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We study the drift of a 180-degree domain wall in a weak ferromagnet in the elastic-stress field 
generated by an acoustic wave, find the dependence of the drift velocity on the frequency, 
amplitude, and polarization of the acoustic wave. The possible drift of a stripe domain structure 
is predicted. 63 1994 American Institute of Physics. 

1. INTRODUCTION 2. EQUATIONS OF MOTION 

An enormous amount of work, both theoretical and ex- 
perimental, has been done in studying the magnetoelastic 
interaction in magnetically ordered crystals. Attention has 
been focused on linear magnetoelastic waves of various 
types (e.g., analysis of the magnetoacoustic resonance and 
the magnetoelastic gap in the spin-wave spectrum), the influ- 
ence of magnetostriction effects on the nature of the mag- 
netic anisotropy of crystals, and the magnetostriction block- 
ing of nuclei in phase transitions. As for the effect of this 
interaction on the dynamics of nonlinear excitations, a sig- 
nificant number of papers have been devoted to studying the 
phonon stopping of domain walls and the scattering of sound 
in magnetic substances with a domain structure. The direct 
interaction of domain walls (DW) with the field of an exter- 
nal acoustic wave has been studied to a lesser extent, even 
though such interaction leads to several interesting 
among which are (1) the reorientation of stationary DWs and 
domain structures with respect to the direction of propaga- 
tion and polarization of sound,3 (2) vibrational DW motion 
with the sound and (3) the DW drift (i.e., the 
appearance of a constant DW velocity component) in an os- 
cillating external field.4 The third effect is the most interest- 
ing and the least studied. ~ e n i s o v ~  investigated it theoreti- 
cally by applying an averaging method in solving the 
approximate Slonczewski equations. Vlasko-Vlasov and 
~ i k h o m i r o v ~  observed the drift of DWs and Bloch lines di- 
rectly. 

DW drift in an external variable magnetic field was pre- 
dicted theoretically by Schlomann and ~ i l n e , ~ ? ~  and the most 
consistent theory for ferromagnets was proposed by 
Bar'yakhtar, Gorobets, and ~en i sov '  and for two-sublattice 
weak ferromagnets (WFM) by the present  author^.^ In this 
paper we study the drift of a 180-degree magnetic DW in an 
acoustic-wave field using the example of the two-sublattice 
WFM model, which describes, among other things, the mag- 
netic subsystem of rare-earth orthoferrites. In explaining the 
DW drift in the acoustic-wave field we use not the approxi- 
mate Slonczewski equations, which was Denisov's approach 
in Ref. 4, but a more consistent method based on describing 
the nonlinear dynamics of the magnetic substance in terms of 
the effective ~ a ~ r a n ~ i a n . ' ~ ~ "  

The nonlinear microscopic dynamics of a two-sublattice 
WFM can be described on the basis of the Lagrangian den- 
sity L expressed in terms of the antiferromagnetism unit vec- 
tor 1, with 12= 1 (Refs. 10 and 11). Allowing for the magne- 
toelastic interaction, we can write the Lagrangian density 
L{I) for a rare-earth orthoferrite WFM, characterized by a 
2;2, symmetry (the Cartesian x ,  y ,  and z axes are oriented, 
respectively, along the a ,  b, and c axes of the crystal): 

where the dot denotes a derivative with respect to time, M o  
is the length of the sublattice-magnetization vector, 

c =  ighfOm is the characteristic velocity, coinciding with 

the minimum spin-wave phase velocity, S and a, respec- 
tively, are the homogeneous- and inhomogeneous-exchange 
coupling constants, g is the gyromagnetic ratio, PI and P2 
are the effective anisotropy constants, ui, is the elastic strain 
tensor, and y is the magnetoelastic constant. The term de- 
scribing the energy of the elastic subsystem proper is not 
written here because in what follows we consider the acous- 
tic wave as a fixed external field and ignore the inverse effect 
of the magnetic subsystem on the elastic. 

It is convenient to introduce two angular variables 8 and 
cp that parametrize the unit vector I, 

I,+ il,= cos 8 exp(icp), 1, = cos8, (2) 

in terms of which the Lagrangian density (1) assumes the 
form 
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+ uyycos2 B{O+ sin2 0 (uxxcos2 O+ uxzsin2 cp 

+ uz,sin2 cp)]). (3) 

The dynamic stopping of DWs caused by various dissi- 
pative processes will be taken into account by using the dis- 
sipative function 

where A is a phenomenological relaxation constant. 
The equations of motion in terms of the angular vari- 

ables 0 and cp take the form 

-PI sin2 cp+ P2 - y[sin2 O(uxx cos2 B+ uxzsin2 cp I 
+ uzzsin2 cp - y,,) + 2cos 2 O(ux,cos cp + u,,sin cp)] 

- p1 sin2 0 sin cp cos cp 

+ y[sin 20(uxx sin 2cp-2ux, cos 2cp-uzz sin 2cp) 

A + sin2 6 (ux, sin cp- u,, cos cp)] = - sin2 0 (p. 
gMo 

For 0 < < P2 in the absence of external fields the equi- 
librium orientation of vector I is along the X axis, and far 
from the spin-reorientation region the stable DW is a 180- 
degree DW with vector I rotating in the XZ plane.'0 This 
DW corresponds to O= Bo= 3 T and an angle variable 

cp = cpo(y) satisfying the equation 

acp:-P1 sin cp, cos cpo=O (7) 

(we assume that magnetization in the DW is distributed non- 
uniformly along the Y axis; a prime denotes differentiation 
with respect to this coordinate). A static 180-degree DW in 
which cpo(y) satisfies the boundary conditions cpo 
( - w) = 0, cpo(+ 00) = T ,  and cpA(+ m) = 0 is described by the 
following relations: 

Y 
cos cpo(yo) = - tanh - , 

Y o  

where y O =  J a /P1  has the meaning of DW thickness. 

3. PERTURBATION THEORY. LINEAR APPROXIMATION 

To analyze the DW motion in an acoustic-wave field, we 
follow Refs. 8 and 9 and use a version of perturbation theory 
for solitons, assuming the acoustic-field amplitude small. We 
define a collective variable Y(t) as the DW center at an 
arbitrary time t and seek the solution to the equations of 
motion in the form 

with t= y - Y(t); the subscripts n = 1,2, ... denote the order 
of the quantity relative to the acoustic-wave amplitude. The 
function cpo(t) describes the motion of an undistorted DW, 
with the structure of the function the same as that of cpo(y) in 
the static solution (8). The terms 6, and $,, , n = 1,2 ,..., give 
the distortions of the DW shape and the excitation of spin 
waves caused by interaction with the acoustic wave. 

The wall drift velocity is defined as the instantaneous 
DW velocity ~ ( t )  - = ~ ( t )  averaged over the oscillation pe- 
riod, or Vdr=V(t) (the bar denotes averaging over the 
acoustic-wave period). 

We consider now a characteristic situation in which a 
monochromatic wave of frequency w impinges on the DW 
plane perpendicular to the plane. Assuming that V=V,  
+ V2+.  . . , we can write the perturbation equation in the 
first order of the acoustic-wave amplitude uoi as 

where the following notation has been adopted: u = ( P 2  
- P1)IP1, wo = cly is the activation frequency of the lower 
spin-wave mode, w,= '4 A 8 g M o  is the characteristic relax- 

ation frequency, k=  ols is the wave vector, and s is the 
velocity of sound. A 

The operator L is the Schrodinger operator with a non- 
reflecting potential: 

~2 

The spectrum and the wave functions of i (12) are well 
known. The spectrum consists of one discrete level with the 
eigenvalue A,,= 0 corresponding to the localized wave func- 
tion 
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and a continuous part hp= l+p2y i  with the following 
eigenfunctions: 

with b, = J-, where L is the crystal length. 
The functions {fo , f,) form a complete orthonormalized 

set, and it is natural to seek the solutions to the first-order 
approximation equations (10) and (11) in the form of expan- 
sions in this set: 

A remark is in order. The first-approximation equations (10) 
and (11) describe excitation of linear spin waves superposed 
on DWs. The last term in the expansion of the function 
+1(5,t) corresponds to the shear (Goldstone) mode, i.e., to 
DW motion as a whole. However, the corresponding degree 
of freedom of the system has already been taken into account 
by introducing the collective coordinate Y(t) into the defini- 
tion of the variable 6. Hence the shear mode must be left out 
of the expansion (16), i.e., we must put do= 0 (for a detailed 
description see ~ajaraman'~). 

The other expansion coefficients in (15) and (16) are 
found by the standard method of multiplying the right-hand 
sides of Eqs. (10) and (11) by f,* and fl and integrating the 
products with respect to 5. 

For a monochromatic acoustic wave of frequency o ,  i.e., 
u = uocos(ot-ky), we obtain from Eqs. (10) and (11) the fol- 
lowing: 

Here we have introduced the notation 

+ iuoz 
sinh( r k y  012) ' I 

2i Jil uox 
b2(t)= - 

rk~0bk(hk+u-ql-iq2) ' 

2 with q ,  = ( o / ~ ~ ) ~ ,  and q2= oo , /oO.  

The condition do = 0 is equivalent to requiring the right- 
hand side of Eq. (10) to be orthogonal to the function fo, 
which in turn determines the equation for the DW velocity 
Vl(t) to first order in the field, 

which has only a trivial solution (we are interested only in 
the forced solutions of the equations of motion). 

Thus, in the geometry of the problem considered here 
(normal incidence of the acoustic wave on a DW) and to first 
order in the wave amplitude, sound does not generate DW 
motion, in contrast to the DW dynamics caused by an oscil- 
lating magnetic field and studied in Ref. 9; rather, it excites 
localized and unlocalized spin waves, described by (17). 
Note that only the terms related to transverse acoustic vibra- 
tions contribute to (17). 

4. SECOND APPROXIMATION: DW DRIFT 

We now analyze the equations to second order in the 
amplitude of the acoustic wave. Allowing for the solutions of 
the first-order approximation (7), we can write the second- 
order equation for +2(5,t) as 

sin 2qo  

-2~061(5,t)6;(5,t)sin (Po 

iyk 
- ---- (uox sin (PO 

P1 

The second-approximation equation for the function 
G2(5,t) contains no second-order term in the expansion of 
the DW velocity (V2) and is, therefore, of no interest to us. 

The solution to Eq. (19) can again be sought as an ex- 
pansion in the eigenfunctions of operator i similar to (16). 
Here we must require, just as in the first-order equation, that 
the expansion coefficient dh2) (corresponding to the shear 
mode) vanish. Hence when calculating the DW velocity we 
need not find the complete solution to Eq. (19); it is enough 
to calculate db2) and equate it to zero. As a result we arrive at 
an equation for the velocity V2, which after (17) is taken into 
account assumes the form 

v ~ + + , v ~ = N + N  cos 20 t ,  (20) 

where 

~=oi/-+;df ~ ( ~ s i n  (Po{Y$'(f)sin (Po 

iyk . + - e 'kS(~Ox sin (PO- uoZ qO) 
2Pl  

with B(8) defined in (17). The expression for the coefficient 
N has a similar structure but is much more cumbersome, and 
so is not given here. 

The integration of Eq. (20) is elementary: 
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N ~ ( w ,  cos 2 o t + 2 o  sin 2o t )  
V2(t) = - + 

0 r o f+4w2  
(21) 

This solution describes the DW dynamics in an acoustic- 
wave field and contains both periodic time-dependent terms, 
corresponding to DW oscillations, and time-independent 
terms, which determine the desired drift velocity Vdr= v2: 

v,= Pxx(k)(k~Ox)~+ Pxz(k)(k~ox)(k~oz) 

+~c,(k)(kuoz)~, (22) 

where the pij(k) are the nonlinear DW mobilities in the 
acoustic-wave field. 

Generally the expressions for pij(k) are involved. For 
instance, the nonlinear mobility /I,, has the form 

+ kYoSl(q) + W ] .  
4 sinh(wkyo/2) n 

(23) 
Here vo= wyog2/40r, introduced in Ref. 9, is the character- 
istic nonlinear DW mobility in a WFM placed in a variable 
magnetic field, and the functions Sl(q) and S2(q) are given 
by the following expressions: 

The other two nonlinear mobilities, pxx and p,,, have a 
similar structure and for this reason are not given here in 
general form. 

In the case most interesting from the experimental view, 
i.e., the long-wave approximation (kyo41), which come- 
sponds to the frequency range o= s k 4  lo-' s-', the expres- 
sions for the nonlinear mobilities pik simplify considerably: 

where mo = voS( y ~ o ) 2 / 4 ~ l .  
To obtain a numerical estimate for the above expres- 

sions, we use the parameters of the typical and well-studied 
weak ferromagnet YFe03 (see Ref. 13): Mo-lo3 Oe, g 
= 1 . 7 6 ~  lo7 s-' 0e-', a-2,  y ~ i - l o 7  e ~ ~ c m - ~ ,  o 
-2 X 1012 s-', and yo= cm. The values of vo and w, 
for YFe03 are taken from Ref. 9: ~ ~ - 3 . 5 ~ 1 0 - ~  cm s-' 
~ e - ~ ,  and or-0.7X 10'~s-'. It also happens that for all 
reasonable frequencies the parameter q2 = o o r / w i  is much 
less than unity and, as (24) implies, the nonlinear mobilities 
p, and pzz are proportional to q2 and small, too. Hence the 
main contribution to'the DW drift velocity is provided by the 
term in (22) related to the off-diagonal nonlinear mobility 
pxz . Using the above values of the WFM parameters, we get 
the following estimate for the DW drift velocity at low fre- 

velocity, is an indication that the direction of the drift DW 
motion is opposite to the direction in which the acoustic 
wave propagates. 

One-sublattice ferromagnets exhibit a similar quadratic 
dependence of the drift velocity on the frequency in the low- 
frequency range: but the corresponding proportionality fac- 
tor is entirely different. This is because the dynamic equa- 
tions have different structure and because in Ref. 4 only one 
polarization of the acoustic wave is considered (the one per- 
pendicular to the easy-magnetization axis), while in our case, 
as noted earlier, the contribution to the drift velocity is re- 
lated to the off-diagonal nonlinear mobility pxz. 

As is well known, the experimental possibilities of ex- 
citing an acoustic wave in a crystal are limited not by the 
wave amplitude but by the size of the strain tensor 
uij- kuo, which for WFMs cannot exceed lop5 (at higher 
values of the strain tensor the crystal disintegrates). Hence 
we write the estimate (25) in the form 

This implies that for a sound velocity s -3X 10' cm s-' char- 
acteristic of WFMs and the maximum admissible value of 
the strain tensor kuo- lop5, the DW drift velocity amounts 
to 1 cm s-'. 

In the short-wave approximation (kyoS 1), correspond- 
ing to the hypersonic frequencies wS=- 10'' s-', the nonlinear 
mobilities pik(k) decrease as the frequency grows(o = ks): 

quencies: 

v&- l ~ - ' ( o u ~ ) ~  cm s-'. (25) 

P x z = P o V 2  -y - ~ - ~ 7  

Thus, in this frequency range the drift velocity is propor- 
tional to the square of the frequency. We also note that the 
minus in the expression for the nonlinear mobility CL,,, 

which provides the dominant contribution to the DW drift 
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where the 7, (i= 1,2,3) are numerical factors of the order of 
unity. 

It can be seen that at low frequencies the main contribu- 
tion to the DW drift velocity is provided by the nonlinear 
mobility pxz , and for Vdr the following estimate holds: 

Thus, at high frequencies Vdr is inversely proportional to the 
square of the frequency, which agrees with the results of 
Ref. 3. 

5. DRIFT OF A STRIPE-DOMAIN STRUCTURE 

We consider now the possibility of drift in an acoustic- 
wave field of a plane-parallel, or stripe, domain structure 
(SDS) consisting of 180-degree DWs. Here it must borne in 
mind that neighboring DWs in a domain structure have op- 
posite topological charges determined by the boundary con- 
ditions imposed on Eq. (7). Moreover, the rotation of vector 
1 in various DWs can be about the positive or the negative 
direction of the Z axis. These two factors determine the DW 
drift direction in a field of fixed frequency w .  SDS drift is 
possible, naturally, only if neighboring DWs move in the 
same direction. 

We define the topological DW charge R  = + 1 and the 
parameter p =  5 1 ,  which describes the direction of rotation 
of vector 1 in a DW, as follows: 

The DWs described in the previous sections and having a 
magnetization distribution (8) correspond to R  = p = + 1. 
Generally, instead of (8) we get 

1 1 
(PA=-R sin q 0 = - R p  coshK1 

Yo Yo 

Y  
(28) 

cos cpO = - R  tanh - . 
Yo 

Analysis shows that in the general case the drift velocity of a 
DW with given values of parameters R  and p is determined 
by a formula similar to (22): 

In a SDS the topological charges R  of neighboring DWs are 
always "unlike." Since the dominant contribution to the drift 
velocity is provided by the off-diagonal nonlinear mobility 

pXz , for the corresponding term in (29) to be the same for all 
DWs and for all the DWs in the structure to drift in the same 
direction, the parameter p in the neighboring DWs must also 
be "unlike," i.e., the vectors 1 in neighboring DWs must 
rotate in opposite directions. If this condition is not met, no 
SDS drift is possible. An exception is when the acoustic 
wave is polarized exactly along the X or Z axis. Then only 
one term on the right-hand side of (29) that is independent of 
the DW polarizations is nonzero (either the first or the third), 
and all the DWs in the SDS drift in the same direction. Here, 
however, the drift velocity determined by these terms is 
much smaller than the one due to the nonlinear polarization 
P x z  . 

Direct comparison of the theory developed in this paper 
with the experimental data in Ref. 5 has no meaning because 
Vlasko- Vlasov and ~ i k h o m i r o v ~  studied DW drift in a one- 
sublattice ferromagnet and, besides, the geometry of their 
experiment was different (they chose an acoustic wave 
propagating in the DW plane, while in our calculations the 
wave was incident on the DW at right angles to the DW 
plane). 
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