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We solve the Q-component spin model of R. B. Potts [Proc. Camb. Phil. Soc. 48, 106 (1952)l in 
an external field exactly on a Bethe lattice. We examine the critical properties of both 
ferromagnetic and antiferromagnetic models. Finally, we show that phase transition mechanisms 
are related in both cases to the asymptotic behavior of a recurrent sequence. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The Potts model is widely known as a good theoretical 
system for studying phase transitions.' Though fairly simple, 
it possesses many nontrivial features whose study has en- 
sured considerable progress in understanding the critical be- 
havior of real substances. In recent years extensive research 
has been done using the Potts model, but many questions 
remain ~nanswered.~ 

The critical properties of the model largely depend on 
the sign of the coupling constant J. The situation is quite 
clear in the ferromagnetic case (J>O): there is a second 
order phase-transition critical point (the Curie point), and 
typical ferromagnetic ordering with nonzero spontaneous 
magnetization at lower temperatures. The behavior of the 
antiferromagnetic model, however, is much more compli- 
cated. Here configurations with distinct spin values at neigh- 
boring sites are energetically favored, which leads to split- 
ting of the initial lattice into two sublattices 
(antiferromagnetic ordering). Already in the model with 
Q = 3  there is an infinity of such configurations, which 
means a finite residual entropy at T=O and macroscopic 
degeneracy of the ground state.3 

In this paper we give the exact solution for the 
Q-component spin model of Potts in an external field on a 
Bethe lattice for both ferromagnetic and antiferromagnetic 
interactions. As is known, solutions that use a Bethe lattice 
constitute an approximation for standard lattices4 if the 
boundary effects are appropriately taken into account. The 
effectiveness of this approach has been demonstrated on sev- 
eral models of statistics  mechanic^.^-^ The generalization of 
the Bethe lattice known as the Husimi tree has been success- 
fully used in studying models with multisite interactions.1° 
Another generalization of the given approximation for de- 
scribing gauge models was formulated in Ref. ll. 

The plan of this paper is as follows. Section 2 formulates 
the model and derives the recurrence relations. The critical 
properties of the ferromagnetic model are discussed in Sec. 3 
and the antiferromagnetic model in Sec. 4. The Conclusion is 
devoted to a discussion of various features of our work. 

2. DEFINITION OF THE MODEL AND THE RECURRENCE 
RELATION 

The Q-component Potts model in an external field H is 
specified by the Hamiltonian 

where the spin variable is determined at the lattice sites and 
the values it takes on are ai= 1, ...,Q, 8 is the Kronecker 
delta, the first sum is over all lattice edges, and the second is 
over all lattice sites. 

We define the partition function as the sum over all spin 
configurations: 

where we have introduced the notation 

The free energy per lattice site is obtained from the definition 

The magnetization of a single site is defined as the mean 
value 

m = ( 8 U i , l >  

It is related to the free energy by 

A Bethe lattice (Fig. 1) is an infinitely branching tree 
whose sites (vertices) all have the same coordination number 
y+ 1. It is convenient to think of this lattice as consisting of 
shells:12 the zeroth shell is the central site, its nearest neigh- 
bors constitute the first shell, etc. At the same time, a Bethe 
lattice can be partitioned into y + l  separate branches with 
only one common central site. Then on a lattice consisting of 
n shells, the partition function can be written as 
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FIG. 1. A Bethe lattice with coordination number y+l=3 and three shells. 

where uo is the spin of the central site, and g,(uo) is the 
contribution of each separate branch. The latter can be natu- 
rally expressed in terms of g,-l(ul), the contribution of the 
same branch that contains the (n -1)st shell and starting at a 
site belonging to the first shell: 

We assume that application of only one magnetic field 
"directed" along a= 1 does not break the symmetry between 
other spin values, u=2, ...,Q. This makes it possible to intro- 
duce the notation 

Substituting g, from Eq. (7) and summing over all val- 
ues of u, yields the recurrence relation for x, : 

The quantity x, has some intermediate nonphysical 
value. However, the thermodynamic parameters of the model 
can be expressed in terms of that value. For instance, if we 
allow for Eq. (4), we obtain an expression for the magneti- 
zation, 

The free energy can be found by integrating Eq. (5). If 
the integration constant is determined appropriately, the re- 
sult is 
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Thus, x, can be assumed to determine the system's state for 
given T and H ,  which means that the critical properties of 
the model depend on the behavior of the recurrent sequence 
{x,} as n+m (the thermodynamic limit). Below we will see 
that this behavior changes markedly as the coupling constant 
K is varied. Here we merely note that since by definition (7) 
the x, are positive, the limit x* of the recurrent sequence 
{x,} must obey the inequalities 

for the ferromagnetic model and 

for the antiferromagnetic. 

3. CRITICAL PROPERTIES OF THE FERROMAGNETIC 
MODEL 

In the ferromagnetic model (K>O) the iterated function 
ip(x) increases for all values of H and T. Here the sequence 
{x,} converges to stable solutions (ipl(x,K,h)< 1 is the sta- 
bility condition) of the equation 

which can therefore be considered the equation of state. This 
equation can also be written as 

h(x)= y 1nx+ln[eK+Q-2-(Q-l)x]-ln(eKx-1). 
(13) 

The solution of the equation of state (12) for different 
values of K and h and the shape of the function h(x) at the 
same temperatures are depicted in Figs. 2-5 (note that each 
point in the figures represents a solution of the equation of 
state, and vice versa). The following typical cases can be 
identified: 

1. At high temperatures (T>T*), Eq. (12) has only one 
solution for all values of the magnetic field h (Fig. 2b). This 
solution is stable and determines the disordered phase of the 
system. Accordingly, the function h(x) is a monotone de- 
creasing one-to-one function (Fig. 2a). Critical behavior is 
absent in this range. 

2. At low temperatures (T<T*), there is a range of val- 
ues of h within which Eq. (12) has more than one stable 
solution. Then h(x) acquires a rising section (Fig. 3), and the 
following special cases can be identified: 

2.1. When h is high (h>hsl) or low (h<hs2), Eq. (12) 
still has only one stable solution (Fig. 4a and e). 

2.2. Tbo new solutions of Eq. (12), xsl and xs2, emerge 
at h = hSl and h = hs2. Their characteristic feature is that 
ip~(xs,K,hs)= 1 (Figs. 4b and d), and they correspond to 
extrema of h(x). The solutions xSl and xs2 are stable and 
physically correspond to the spinodal points of the model. 

2.3. When hsl<h<hs2, Eq. (12) has three solutions 
(Fig. 4c). The middle solution is unstable and no physical 
state of the model corresponds to it. Such solutions wind up 
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FIG. 2. The shape of the iterated func- 
tion cp(x) in the ferromagnetic case for 
T > T 8 :  (a) the intersection with the 
straight line cp(x)=x gives the solution 
of Eq. (12), and (b) h(x) at the same 
temperature T> T* . 

on the rising h(x) section, and are of course forbidden by h(xI,K)= h ( x I I , ~ ) .  
thermodynamic considerations. The remaining two solutions 

(17) 

are stable, one describing the ordered phase of the system 
and the other the disordered. Thus, this is the region of phase The result is 

coexistence, with the critical properties determined by a first 
order phase transition. The transition occurs at the point K,,(h) = ln(Q - 2) - ln[(Q - l ) ( ~ - ~ ) ' ( ~ + ' ) e ~ ~ l ( y + ~ ) -  11. 
where the free energies of the two phases are equal: (18) 

The spinodal curves h(xsl,K) and h(xs2,K) can be 
3. At T =  T* and a certain value of *, a second order found by setting dhldx = 0, with x,, and xs2 the two roots of 

phase transition occurs in the ferromagnetic model. The criti- the quadratic equation 
cal transition point is the endpoint of the first order phase- 
transition curve and the spinodal curves. At this point 
q:(x*,K*,h*) = 1 (Fig. 5a), and this is the point of inflec- 
tion of h(x) (Fig. 5b). 

On the basis of the foregoing we can now give the exact h 
analytic expressions describing the critical properties of the 
model. For instance, the second order phase-transition criti- 
cal point can be found from the conditions 

which lead to 

~h~ first order phase-transition curve, the coexistence FTG. 3. h(x) at some temperature T < T * .  The dot-dash curve corresponds 
to the unstable solutions of Eq. (12). Also shown are the spinodal points and 

curve, can be found (I4) simultaneOusl~ with the first order phase transition. The arrows point to the values of h for which the 
equation diagrams of Fig. 4 have been constructed. 
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FIG. 4. The shape of the iterated function 
q ( x )  for values of h indicated in Fig. 3. 

The above expressions simplify considerably in the Ising 
model (Q =2). All phase transitions, as expected, take place 
in zero magnetic field, and the critical point is determined by 

If Q23 ,  the second order phase-transition critical point 
lies in the region where h>O. In zero magnetic field, only a 
first order phase transition is possible. The two coexisting 
phases (disordered and ordered) are determined by two val- 
ues of x, 

i.e., by the magnetization values (10): 

4. CRITICAL PROPERTIES OF THE ANTIFERROMAGNETIC 
MODEL 

When the sign of K is reversed, the iterated function (7) 
transforms from an increasing to a decreasing function.13 
This means that Eq. (12) now has only one solution for all 
values of h and for K<O. 

At high temperatures (T> T*) this solution is stable and, 
as before, describes the disordered paramagnetic phase of the 
model. The stability condition in this case is 
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1 
~ d i s ' l .  X ~ r = ( Q - ~ ) - 2 / ( ~ + l )  7 (21) cp:(x,K,h)> - I ,  

which is violated, however, in the low-temperature range 
T<T*. It is well known that cp:(x,K,h)< - 1 at fixed points 
signifies the emergence of a so-called period-doubling bifur- 

h cation. The recurrent sequence {x,) converges not to a 
unique fixed point but to a stable 2-cycle {xAxB) (Fig. 6). 
(The first to notice the emergence of a 2-cycle in the antifer- 
romagnetic Ising model on a Bethe lattice was ~ h o m ~ s o n . ' ~ )  
It is natural to identify the period doubling in the sequence 
{x,) with the emergence of a sublattice structure, with x~ 
and xB describing the state of each sublattice. 

Thus, Eq. (12) is no longer an equation of state. To ex- 
-1 - amine the behavior of the model in this case one must con- 

sider subsequent iterations of the function 
0 0.5 1.0 1.5 0 0.2 0.4 0.6 0.8 1.0 1.2 cpn(x) = cp{cp[. . . cp(x)]). Below we list some of the simple 

x x properties of the limit points of iterated maps:15 

a) The fixed points of the first iterated function are fixed 
FIG. 5. Behavior of the functions a) q ( x )  and b) h ( x )  at T = T a .  points of all subsequent functions: 

(b) 
3 ' 

2 - 



FIG. 6. Period doubling for the function p ( x )  in the antiferromagnetic case 
at T<T*.  

b) If a fixed point of the first iterated function becomes 
unstable, it is unstable for all subsequent functions: 

c) The limit points x, and xB of a stable 2-cycle at the 
nth iteration are stable fixed points of the (n + 1)st iteration: 

There is only one period doubling in the given model; 
consequently, we can limit attention to the second iteration: 

The behavior of the function q2(x) for K<O somewhat 
resembles the behavior of q(x) for K>O. 

When T> T* , Eq. (23) has only one solution, coinciding 
with the solution of Eq. (12) and describing the paramagnetic 
phase. When T<T*, there exists a range of h within which 
Eq. (23) has three solutions. The middle solution [which is 
also the solution of Eq. (12)] is unstable. The other two are 
stable and, as mentioned earlier, correspond to the limit 
points of the 2-cycle and describe the states on each sublat- 
tice. 

The solutions of Eq. (23) at a fixed temperature T<T* 
and various values of h [these values are marked on the h(x) 
diagram in Fig. 7 obtained from Eq. (23)] are depicted in 
Fig. 8. Three cases can be identified here: 

a) When h<hcl(K) or h>hc2(K), the system is in the 
paramagnetic state. 

b) When hcl <h <hc2, the system is in the ordered anti- 
ferromagnetic phase, characterized by the fact that sublattice 
symmetry is broken and the magnetization difference is non- 
vanishing: 

FIG. 7. h ( x )  at temperature T < T X  in the antiferromagnetic case. The 
dashed curve corresponds to the unstable solutions of Eq. (23). Also shown 
are second order phase-transition points. The arrows point to the values of h  
for which the diagrams of Fig. 8 have been constructed. 

where m, and mB are the magnetizations of separate sublat- 
tices defined by (4) as mA,B = m(xA,B). 

c) For each temperature T<T* there are two points 
hcl(K) and hcz(K) at which the system goes from the para- 
magnetic phase to the antiferromagnetic. This transition is 
continuous, i.e., the system undergoes a second order phase 
transition. The points hcl(K) and hc2(K) correspond to 
period-doubling bifurcation points of the function p(x). 

Below we list the analytic expressions corresponding to 
this picture. In the phase diagram of the model, the antifer- 
romagnetic phase is separated from the paramagnetic by the 
second order phase-transition curve. The transition points 
can be defined as those at which the solutions of Eq. (12) and 
the new solutions appearing in Eq. (23) intersect. The result 
is the quadratic equation 

from which the two branches hcl(K) and hc2(K) of the 
phase-transition curve are obtained by substituting the roots 
of this equation into the function (13). The two branches 
leave the h axis at the points hL(0) and hU(0), 

and converge to the point h * at the aforementioned tempera- 
ture T*. Thus, this temperature can be determined by requir- 
ing that the determinant of Eq. (24) vanish: 
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and this is the maximum temperature at which antiferromag- 
netic ordering is possible. 

At Q = 2  the phase diagram is symmetric about the T 
axis and, accordingly, h * = 0. When Q 3 3, h * shifts to posi- 
tive values. 

It is also interesting to examine the case of zero tempera- 
ture. According to (25), in the Potts model with Q33,  one 
branch of the critical curve starts at the point (H= 0, T=O). 
This corresponds to the prevalent idea that in models with a 
macroscopically degenerate ground state in a vanishing ex- 
ternal field, a phase transition can occur only at zero tem- 
perature. However, for Q<  y + l  the phase-transition curve 
crosses the T axis for the second time at the point 

Berker and   ad an off'^ first suggested in 1980 that there 
may be a phase transition at nonzero temperature with an 
algebraic correlation function, but this problem is as yet un- 
resolved. 

5. CONCLUSION 

The study of critical phenomena is one of the most im- 
portant problems of modem physics. According to the uni- 
versality hypothesis, this study can be carried out using the 
simplest possible models. One such model is the Potts model 
considered above. Unfortunately, even such models cannot 
be solved exactly. There are solutions of two-dimensional 
Ising models (Q =2) and Potts models at critical points, but 
there is not even one exact solution with dimension d> 2 and 
in a nonvanishing external field. Basically, the existing ap- 

FIG. 8. The shape of the second iteration 
of the iterated function, cg2(x), at 
T<T* for values of h indicated in Fig. 
7. 

proximate methods are either not accurate enough, as, e.g., 
the mean-field approximation, or are entirely devoid of ana- 
lytic expressions (the Monte Carlo method). 

From this standpoint, the Bethe lattice is a fortunate ex- 
ception. Although the lattice is a topological abstraction non- 
existent in nature, the exact solution of a model using this 
lattice is, as noted in the Introduction, an approximation for 
standard lattices corresponding to what is known as the 
Bethe-Peierls approximation. The accuracy of this approxi- 
mation considerably exceeds that of the mean-field 
approximation.11 

Here an indisputable advantage of the Bethe-lattice ap- 
proximation is the presence of analytic expressions, which 
allows for a much better understanding of the qualitative 
behavior of the system. In particular, as we have seen, phase 
transition mechanisms in the Potts model on a Bethe lattice 
(and, hence, in a sense on standard lattices) can be linked in 
an extremely graphic manner to the behavior of the limit 
points of the recurrence relation. This is the object of study 
in the theory of nonlinear dynarnical systems,17 which sug- 
gests that there is a deep underlying link between these two 
branches of physics. It is interesting to study the caliber 
model based on the  window^,'^ as an analogue for the Potts 
spin model. 
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