformations which in the Hamiltonian replace the 
infinite set of rapidly oscillating atomic interactions with the light by time-averaged effective 
interactions with one another. We obtain from the canonically transformed equation for 
the density matrix a kinetic equation for . ( t )  which enables us to analyze the slow resonant 
motions of the dipoles. This kinetic equation describes both the dephasing of the dipoles 
and the mechanism which produces coherent oscillations of the optical dipole motion leading to 
superradiance effects and the spectral condensation of the radiation which is observed in 
interresonance laser spectroscopy. The approach suggested here makes it possible to consider 
consistently various linear and nonlinear optical effects which have been observed in disordered 
substances. O 1995 American Institute of Physics. 

1. INTRODUCTION 

To describe the propagation of electromagnetic waves in 
disordered dielectric substances we must supplement the 
Maxwell-Lorentz equations1 with a kinetic equation for the 
density of the optical dipoles, which together constitute a 
closed system. 

Such kinetic equations must be derived from the funda- 
mental equation for the density matrix (the quantum Liou- 
ville equation2) of the system of optical dipoles, which are 
coupled through dipole-dipole interactions, and which take 
part in the thermal motion together with the atoms which 
carry them, exactly as the Boltzmann kinetic equation3 for 
interacting molecules in a gas is derived from the classical 
Liouville equation. Bloch kinetic equations were derived in 
this way back in the 5 0 s ~ ~ ~  for the density of quantum mag- 
netic dipoles; these equations have the same form as the 
Bloch equations derived from phenomenological 
 consideration^.^ 

After the appearance of lasers in the sixties these kinetic 
equations were taken over with great success in resonance 
optics.7 The success of the Bloch equations in optics and for 
describing magnetic resonan~e'?~ was reflected in the pro- 
found unity of the laws of motion of optical and quantum 
dipoles. The analysis carried out using these equations for 
the decay of the free polarization, for echo effects, for satu- 
ration, and so on7.8 and also the successful molecular dy- 
namic calculations9 of the oscillating decay of the free polar- 
ization, observed" in crystalline nuclear paramagnetics, 

showed clearly that the unity of the laws of motion of optical 
and quantum dipoles stems from the unity of the elementary 
dynamic process, i.e., the precession of dipoles in external 
and local electric or magnetic fields. 

However, the approximations made in Refs. 4 and 5 in 
the Bloch kinetic equations meant that one could describe 
only the dephasing but not the collective oscillations of the 
dipoles which were observed"-'3 in optically strongly ex- 
cited gases and the decay of the free polarization of paramag- 
netic crystals.10 The collective motions together with the 
dephasing were successfully described for crystal 
paramagnetics'4-'6 using kinetic equations for the partial 
densities of magnetic dipoles, a,(h, t), cu =x,y ,z (the layer 
polarizations for short) which characterize the density of the 
dipoles in a longitudinal local dipole field h parallel to the 
quantization axis of the dipoles (in optics and when describ- 
ing magnetic resonances one chooses the quantization axis of 
the dipoles in the direction of light propagation or parallel to 
the strong constant magnetic field). 

The aim of the present paper is the generalization of the 
kinetic equations for the layer polarization14 to the case of 
optical dipoles. In the next section we start by using the 
method proposed in Refs. 17 to 21 to obtain the Hamiltonian 
of the atomic substance in an "optical" representation which 
is convenient for the description of optical effects; after this 
in sections 3 to 5 we shall use this Hamiltonian to derive the 
kinetic equation for the optical layer polarizations from the 
equation for the density matrix and to apply it to analyze 
optical effects. 
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2. THE HAMlLTONlAN OF THE OPTICAL SUBSTANCE IN 
THE OPTICAL REPRESENTATION 

It is important when generalizing the kinetic equations 
for the polarizations of layers of magnetic dipoles14 to the 
case of optical dipoles to take into account both the similar- 
ity and the essential difference between the Zeeman Hamil- 
tonians of quantum magnetic dipoles interacting with a con- 
stant magnetic field and with atomic Hamiltonians. The 
similarity manifests itself in the fact that the precessions of 
optical and magnetic dipoles in the electric or magnetic fields 
acting upon them are the same. The difference, on the other 
hand, is caused by the fact that the Hamiltonian of an atom in 
the atomic representation determines an infinite number of 
levels and allowed transitions, whereas the Zeeman Hamil- 
tonian of a magnetic dipole is characterized by only a few 
levels and transitions. 

The method which helps us to overcome this difference 
will be given in Sec. 3 where the effect on the motion of the 
polarization of all dipoles of nonresonant allowed transitions 
will be taken into account by means of an original canonical 
transformation"-21 which leaves the form of the equation for 
the density matrix unchanged but significantly changes its 
Hamiltonian through the addition to the resonance interac- 
tions of time-averaged rapidly oscillating interactions of the 
nonresonant dipoles with the field E and the local fields, also 
called effective interactions. We must emphasize that the op- 
tical representation of the Hamiltonian was applied long ago 
to describe optical effects in atomic substances7 in the ap- 
proximation in which in the atomic spectrum only two levels 
of a transition, in resonance with respect to the field E, and 
the interaction of the atomic dipole with the field E were 
taken into account but the interatomic dipole-dipole interac- 
tions were neglected in the calculations. 

The generalization of this Hamiltonian to the case of 
multilevel atoms which are coupled through dipole-dipole 
interactions was carried out by one of the present 
authors;20321 in those papers the Hamiltonian of the atomic 
substance was obtained (in frequency units) in the form 

where 

1 
H - - C - E(d(;) , j( i) ,+d(i)  j ( i )  ), 1 - h n n  n n  n n n ' n  

n r < n  

Here Ho is the Hamiltonian of the unperturbed stationary 
atoms, HI the is Hamiltonian of the interaction between the 
atoms and the external field in the dipole approximation, Hd 
is the Hamiltonian of the dipole-dipole interaction of the 
atoms, H! is its secular part, and H i 2  and Hz2 are its non- 
secular parts,8 riE?) and dti,, are the energy levels and the 
matrix elements of the dipole moments of the allowed tran- 
sitions of the ith atom, Ojk is the angle between the quanti- 
zation axis (z-axis) and the vector rik=ri-rk. It is clear from 
Eq. (9) that the projection operators 

which are defined by the equation2' 

have nonvanishing matrix elements only for allowed transi- 
tions between the states 9;) and q:?. 

In the Hamiltonian (1) we have neglected the interac- 
tions between the atoms and the field of the electromagnetic 
vacuum, and the atoms are assumed to be stationary. One can 
easily include the contributions from this and other factors to 
the motion of . 4 ( t )  directly in the kinetic equation for the 
optical layer polarization; this will be done in what follows. 

The profound similarity between the Hamiltonian of the 
atomic substance and the Hamiltonian of a ~ ~ i n ~ s ~ s t e m ~ . ' ~  
shows up in the fact that the projection operators Pant which 
occur in it are the same as the Pauli matrices for spin 112. It 
is clear that the commutation relations for the projection op- 
erators will also be the same as for the spins, which reflects 
the fact that the elementary dynamic processes (the preces- 
sion of electric dipoles or spins in fields) are the same as 
those mentioned earlier. 

We now use the method of canonical transformations 
developed in Refs. 17 to 21 to calculate how the virtual 
transitions between the levels of the atomic spectrum due to 
the external field E contribute to the kinetics of the optical 
dipoles and to reduce the number of energy levels of the 
separate atoms which actually occur in the "optical" repre- 
sentation of the Hamiltonian of the atomic substance. After 
the canonical transformations the effective Hamiltonian 
which we obtain has only a small number of levels the popu- 
lation of which actually changes under the action of the reso- 
nant electromagnetic field. 

3. TRANSITION TO THE EFFECTIVE HAMlLTONlAN 

In order to carry out the canonical transformations we 
must separate the interactions into those which are rapidly 
oscillating and those which depend weakly on the time. To 
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do this we must go over to the interaction representation for 
H, in the equation for the density matrix after which that 
equation takes the form 

where 

In what follows we use the eigenfunctions of the Hamil- 
tonian H i  of a free fixed atom for the basic wavefunctions. 
We can now write the Hamiltonian in Eq. (10) in the form 

where w!:, is the frequency of the n+n ' transition of the 
ith atom. 

Those terms in the Hamiltonians (13) and (14) for which 
the conditions 

and 

are satisfied oscillate slowly. The slowly varying parts of the 
Hamiltonian (13) describe single-photon transitions and the 
other terms oscillate rapidly. The terms in the Hamiltonian 
(14) with a frequency which satisfies condition (16) oscillate 
slowly while the others oscillate rapidly. We can write the 
slow part of the Hamiltonian (14) in the form 

This interaction describes the resonance transfer of en- 
ergy between atoms and it corresponds to phase relaxation 
and collisional broadening of the spectral lines in gases.22 

The general Hamiltonian H t ( t )  of the atomic substance 
thus consists of a part H r ( t )  which changes slowly in time 
and a rapidly-oscillating part H' (t)  : 

The rapidly oscillating interactions have a significant ef- 
fect on the atoms through the averaged effective interactions. 
Firstly, the rapidly oscillating part H; leads to high- 
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frequency shifts of the energy levels and n-photon transi- 
tions. Secondly, the fast part of the Hamiltonian H A  leads to 
high-order corrections in the Hamiltonian (for instance, 
van der Waals interactions between the atoms arise, and so 
on) and, finally, when H; and H A  act simultaneously effec- 
tive interactions appear which describe radiative collision 
processes.23 

From this it is clear that the rapidly oscillating interac- 
tions cannot be omitted as is usually done in the resonance 
approximation. In what follows we take them into account 
through the effective interactions, which we obtain by using 
a canonical transformation 

pA=exp[ir).(t)lpr e x p [ - i ~ ( t ) ] ,  (19) 

which does not alter the form of the equation for the density 
matrix but which significantly changes its Hamiltonian 
through the addition of effective interactions when we go 
over to the new representation where there are no rapidly- 
oscillating interactions. After this Eq. (10) is transformed to2' 

where 

To calculate the Hamiltonian Heff we expand the opera- 
tors A(t) and Heff in the small parameter &: 

where the transition frequencies are those for which the 
Hamiltonians (13) and (14) are rapidly oscillating. Then sub- 
stituting the series (22) into (21) and equating the coeffi- 
cients of identical powers en we get 

Equating in (23) the sum of the rapidly oscillating parts 
H ;  + H A  to the operator dA , /dt  we get 

. (26) 

where the tilde indicates the rapidly oscillating part of the 
integral. In (25) HI is the Hamiltonian which describes the 
single-photon transitions and H A  describes the longitudinal 
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and transverse relaxation due to collisions in the gas. Substi- 
tuting A ,  in (24) and equating the rapidly oscillating part of 
the first two terms to the last term, dAz(t)ldt, we get 

and the effective Hamiltonian in the next order is 

where 

From this it is clear that to first order in E a number of terms 
appear in H L ~  which describe effects which take place under 
the action of the coherent field and of collisions separately, 
as well as jointly. 

We write down a few terms of H L ~  and elucidate their 
meaning. One can find a more detailed discussion of this 
problem in Refs. 20 and 21. 

The rapidly oscillating part of the coherent interaction 
H; ( t )  leads to the effective interactionsz0 HgjH1 

+ exp[i(Amnt+ kr)] 

+ C.C., (32) 

where A,, = om, - 2 o  is the mismatch of the two-photon 
resonance, H$,),$~ is the dynamic Stark shifts of the energy 

levels, and H#;i1  is the amplitude of the two-photon transi- 

tion. 
The term H g b d  is split off from the rapidly oscillating 

part of the collisional Hamiltonian H;(t) and describes the 
interaction between the atoms: 

j(i) j(j) 
mm aa' 

If (Hd)ij has a dipole character this term describes van der 
Waals interactions proportional to llr;, (rij is the distance 
between the atoms i and j). Similarly, one can calculate A3, 
H L ~ ,  A,, ~ $ 2 ,  and so on. In successive orders one obtains 
terms describing three-photon processes, dynamic Stark level 
shifts to third order in E (to fourth order in the field), that is, 
hyperpolarization,24 four-photon processes, and so on. 

It is clear from the structure of He, that only a small 
number of such atomic energy levels (and of dipoles of al- 
lowed transitions corresponding to them), the populations of 
which actually change under the action of the resonance 
electromagnetic fields, are active. This means that having 
carried out the canonical transformations we have reduced 
the complicated problem of solving the equation for the den- 
sity matrix of a system of multilevel atoms, coupled through 
dipole-dipole interactions, to the problem of a system of at- 
oms with a small number of levels coupled through effective 
interactions. 

One sees easily that the equation with He, for the slow 
motions is analogous to the equation which is usually applied 
in the resonance approximation. However, there is a signifi- 
cant difference: Eq. (20) has been obtained in the represen- 
tation where there is no rapidly motions. Only by going over 
to the "laboratory system" using the canonical transforma- 
tions inverse to (19) and the transformations inverse to (11) 
to the density matrix can we restore the information about 
the fast and interatomic motions, which becomes the com- 
plete solution of the initial equation. The value of this time- 
dependent solution is that we can use it to analyze not only 
stationary but also transient optical effects. 

It has thus been possible for the first time1'-'I to find a 
general theoretical approach enabling us to take consistently 
into account all multilevel effects (caused by virtual transi- 
tions) such as dynamic Stark shifts and multiphoton transi- 
tions in the slow motions of atomic dipoles under the action 
of resonance fields. On the other hand, this approach makes 
it possible to analyze at the same time resonance processes as 
well as processes which are multilevel in nature and multi- 
plication as well as combination of frequencies.25 

A kinetic equation for the layer polarizations describing 
the motion of the magnetization of a substance, taking into 
account many-particle effects, had been obtained earlier1, by 
using Eq. (20) for systems similar to the one considered here. 
The aim of the next section is to generalize the kinetic equa- 
tion derived in Ref. 14 for the layer polarizations of magnetic 
dipoles to the case of optical dipoles. 

Such a generalization is nontrivial because the degen- 
eracy of the atomic levels, which does not occur in Zeeman 
spectra, has to be included. Writing down the kinetic equa- 
tion for the optical layer polarizations we can find solutions 
averaged over quantum and many-particle fluctuations in a 
form similar to the one found in Refs. 14 to 16, and for the 
first time consistently describe on the basis of these solutions 
such effects as superradiance25-27 and the spectral condensa- 
tion of These have as yet not been studied 
sufficiently in optics, and up to now the dipole-dipole inter- 
actions could not be taken properly into account. 

4. KINETIC EQUATION FOR THE POLARIZATION OF ATOMIC 
SUBSTANCES 

We consider the simplest and often encountered case 
when a circularly polarized field of frequency w excites only 
a single line of the atomic spectrum which lies rather far 
from other lines. This line is characterized by several K, 

257 JETP 80 (2), February 1995 A. V. lvanova and 6. N. Provotorov 257 



degenerate allowed transitions without common levels (we 
assign to each of them a number K ) ;  the Hamiltonian of the 
slow motions can then be written in the form 

( i )  ( k )  ( i )  A ( k )  uxKu.rK~-@~KwyKr) 
i<k K<K'  

where we have = ( E 2  - E l ) lh ,  A& is the Stark shift of the 
frequency of the K transition, and we have 
b ik=(3  cos2 8ik-1)/2i-;k. The projection operators P!:, [see 
Eqs. (31)  to (33) ]  are here replaced by the Pauli matrices 

which are more convenient for an analysis of the precession 
of atomic dipoles in external and local fields because of their 
simple commutation relations. The amplitudes H ,  of the 
n-photon transitions evaluated in a similar way as H H I H l  
reflect both the dynamic Stark shifts and the effect of all 
nonresonant transitions, which appear under experimental 
conditions, on the slow motions of 6,,. 

The inclusion through the canonical transformation of 
the quantities A;, and Hnernw' in the effective Hamiltonian 
(34)  makes it possible, firstly, to take consistently into ac- 
count the effect of multi-level effects on the slow motions of 
the atomic dipoles. Secondly, it gives us the possibility of 
using the inverse canonical transformation to include in the 
polarization d ( t )  which occurs in the Maxwell-Lorentz 
equations its high-frequency components which are the most 
difficult ones to take into account. We have in mind compo- 
nents proportional to the matrix elements of the density ma- 
trix which are small in magnitude but which under condi- 
tions of phase synchronism lead to such striking observable 
effects as high-harmonic generation, frequency mixing, and 
so on.25 Hence it is clear that a consistent description of 
optical effects cannot proceed without the canonical transfor- 
mations although in practice one will use them only in the 
case of sufficiently strong laser fields. 

The Hamiltonian (34)  is considerably more complicated 
than the Hamiltonian of a paramagnetic substance, since in 
the case of magnetic resonance all interacting magnetic di- 
poles are the same, whereas in optics K,  different kinds of 
dipoles interact with one another. 

We must now obtain kinetic equations for the density 
matrix with the Hamiltonian (34)  from Eq. (20) for any mac- 
roscopic variables which describe the motion of the polariza- 
tion . - / / t )  of the substance. 

For these variables we choose the complex layer polar- 
izations for each of the transitions excited by the field E( t ) :  

in which 

where 

Here h is the total local electric field acting on each dipole 
d t )  due to the presence of all other dipoles d o  ; this field is 
the same for all dipoles d:) of one atom. 

In the treatment of the contribution of the dipole-dipole 
interactions to the rate of change of the complex layer polar- 
ization F ( h , t )  it is convenient to write the dipole-dipole in- 
teractions in (34)  in the equivalent form 

where 

Apart from an additional summation over K ,  Hz,  and His  
are here exactly the same as the interactions considered in 
the analysis of the kinetics of magnetic dipoles in Refs. 14 to 
16. Using this analogy we can write for the complex layer 
polarization of each transition in the case when we have 
H,=H:=o  

where g ( h )  is the distribution function of the longitudinal 
fields8 which has a shape close to that of Lorentzian and 
Gaussian functions, respectively, for small and large densi- 
ties no of the atoms. In (42)  we have taken into account the 
exchange between the polarizations of different transitions K.  

The terms on the right-hand side of (42)  which are si- 
multaneously proportional to F K ( h , t )  and to o , , ,  A;, de- 
scribe the precession of F K ( h , t )  around the quantization axis 
of the atoms which was chosen in the propagation direction 
of the electromagnetic field. On the other hand, the contribu- 
tions on the right-hand side of (42)  proportional to ad ,h ,  
P d ~ h  and to F K ( h , t )  characterize the precession of the di- 
poles in the effective local longitudinal fields since the com- 
ponents of the electric dipole fields along the propagation 
direction of the light are equal to zero. 
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In order to determine the contribution of H,, to the rate 
of change of the layer polarizations it is important to note 
that one can consider this as the result of the precession of 
the dipoles in the isotropic local fields produced by the 
neighboring dipoles and as the result of the exchange of po- 
larization between separate spin pairs which is the conse- 
quence of the conservation of the total spin of the two di- 
poles participating the exchange. 

Consequently, we can now formulate five important 
properties of the contributions of H,, to the rate of change of 
the layer polarizations. Since this interaction describes the 
precession of the dipoles in local fields this contribution 
must, firstly, be linear in the field h and in the layer polar- 
izations FK(h, t ) ;  secondly, include the rigorously deter- 
mined contribution ihFK(h,t)  of part of the isotropic inter- 
action Hz,. Moreover, because H,, tends to equalize the 
polarizations FK(h ,  t) its contribution must be proportional to 
dK and, moreover, tend to zero when FK=const, and also 
when one integrates over all layers and sums over K. 

These properties determine the contribution of H,, to the 
rate of change of the layer polarizations represented in (42), 
apart from the constant P. We also emphasize that all the 
properties listed here are also satisfied by the analogous con- 
tribution of H,, which was calculated approximately in Ref. 
14. One can also consider that this contribution was derived 
from Eq. (10) from which we obtain rigorously in the Ap- 
pendix all characteristic properties listed above for an isotro- 
pic interaction. When evaluating this contribution we ne- 
glected the memory effects which are taken into account in 
the kinetic equation (A2) for the layer polarizations, on the 
grounds that the precession of the dipoles is determined by 
the vectors of the dipole and of the local magnetic field act- 
ing on it taken at one and the same time. 

The constant P must be determined from additional con- 
siderations. For instance, when evaluating the oscillating de- 
cay of the free polarization in CaF, crystals, the results of 
which turned out to be in good agreement with the experi- 
mental data, one is able to obtain the constant P using the 
exactly calculated second and fourth moments of the absorp- 
tion line.14 

It is interesting to note that an expression similar to (42) 
was successfully applied in Ref. 16 to take into account the 
contributions of isotropic interactions to the rate of change of 
the layer polarizations: 

which made it possible to describe the decay of the free 
polarization, observed in 3 ~ e  quantum crystals and in solu- 
tions of radicals, the magnetization, and the effect of ex- 
change narrowing of the observed absorption lines in mag- 
netic resonance spectra. In (44) he, is the longitudinal 
component of the local exchange field. 

We now add to Eq. (42) the contributions to the rate of 
change of the layer polarizations which are connected with 
the change in the field h, which lead to transitions of the 
spins between the layers: the spectral diffusion contributions. 

An important relation for the spectral diffusion contribu- 
tion D(h, t )  to the rate of change of the layer polarizations, 

is easily obtained from the kinetic equation (A2). The Mar- 
kovian uncorrelated random process which describes the 
fluctuations of the local longitudinal fields connected with 
the thermal motion of the atoms satisfies this relation. If the 
changes in the field are determined by this process, the con- 
tributions to the rate of change of the layer polarizations can 
be written in the 

where rc and 70 are characteristic times of change of the 
atomic surroundings and, hence, also of the field h, and of 
the orientations of the atomic angular momenta. 

These contributions differ from one another in their 
physical nature. In the first case the thermal motion causes a 
fast change in the distribution of the atoms closest to the one 
considered and, hence, also a fast change in the magnitude of 
h. In the second case, for instance, at a high gas density, at 
the same time as the change in the surroundings strong col- 
lisions are present which change the orientation of the atomic 
angular momentum and of K at the same time. 

Taking the contributions (46) and the action of the field 
E into account we obtain 

where 

4 is the equilibrium value of uzK(h,t), and Ti and T ;  are 
the longitudinal and transverse relaxation times which cause 
spontaneous transitions. 
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In (47) we divide F, and F1 by K, so that spin exchange 
equalizes all polarizations FK(h,t)  to a common average 
value. Since the field E in electrodynamics is assumed to be 
spatially uniform at interatomic distances it turns dipoles in 
different local fields h in the same way, which is expressed in 
the h-independent coefficients with which the products pro- 
portional to ExuaK and EyuaK occur in the kinetic equations 
(a=x,y,z) .  

In the next section we apply the kinetic equations (47) 
and (48) which we have obtained here to describe various 
effects observed in the spectra of atomic gases. 

5. KINETICS OF SYSTEMS OF INTERACTING DIPOLES IN 
ATOMIC GASES AND LIQUIDS 

We shall show that the kinetic equations (47) and (48) 
can describe in optics and in magnetic resonance effects both 
dephasing and collective oscillatory motions of the interact- 
ing dipoles, and that they go over into the Bloch kinetic 
equation for d2nordh<l.  (Here d and no are the middle 
dipole momentum of transition and the atoms concentration.) 

Dephasing and collective oscillations of dipoles show up 
most strikingly in the decay of the free polarization and we 
start our discussion of the dipole kinetics with this effect. To 
obtain the kinetic equations for the decay of the free polar- 
ization we put E x =  E, = O  in (47). 

We consider the case when only dephasing occurs in the 
decay of the free polarization, which in (47) corresponds to 
P=O, a=l. It is then clear from (47) that the exchange of 
polarizations between the layers is included, and the equation 
for the layer polarizations takes the form 

To begin with we consider the decay of the free polarization 
in gases in which 1/rCS1/r,,. TO calculate it we give the 
function g(h).  It was shown in Ref. 8 that in low-density 
gases g (h)  is Lorentzian for (u,)=O: 

For the weakly excited gas we are considering, where 
(a,)-no, we can assume to a good approximation that the 
Lorentzian (50) with a shift h, in the resonance field8,30 is 
equal to the local Lorentz field 

which we shall use in what follows, putting d = m. 
Substituting into (49) 

and using a La lace transformation to solve the equation 
obtained for FIK[ we get for F 3 0 ) = l  

where 

determines the rate of dephasing of the dipoles caused by the 
precession of the dipoles in the local dipole fields. This ex- 
pression differs in the K-dependence of ~i~ from the result of 
the theory of collisional broadening of spectral lines22 ob- 
tained for atoms coupled through dipole-dipole interactions. 
An interesting feature of the expression (52) which we have 
obtained for the decay of the free polarization is the way it 
depends on the time rc and, hence, on the velocities of the 
atoms. 

For a comparison with the actually observed decay of 
the free polarization we must multiply (52) by the function 

where (82)  is the mean square Doppler shift. 
The exponential time dependence of F," makes it pos- 

sible to obtain at once the difficult to calculate contributions 
of the local dipole field to the rate of change of the polariza- 
tion 

We can now write the Bloch equation for -4': in the form 

where i, j, and k are the unit basis vectors of the coordinate 
system, 1/T; = 1 1 ~ ; ~  + 1/T;, 1/T; and 1/T; characterize 
the contributions to the rate of change of the partial polariza- 
tions eu from the spontaneous processes and the nonsecular 
part of the dipole-dipole interactions, and Yo corresponds to 
the equilibrium value of the population difference of the lev- 
els of the resonance transition. 

The principle underlying the kinetic equations (54) in the 
case of incoherent motions is simple: independent interac- 
tions produce independent increases in the vector .d/;(t) 
and, hence, make independent contributions to the rate of 
change of the polarizations. 

In liquids we have d 2 n d h ~ 6  and we can therefore ne- 
glect the Doppler broadening. Moreover, because of the 
strong interatomic interactions we have l /rO>l/rc SO that we 
can write the kinetic equations (49) for the decay of the free 
polarization for liquids in the form 
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One can easily solve this equation if one bears in mind that 
in liquids the condition 

d2nor0/h<l  (56) 

is well satisfied. Changing in (55) to 

and multiplying both sides of Eq. (55) by g(h), and after- 
wards by hg(h), where8,14 

g(h) = (2.rr(h2))-'I2 exp(- h2/2(h2)), (57) 

we get after summation at K and integration over h 

When condition (56) is satisfied we can put in (58) 

h2FK(h,t)-h2F," 

after which Eqs. (58) become closed and give 

where 

We now go over to considering collective coherent di- 
pole oscillations. Such motions can arise only when the ki- 
netic equations have isotropic interactions which are propor- 
tional to p and which operate actively, since only those 
interactions combine spins or pseudospins into a single entity 
and tend to equalize the polarizations of the layers and 
thereby facilitate the appearance of coherent collective di- 
pole motions, which in opti~s25-27 and in magnetic resonance 
phenomena31 lead to superradiance effects. 

Up to the present moment collective oscillatory motions 
of dipoles have been well studied experimentally10 only in 
magnetic resonance phenomena where the oscillating decay 
of the free polarization has been observed in calcium fluorite 
crystals. Theoretically this decay was described in Ref. 14 by 
means of the kinetic equations for the partial density compo- 
nents of the magnetic dipoles in which the field h ' = hdlh 
was expressed in frequency units: 

It is important to emphasize that this equation is the 
particular case K= 1 of the kinetic equations (47) for the case 
when we have Ex = E, = 0, rO+w. We see here the profound 
unity of the kinetics of magnetic and electric quantum di- 
poles. One should note that in Ref. 16 a contribution, similar 

to the one in (60) which is proportional to P, from the iso- 
tropic exchange interactions to the rate of change of the layer 
polarizations was used to describe successfully the decay of 
the free polarization in solutions with arbitrary concentra- 
tions of radicals. 

It is natural to assume, by virtue of the symmetry with 
which the magnetic and electric dipoles occur in the kinetics, 
that the key role in the appearance of collective oscillations 
of the optical and magnetic dipoles is played by the effects of 
the exchange of polarization between pseudospins propor- 
tional in magnitude to the quantum magnetic or optical di- 
poles. 

Replacing in (49) FK by FK, assuming that T, , T;+w, 
and adding the contribution from (47) which is proportional 
to /3 we get a kinetic equation for the layer polarizations in 
an optically strongly excited gas: 

This equation is the same as (60), if we sum over KO and 
change to new local fields h'  = hd/h, expressed in frequency 
units, and a new distribution function g(h l )  of these fields, 
which characterizes the distribution of the real precession 
frequencies of the dipoles: 

The choice of g (h l )  in the form (62), which is a convo- 
lution of the Lorentzian lines with all possible values of the 
Lorentz width ydJh is justified by the independence of the 
precession of the dipoles dK in the fields h and their strong 
quantum fluctuations. 

Equation (62) makes it possible to describe not only the 
dephasing of optical dipoles but also their coherent oscilla- 
tions leading to superradiance  effect^^^-^^ and the spectral 
condensation of the radiati~n.",'~ 

A last effect, observed in intraresonance laser spectros- 
copy, appears in the redistribution of the intensity in the 
spectrum of the radiation generated by a laser when the ves- 
sel with the resonant atomic gas moves inside the laser reso- 
nator. The intensity of the radiation at the resonance fre- 
quency and close to it is then reduced but at the frequencies 

it is increased. 
We consider the eigenmodes of the polarization of the 

atoms of the gas in the vessel which are coupled through 
dipole-dipole interactions. We shall assume that the laser ra- 
diation acting on the atoms has a spiky structure. In the in- 
terval between the separate bunches of radiation passing 
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through the atomic gas the atomic dipoles carry out free os- 
cillations, which for the case of the decay of the free polar- 
ization are described by the kinetic equation 

which is obtained from Eq. (62) for a= -1, P = l .  This 
choice of a and /? is justified by the fact that in a strongly 
excited resonant atomic gas the amplitudes C2  and C1 of the 
upper and the lower states of the atom are approximately the 
same and, hence, the magnitude of the dipole moment of the 
resonance transition, which is proportional to C l C 2 ,  has a 
maximum value. Hence the main role in the dipole kinetics is 
played not by the exchange of the polarization and the pre- 
cession of the dipoles in the longitudinal effective fields but 
by the precession of the dipoles in the transverse local elec- 
tric fields which actually act on the atoms. 

Multiplying the kinetic equation (64) first by g ( h )  and 
afterwards by h g ( h )  and integrating the equations obtained 
over h  we are led to an easily solved set of equations for Fo 
and F,. The eigenmodes of this set have the form 

where (see Ref. 8) 

d cos 0(3 cos2 0- 1)2 

bik is determined by (34), 2 ro  is the diameter of an atom, v is 
the thermal velocity, and we have 

It is important to emphasize that the oscillations occur 
only under the conditions w,,, > - l o 9  s-', which 
is satisfied when we have n0>10l2 cmP3 and w,,,91/~,, . The 
appearance of damped periodic collective oscillations clearly 
indicates the occurrence of a coherent motion of the pseudo- 
spins and the large magnitude of w,,, indicates a high level 
of coherence of the increments of the polarization which are 
exchanged by the pseudospins under the influence of the 
isotropic interactions. The increment in the polarization of 
the ith spin (pseudospin) is proportional to b,k$i)$i) for 
a#p. Hence it follows that the coherence of the increments 
of the polarization is connected with the correlator ($j)$pk)) 
of the pseudospins. This correlation between near pseu- 
dospins can, of course, be established only due to the ex- 
change of polarization since the dephasing destroys any co- 
herence. 

In CaF,, for instance, the frequency of the osci~lations'~ 
is w,,,=1.6M2 where M 2  is the second moment of the ob- 
served absorption line which corresponds to such an orienta- 

tion of the kth spin relative to the ith spin corresponding to 
the largest possible value of the quantities ($i)$(pk))=l when 
the kth spin is in the first coordinate sphere relative to the ith 
spin. The quantity 2 ro  in (66) therefore characterizes not 
only the smallest distance between the atoms but also the 
degree of their correlation. Its reduction, however, reflects 
the increase in the increments of the spin polarization under 
exchange, not as a result of a decrease of the actual distances 
between the spins but as the result of such a correlation be- 
tween them that the rate of exchange of polarization and the 
frequency o,, increases. 

To determine the parameter 2 ro  in this problem we must 
compare (67) with the experimental formula 

for sodium vapor, which was obtained experimentally in 
Refs. 12 and 28; here dl, and o,, are the matrix element and 
the frequency of the resonance transition. 

Taking into account that (see Ref. 28) 

where f12 are the oscillator strengths, which for the 
3P,12-3S,12 (A=589 nm) and 3P1,,-3SIl2 (X=589.6 nm) 
transitions in the Na atom are, respectively, equal to 0.65 and 
0.32, we find for those transitions that 2 r , = 1 . 6 ~ 1 0 - ~  and 
1 . 1 ~ 1 0 - ~  cm. 

The appearance of collective dipole oscillations there- 
fore requires not just coherent motions of the dipole them- 
selves but also an even more important coherence between 
the forces exerted on the separate dipoles by the moments 
which rotate them, which are proportional to14 bik$L)$(pk). 
This coherence can, of course, be established only under the 
influence of the dipole-dipole interactions. 

To explain the effect of the spectral condensation of the 
radiation we note now that in the intervals between the pas- 
sage a small region of the gas of two bunches of radiation 
(we are dealing here with laser radiation having a spiky 
structure) the polarization will move like the eigenmodes of 
the decay of the free polarization. The electric field produced 
by such oscillations is 

and hence the oscillating atomic dipoles will emit light en- 
ergy at the frequencies o12-too, which is, in fact, observed 
in the radiation condensation effect. 

As to the superradiance effect, after a time approxi- 
mately equal to the delay time of a spontaneous emission 
pulse following a T-pulse, a time is also reached when the 
amplitudes of the upper and the lower atomic states become 
equal in magnitude. Then any local polarization arising due 
to fluctuations in the orientations of the atomic dipoles will 
excite in the gas coherent eigenmodes of the dipoles with a 
frequency w,, . It is now clear that just those collective os- 
cillations trigger off Dicke's superradiance mechanism26 
leading to a burst of light emission with an intensity which 
becomes proportional to n i .  
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The fluctuational nature of the appearance of .Yo was 
confirmed by experiments32 in which a superradiant pulse 
was triggered by an additional pulse with a small cross- 
section 8=10-~ rad for n0=2x lo8 cmP3. 

In analyzing the appearance of coherent dipole oscilla- 
tions and of the occurrence of a superradiant pulse it is con- 
venient to use the simplest lumped Dicke To do this 
we must add to Eq. (64) a contribution which is proportional 
to the number N of the dipoles describing the 
precession of the dipoles in the radiation reaction field and 
take into account the change in a,: 

da ,  2N 
- 

dt T ( o - x o ~ x + ~ y o ~ y )  

(here T is the time for the spontaneous transition of a sepa- 
rate atom). 

For small t we can put a,=1 and solving Eq. (69) we 
easily get an expression describing the appearance of collec- 
tive dipole oscillations and of the superradiant pulse for 
(h2)%1/7, : 

For large t the kinetic equations become non-linear. We shall 
consider the solutions of those equations in our next paper. 

We now discuss briefly the problem of taking into ac- 
count the effects of the propagation of electromagnetic 
waves under superradiance conditions. To take those into ac- 
count we must analytically study or numerically find the so- 
lutions of the system consisting of the Maxwell equations 
and the common kinetic equations (47) and (48). Such stud- 
ies were carried out in Refs. 33 and 34. However, in those 
papers the Maxwell equations were closed by the kinetic 
Bloch equations, which are applicable only in those cases 
when the motions of the dipoles show up only in the dephas- 
ing of the dipoles, rather than by Eqs. (47) and (48). There- 
fore, as was noted in Ref. 25, the results of the calculations 
of Ref. 34 could clearly only show a qualitative agreement 
with the experimental data. 

We also note that in Refs. 12 and 28 phenomenological 
equations for the interresonator field E(t )  were successfully 
applied to describe the radiation condensation effect. It is 
interesting to note that the solutions of those equations 
turned out to be the same as the solutions of (65), apart from 
the physical nature of the damping rate. In Refs. 12 and 28 
and in (65) these damping rates describe the rate of dephas- 
ing and the spectral diffusion. However, it is unclear why we 
have agreement since the kinetic equations in Refs. 12 and 
28 describe the exchange of energy between the atoms and 
the electromagnetic field, whereas Eqs. (64) characterize the 
precession of the dipoles in the local fields. 

In conclusion we must emphasize that on the whole we 
have carried out in the present paper a generalization of the 
well known two-level resonance approximation to the case 
of optical dipoles of real multilevel atoms coupled by dipole- 
dipole interactions. 

In this generalization we took into account the effect of 
the enormous number of nonresonant atomic transitions 
which arise due to the quantum fluctuations of the dipoles, 
using an original canonical transformation which changes the 
rapidly-oscillating interactions of the nonresonant dipoles 
with the field E and with other dipoles to effective interac- 
tions which are averaged over the fast oscillations and which 
determine the slow resonance motions of the dipoles just like 
the usual interactions. 

Equation (20) contains terms which describe both single- 
quantum as well as various multi-quantum resonances. We 
can therefore obtain from this equation kinetic equations to 
describe not only the single-quantum resonance determined 
by the kinetic equations (47) and (48) but also any multi- 
quantum resonances. The single- and multiquantum coher- 
ences calculated using such kinetic equations turn when the 
inverse canonical transformation is applied into various har- 
monics characterizing the various nonlinear susceptibilities 
which like the usual susceptibilities can be used for spectro- 
scopic purposes. So far the cubic susceptibility has been suc- 
cessfully used for such purposes.35 

This work was carried out with financial support from 
the Russian Fund for Fundamental Studies (Project No 93- 
02-15076). 

APPENDIX 

For a rigorous proof of the properties of Hi, used in Sec. 
4 to obtain the kinetic equations we use the standard kinetic 
equations obtained in Ref. 30 by the memory function 
method for variables which are given by an arbitrary set of 
orthogonal operators. We choose such operators in the form 
which is similar to the one proposed in Ref. 14: 

&,,(h)= x 6:?8(h - bik&t).  (-41) 
i , ~  

We now write down the standard kinetic equation for the 
layer polarizations a,,(h,t) = T r ~ ( t ) & ~ , ( h )  with the set of 
operators (Al): 

d a a ~ ( h ' t )  a+ = i  dh' Tr p,,&,,(h)[~:,6,~~,(h',t)] 

x[~;&~,,,(h~)]}}~,,,~(h~,t). 

Here @ is a projection operator defined by the relation k p ( t )  
=jj(t)  in which p(t)  contains only the selected orthogonal 
operators. We chose the operator 

to take into account the effect of the occupations of the reso- 
nance levels on the distribution g ( h )  which leads to a shift in 
the resonance frequency and an asymmetry in g(h) .  
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The linearity of Eq. (A2) in uaK(h,t) is obvious, whereas 
the linearity of (A2) in the fields h and h '  as well as the 
presence of the contribution ihFK(h,t)  in (A2) follows from 
the definition of the layer polarizations. Moreover, one sees 
easily from (A2) that after integration over h and summation 
over K or when uaK(h,t)=const the interaction Hi, on the 
right-hand side of (Al) commutes with the total layer polar- 
ization and drops out of the kinetic equation. We have thus 
proved all five properties and we may assume that the kinetic 
equation (42) is now obtained also from the equation for the 
density matrix. In conclusion we must emphasize that in sys- 
tems of dipoles which precess in the local fields the dipole 
oscillations are series of echos. For a more exact calculation 
of w,,, we must therefore study how the exchange of polar- 
ization between the spins affects an echo. 
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