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The spectral representation of a sequence of symbols is used to derive various criteria for 
disorder. Expressions are found for statistical distributions of the spectral harmonics and 
criteria for the heights of the harmonics to be statistically meaningful are introduced for 
the structure factors of the sequence, along with the degree of correlation of the various 
symbols. The results are applied to analyze substitution sequences and symbolic 
dynamics. 

1. INTRODUCTION 

In many physical problems it is necessary to deal with 
formal sequences of symbols. These physical applications 
are related mainly to the theory of quasicrystals and sub- 
stitution and also to the study of the behavior 
of dynamical systems using the methods of symbolic 
dynamics.~10 In Refs. 11-14 physical techniques for ana- 
lyzing sequences were applied to the fundamental problem 
of the structural investigation of genome DNA sequences. 
In practice one usually does not know a priori anything 
about the algorithm used to generate the sequence, and the 
analysis begins by asking the simplest question: Is the se- 
quence random or regular? If the sequence contains both 
random and regular aspects, then the question arises of 
how to distinguish them. Moreover, it is desirable to have 
quantitative criteria for the degree of complexity and dis- 
order of a sequence, and also the correlations between sym- 
bols. 

The best-established approach to analyzing the com- 
plexity of sequences is based on the general theory of 
in f~rmat ion '~"~  (for applications see Refs. 6-10, 17, and 
18). The underlying information in this case is the proba- 
bility P({Sn}) of encountering the various combinations of 
symbols forming a sequence of length n for larger and 
larger values of n. The degree of complexity is quantified 
by the metric entropy, 

For I different symbols the evaluation of P({Sn}) requires 
analysis of In combinations. Actual calculations, e.g., for 
the logistic mapping1' revealed that a satisfactory estimate 
of K requires searching through more than 224 combina- 
tions and sequences with an overall length greater than 
4 .  lo8 symbols. Accordingly, the need to search through 
an exponentially large number of symbol combinations and 
the need to use sequences of extreme length interferes with 
the application of the information-theoretical approach. In 
fact, the quantity K can often be calculated only when the 
original algorithm used to generate the sequence is known, 
which drastically reduces the number of possible combina- 
tions. A second limitation is related to the fact that for 
finite n (in the actual analysis these values are generally 
small) the entropy K characterizes only local correlations 

of the symbols, and long-range correlations must be stud- 
ied separately by other means (see, e.g., Refs. 11-14). 

In the present work we consider an alternative ap- 
proach using the spectral representation of the sequence. 
This technique is a slight modification of the usual spectral 
technique for analyzing substitution ~ e ~ u e n c e s . ~ - ~  The ba- 
sic idea of the work consists of studying the statistical 
properties of the harmonics of the Fourier representation 
for symbolic sequences. The existence of appropriate well- 
developed analytical and numerical techniques19 makes 
this approach quite convenient for practical applications. 
As shown by the results of test simulations and consider- 
ation of specific examples, the proposed criteria are appli- 
cable for relatively short sequences ( 2 lo3 symbols). It  is 
assumed that the original sequence belongs to a general 
form. For scale-invariant sequences the structural entropy, 
introduced in Sec. 4.4, permits one to carry out additional 
classification of spectra having identical multifractal prop- 
erties. 

Fourier transformations are also widely used in ana- 
lyzing DNA ~ e ~ u e n c e s . ~ ' , ' ~ , ~ @ ~ ~  Their use in this case 
serves two purposes: first, in order to identify hidden 
periodicities20722-24 and long-range  correlation^;^^"^ sec- 
ondly, to compare genome sequences of DNA from differ- 
ent organisms with one a n ~ t h e r . ~ " ~ ~ . ~ ~  For two random 
sequences the cross-correlation coefficient would be of or- 
der -M-"~ (where M is the length of the sequences being 
compared), i.e., small for M s  1. Hence a large nonzero 
correlation coefficient would imply that the two sequences 
are similar. This argument, however, is inapplicable in con- 
nection with cross-correlations of symbols within a single 
sequence, since excluded-volume effects give rise to corre- 
lations of order unity even for random sequences. In Sec. 
4.3 we give a quantitative necessary criterion for this case. 
The use of Fourier transformations to analyze DNA se- 
quences is dictated by the further need for rapid processing 
of a large quantity of information and the fact that the fast 
Fourier transform is the most efficient of the algorithms 
currently known. Application of the results of Sec. 4 yields 
simple and convenient criteria for analyzing such se- 
quences and permits one to obtain interesting data about 
the relative structural properties of DNA from different 
organisms.27 We will not go into a more detailed discussion 
here of this important problem. 

This paper is organized as follows. In Sec. 2 a general 
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formulation of the problem is given. Expressions for the 
characteristic function and also for the probability distri- 
bution of the spectral harmonics are given in Sec. 3. In Sec. 
4 they are used to present specific criteria for the degree of 
order in a sequence. The application of the results to ana- 
lyzing substitution sequences and symbolic dynamics is il- 
lustrated in Sec. 5. The concluding section, Sec. 6, contains 
some remarks about possible generalizations of the results. 

2.1. The structure factor of a sequence 

Completely random sequences of symbols are the most 
disordered and algorithmically complicated. Relative prop- 
erties for a sequence of general form can be obtained by 
comparing them with the corresponding structural proper- 
ties of random sequences with the same whole numbers of 
symbols as in the sample sequence. Specific criteria are 
given in Sec. 4. There and in the following sections we 
introduce the fundamental quantities which are studied 
and present results of the general theory for random se- 
quences. 

Consider a sequence { A k )  of length M consisting of I 
different symbols. It can be specified by using the position 
function: 

(1, if the a th  symbol occupies the mth position, 

= 10, otherwise, 

Then the Fourier harmonics corresponding to the sub- 
sequence made up of the symbols of type a is defined by 

M  

pa(qn) = M - ~ / ~  C pm,ae-iqnm, 
m=l 

and the inverse transformation takes the form 
M -  1 

pm,a = M- C Pa(qn)ei'Jnm, m=1, ..., M. (2.3) 
n=O 

The Fourier harmonic of order zero contains no informa- 
tion about the distribution of the symbols and depends 
only on their total number Na, 

The requirement that p,,, be real yields the condition 

(here and below the asterisk denotes complex conjuga- 
tion). 

Below we express the basic characteristics using the 
elements of the 1x1 matrix structure factor of the se- 
quence: 

Fao(4n) = ~ a ( q n ) ~ $ ( q n ) .  

From (2.5) we find 

in particular, the diagonal elements Faa(qn) are symmetric 
functions with center of symmetry q,=v. 

The structure function of the sequence can be related 
to the pair correlations of the different symbols. In order to 
show this, we introduce the cyclic pair correlations of the 
function: 

where l<mo<M- 1. Then from Eqs. (2.1)-(2.9) we find 
that the two properties are related by the Wiener- 
Khinchin relation, 

M- 1 

Fao(mo) =M-' C ~ ~ ~ ( q ~ ) e - ~ ~ n ~ o .  (2.10) 
n = O  

From the definitions (2.8) and (2.9) it follows that 

Higher products of the Fourier harmonics can be related to 
higher-order correlation functions. 

2.2. Sum rules 

The statistical criteria are expressed using a set of uni- 
versal (independent of the specific symbol distribution) 
quantities determined by exact sum rules. The first relation 
is derived directly from Eqs. (2.1 )-(2.7) and takes the 
form 

where Sao if the Kronecker symbol. Making use of expres- 
sion (2.4) for the zeroth-order harmonics we find 

M -  1 

c ~ a P ( q n ) ) / ( ~ - l )  
n= 1 

= (Sapa-NaNB/M)/(M-1). (2.13) 

Similarly we can derive a more general sum rule: 

From Eq. (2.10) we find a sum rule which relates the 
reciprocal deviations of the cyclic correlation functions and 
the elements of the structure factor from their correspond- 
ing average values: 
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2.3. Excluded-volume effects 

Each position in the sequence is occupied by just one 
symbol, and the sequence itself contains no gaps. These 
conditions impose further restrictions on the position func- 
tion (2.1), 

1 

C ~ m , a = l ,  (2.17) 
a =  1 

i.e., the locations of the subsequences of I- 1 different sym- 
bols uniquely determine the locations of the remaining sub- 
sequence. In terms of the Fourier harmonics this condition 
can be formulated as follows: 

Relation (2.17) gives rise to specific correlations (conven- 
tionally referred to as "excluded-volume effects") even for 
random sequences. Furthermore, Eqs. (2.17) and (2.18) 
reduce the number of independent correlation functions 
and elements of the structure factor. 

3. STATISTICAL PROPERTIES OF RANDOM SEQUENCES 

3.1. Characteristic functions 

The statistical distribution of Fourier harmonics can 
be found by averaging the characteristic function (see, e.g., 
Refs. 28 and 29), 

(3.1) 

over an ensemble of random realizations of sequences {Nu) 
with fixed total numbers of symbols. It is convenient to 
impose the same condition on the auxiliary variables 
ua(qn) as in (2.51, 

Different products of Fourier harmonics are obtained by 
differentiating Z with respect to the auxiliary variables 
ua(qn) and then equating ua(qn) to zero, e.g., 

etc. Using the definitions (2.1) and (2.2) we rewrite Z in 
the form 

Thus, the problem reduces to averaging the different prod- 
ucts Pm,a. 

The average is determined by simple combinatoric con- 
siderations, and the result is equal to 

C: ,,.,, m!/nl! ... nj, 

Here the angle brackets denote an average over the ensem- 
ble of random realizations, Lk  is the total number of posi- 
tion functions corresponding to the symbols Ak, and Nk is 
the total number of symbols Ak in the sequence of length 
M. The right-hand side of Eq. (3.6) is equal to the ratio of 
the two combinatoric factors G'fl , , . , ,N the total number of 

L1- L/ 
different random realizations, and &- I - I ,..., N,- L / )  the to- 

tal number of realizations under the condition that 
L1  ,..., L, positions of the different symbols are fixed [these 
are the same positions which enter into the left-hand side 
of Eq. (3.6)]. Averaging (3.4) in accordance with (3.6) 
and symmetrizing the expressions with respect to the po- 
sitions of identical symbols, we find 

The prime on the summation sign over the different symbol 
positions means that all terms with two (or more) identi- 
cal subscripts {mk) must be excluded from the summation. 

Direct evaluation using the definition (3.3 ) yields 
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( ~ ; a ( q n ) ) - ( ~ a a ( q n ) ) ~ = ~ a ( ~ a - l )  (M-Na) harmonics with different wave numbers qn for M$1 imply 
that the relative fluctuations of different spectral sums are 

x (M-N,- I) /M(M- I ) ~ ( M - ~ ) ,  typically - M-'I2. 
(3.12) In the average over the ensemble of random realiza- 

tions only those products of Fourier harmonics pa(qn) for 

(FaB(9n*)Fy~(qn)) - (FaD(qnl)) (Fy~j(4n)) CU1/M9 which the sum of the wave numbers of all factors is a 
(3.13) multiple of 27r will be nonzero. All such products enter in 

(4nZ4n~ 9 4n +4n1#27r). the sum rules (2.14). In the limit Na$ 1, M$1  the follow- 
ing asymptotic cumulant expansion is valid for (3.8) (to 

As can be seen from Eq. (3.13), the weaker correlations of leading order in - l/Na, l /M):  

In the expansion (3.14) the summation is bounded by the 
conditions O<rk<M, r1 + ... +rl< M, 27r/M<qnr 
<27r(M- 1 )/M. Furthermore, in each cumulant 
4  PA^ (qnl) ...p Al(qn, + ) > , no partial sum over an ar- 

I ...+ r, 

bitrary set of wave numbers other than the complete sum 
over all wave numbers can be a multiple 27rp (where p is a 
whole number), i.e., 

From (2.18) we find a condition which holds for all the 
cumulants: 

Exact sum rules of the type studied in Sec. 2.2 deter- 
mine that there is a quasi-ergodic equivalence between en- 
semble averaging and averaging over the spectrum [cf. Eq. 
(3.10)]. Consequently, the simplest explicit expression for 
the cumulant can be found by recursively identifying the 
corresponding contributions from (2.14), e.g., 

and so on. 

3.2. Probability distribution function 

In what follows we restrict ourselves to the statistical 
distribution of harmonics with identical wave numbers q, 
(along with the complex conjugate quantity). To leading 
order in M-'12 we can use for this purpose the character- 
istic function 

We recall that according to (2.18) 1- 1 harmonics for dif- 
ferent symbols uniquely determine the remaining one. In- 
verting (3.19) with respect to the 1-1 variables (and 
equating the remaining one to zero), we find the joint prob- 
ability distribution function for I- 1 harmonics: 

Here F;[Bp1) is a (I- 1) X (I- 1 ) submatrix of Fap [see Eq. 
(2.13)] for the specified I- 1 symbols, detllF('-')ll is its as 
determinant, and the complex Fourier harmonics pa are 
described in terms of the modulus I pa I and phase pa ,  

while an arbitrary function @(I-') depending on the vari- 
ables I pa I and qa is averaged according to 
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( 0 " " )  = o " - ' ' P ~ ~ ~ ~ ~ ~ ,  (3.23) 

da / -  I = I Pal I dI Pal I dqal/r..- I Pal- I d I Pal- I dqal- l/r 
(3.24) 

with the range of integration O< 1 pa 1 < a, 0 < q, < 2r .  
Note that the I X  I  matrix FaP itself is degenerate by virtue 
of conditions (3.16) and (3.17). 

Integrating (3.20) by parts we can derive reduced dis- 
tribution functions for a smaller set of symbols. In partic- 
ular, the one-symbol harmonic distribution function is 
equal to 

P1 (Faa = exp ( - F,,/F,, /Fa, (3.25) 

and agrees with the familiar Rayleigh di~tribution.~' Ray- 
leigh treated the problem of the distribution of the sum of 
the amplitudes of harmonic oscillations with random 
phases. The formal equivalence of the two problems (and 
hence the identity of the distribution) is completely obvi- 
ous [see Eq. (2.2)]. 

3.3. Variational principle 

We can derive the distribution function (3.20) by max- 
imizing the entropy functional: 

under the additional conditions 

The functional (3.26) reaches its maximum for PI-, de- 
fined by Eq. (3.20), and is equal to 

The quantity detllF$')11 is invariant with respect to the 
choice of the I-  1 symbols. The spectral entropy (3.26) is 
the analog of the metric entropy ( 1.1 ), and also character- 
izes the complexity of the sequence as a whole. Unfortu- 
nately, calculations of the distribution function PI- are 
quite involved in practice, and it is necessary in applica- 
tions to restrict ourselves to somewhat cruder criteria, 
given in the following section. 

4. DISORDER CRITERIA IN APERIODIC SEQUENCES 

4.1. Distribution of the amplitude harmonics 

The general results obtained in the preceding section 
can be used to derive various specific disorder criteria. We 
begin with the amplitude distribution of the diagonal ele- 
ments Fa, (9,). 

By virtue of the symmetry conditions (2.7), only half 
the harmonics Faa(q,) can be regarded as approximately 

independent. To be specific we restrict ourselves to the left 
half of the spectrum, O<qn<r.  From Eq. (3.25) we find 
that the probability that the amplitude of a harmonic ex- 
ceeds some specified value I;;? is given by the expression 

(0) - 
  ex^( -F,,/Fa,). (4. l a )  

This also implies that the average number of harmonics 
greater than F:? is equal to 

The condition (n,) = 1 determines the typical value of 
sharp amplitude spikes in random spectra: 

The probability that all M/2 harmonics simultaneously 
have amplitudes less than F:?, is approximately equal to 
( 1 - exp( - F:?/F,,) ) Consequently, the probability 
that at least one of the M/2 harmonics is greater than FE) 
takes the form 

=: 1 - exp ( - exp [ - (F:) - F,,,,,,) /F,,) 1 
(4.3) 

and corresponds to a type-I distribution in radio noise 
 statistic^.^' 

We can also find the exact probability that at least one 
of the M/2 harmonics has an amplitude less than F;:): 

ProbCF,, < F:) ; M/2} = 1 - exp ( - F~)/F~,,,~,),  
(4.4a) 

The quantities Fa,,,,, and determine the effects of 
mesoscopic fluctuations associated with specific random re- 
alizations. 

4.2. Smoothed spectra 

In many cases order and disorder coexist. There are 
many techniques for distinguishing the regular component 
of a spectrum.1g The simplest technique consists of 
smoothing a spectrum over s neighboring harmonics, 

- n+s 
Faa(qn)=(2s+l)- '  C Faa(qnf).  (4.5) 

nl=n-s 

If s 4 M  holds, then correlations of harmonics with differ- 
ent q, can be disregaeed to lowest order [see Eq. (3.13)], 
and the distribution Faa(qn) is determined by the Nakag- 
ami f~nction:~' 
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where PI (Faa(qn) ) is given by (3.25) and r ( 2 s +  1) is a 
gamma function. The average value of the amplitude and 
the dispersion for (4.6) are equal to 

In the limit M)s) 1 the distribution (4.6) goes over to a 
Gaussian distribution with mean and dispersion given by 
(4.7). 

The correlations in the positions of different symbols 
are characterized by the cross-correlation coefficient:28s29 

If the value of k approaches unity, then the positions of the 
symbols are completely correlated, whereas if we have 
kzO, then there are no correlations. These characteristics 
can be calculated using the cyclic correlation functions [see 
(2.8)-(2.10), (2.15), and (2.16)]: 

Using the fact that the relative fluctuations of the spectral 
sums are of order -M-'12 and passing from the average 
over the spectrum to the ensemble average, we find using 
(3.19) and (3.20) 

k (FaB I Fya) =FaFad (FaaFB$y766) 'I2. (4.13) 

In particular, for a#D we have 

Equation (4.14) has a simple physical interpretation. The 
correlation coefficient kao is equal to the probability of 
simultaneously finding a symbols in locations which are 
free of D symbols, and vice versa. 

The correlations can also be described in terms of the 
cross-information,I5 

P ~ ( I P ~ I ) P I ( I P ~ I  (4.15) 

Taking into account Eqs. (3.20), (3.22), (3.24), (3.25), 
and (4.14), we can convert the explicit expression for ran- 
dom sequences to the form (see Refs. 15 and 16) 

The higher the cross-correlations, the greater the cross- 
information. 

To conclude this section we introduce an estimate for 
the correlations between two uncorrelated random se- 
quences (1 and 2) of the same length M (but in general, 
with different symbols) : 

After averaging independently over the ensemble we find 

Thus, the mesoscopic cross-correlations of two uncorre- 
lated random sequences are found to be of order -M-'I2. 

4.4. Structural entropy of a sequence 

The cross-correlation coefficients described in the pre- 
vious section only characterize the relative positions of se- 
quences of symbols, not the degree of disorder. Specifically, 
two almost identical random sequences would be strongly 
correlated, but would still be random. Below we present 
some criteria for disorder. 

Consider a function f (x) with monotonic first deriv- 
ative and smooth second derivative. Hence the equation 
f ' ( x )  = const has a unique solution. Next we consider the 
spectral sum 

M -  1 

Say C f (~a,(qn)/J,,) (4.17) 
n =  1 

with the auxiliary condition 
M -  1 

1 Faa ( qn) /Faa = const (4.18) 
n= 1 

[corresponding to the sum rule (2.13)]. Using the standard 
technique of Lagrange multipliers we find that a local ex- 
tremum S, is attained for a strictly uniform distribution of 
amplitudes according to the spectrum 

Since for random sequences the harmonics are distributed 
more uniformly over the spectrum than for ordered se- 
quences (cf. the spectra for crystals and quasicrystals with 
sharp Bragg peaks), S, can be used as an approximate 
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structural entropy. A more precise quantitative criterion 
can be found by averaging S, using the distribution func- 
tion (3.25), 

Typical choices of f ( Fa, ( qn ) /Fa,) correspond to 

and the corresponding averages are equal to 

where C=0.577215 ... is the Euler constant. The choice 
(4.22a) corresponds to the spectral definition of the infor- 
mation entropyIg (other definitions are equivalent only for 
quasi-Gaussian statistics). With this choice, however, S, 
diverges for an arbitrary sequence with hidden periodicity, 
when some of the harmonics vanish (this choice does not 
distinguish, e.g., between a doublerandom sequence and a 
sequence with period two). Consequently in what follows 
we primarily use the definition (4.22b). The functions 
(4.22a) and (4.22b) correspond to the local maximum of 
the structural entropy (4.17), while the power law (4 .22~)  
yields a maximum in the range of exponents 0 < r < 1 and a 
minimum for r > 1. 

For scale-invariant sequences we can also use the local 
spectral probabilities introduced in Ref. 4, 

The properties of such sequences are described using the 
multidimensional multifractal spectrum (see Refs. 4 and 
31 

In the special case of the subsequence consisting of the a 
symbols we find 

M- 1 

pL(qn) =C,,,(M- ~ ) - ( ' - l ) ~ ~ a ,  (4.26) 
n=l 

where D,, is the Renyi dimensionality and C,, is a con- 
stant. It follows from the considerations at the beginning of 
this section that if the inequality D!') > ~ ! ~ ) ( r  > 0) holds 
for two scale-invariant subsequences of symbols, then the 
first subsequence can be regarded as more disordered than 
the second. If two subsequences belong to a single univer- 
sality class and have the same Renyi dimensionality D,, 
where c!')> c ! ~ ) ( o < ~ <  1) and c!') < ~ ! ~ ) ( r >  1), then 
this conclusion remains valid with respect to the two sub- 
sequences from a single universality class. 

It can be seen from the results of Sec. 4.1 and Eq. 
(4.23~) that for random sequences with the choice (4.23~) 

FIG. 1 .  Spectral characteristics for the Rudin-Shapiro sequence after 
p= 10 iterations, beginning with ABCD (M=4096); a) harmonics for the 
diagonal elements of the structure factor FAA (q , ) ,  I ( n < M / 2  - I; b) 
smoothed spectrum with s= 100 [Eq. (4.5)]; c )  logarithm of the number 
of harmonics greater than a fixed value of FAA (solid trace). The dashed 
line corresponds to the theoretical prediction for a random sequence [Eqs. 
(4.lb) and (5.5)]. 

the mesoscopic fluctuations dominate in the range of indi- 
ces r < - 1 and r 2 In MAn In M. In these cases individual 
harmonics with magnitudes of order and Fa,,,, 
dominate in the sum (4.17). The situation in which ana- 
lytical continuation into the region r < 0 is impossible be- 
cause of mesoscopic fluctuations is typical for many scale- 
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invariant sequences.4 The requirement that S,  be as 
insensitive as possible to mesoscopic fluctuations in prac- 
tice determines the optimum choice of the function 
f (~,,/p,,). However, the exact criterion requires that 
correlations of harmonics with different q, be taken into 
account, and it is difficult to derive. 

5. APPLICATIONS OF THE RESULTS 

5.1. Substitution sequences 

The application of the above criteria can be illustrated 
in some specific examples. For comparison we will consider 
two cases, in which one of the sequences is nearly random 
and the other is far from random, but has a fairly broad 
spectrum. We begin with substitution sequences whose 
growth is determined by the iterative substitutions 

where uk(Al ,...,Al) is some combination of the symbols 
A, ,...,AI. The substitution rules can be either deterministic 
[as in Eq. (5. l ) ]  or probabilistic (see, e.g., Ref. 32). 

In Fig. 1 typical results are shown for the Rudin- 
Shapiro sequence 

A-AC, B-DC, C-AB, D-DB, (5.2) 

after ten iterations, beginning with the initial sequence 
ABCD (M=4096). It is well k n ~ w n ~ ' ~  that Rudin-Shapiro 
substitution is very strongly randomizing. It  can be verified 
that in the process of successive iterations the symbols A 
and D always remain in odd positions, while B and C only 
occupy even positions. This leads to sharp coherent Bragg 
peaks for qn = T: 

where p is the number of iterations. Consequently, the 
Rudin-Shapiro sequence can be represented either as the 
result of intersite merging of two binary sequences (A-D 
and B-C) or else as partial destruction of an exact period-2 
sequence. The coherent harmonics with q n = r  should be 
subtracted from the various spectral sums and the values of 
the average harmonics redefined: 

The relative positions of the symbols A and D, and also 
of B and C, are completely correlated, kAD=kBc= 1 [as 
they should be for binary sequences (see Eqs. (2.18) and 
(4.14) )], while at the same time the correlations between 
the symbols in the even and the odd positions are practi- 
cally zero, kAB= kAC= kDB= kDC= 1.47 X for p= 10. 
To three significant figures the values of the dispersion 
coincide with the average values of the harmonics (5.5) 
[compare Eq. (4.12)]. The magnitudes of the structural 
entropies for different symbols (4.17) and (4.22b) (disre- 

FIG. 2. Spectral characteristics for the Toohey-Morse sequence after 
p= 12 iterations, beginning with A (M=4096): a) harmonics for 
FAA(q,) =FBB(q,), l < n < M / 2 ;  b) smoothed spectrum with s= 100, c )  
logarithm of the number of harmonics greater than a fixed value FA, 
(solid trace). The dashed line corresponds to the theoretical prediction 
for a doubled random sequence with the same total number of symbols. 

garding the contribution from q , = ~ )  are equal to 
2.20. lo3 for p =  10 [compared with 1.73 . lo3 according to 
(4.20) and (4.23b) when (M-  1) is replaced by (M-2)]. 
In Fig. l c  noticeable deviations are observed only for 
-30-40 harmonics out of 2047 (and these are toward the 
smaller amplitudes). All these results confirm the ideas 
about randomization in Rudin-Shapiro substitution (while 
preserving, however, the partially broken period-2 prop- 
erty). 
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FIG. 3. Spectral characteristics for a sequence of symbols generated by 
the logistic mapping (5.7) for r=4 and x ,  =0.4 after p=4095 iterations 
(M=4096); a )  harmonics for FLL(q,)=FRR(q,) with l<n<M/2; b) 
smoothed spectrum with s= 100; c )  logarithm of the number of harmon- 
ics greater than a given value FLL (solid trace). The dashed line corre- 
sponds - to the theoretical prediction (4.lb) for a random sequence with 
F L L ,  defined by Eq. (5.8). 

In Fig. 2 a second example is shown for the Toohey- 
Morse binary sequence: 

A - A B ,  B -  BA, (5.6) 

after twelve iterations, beginning with the initializing sym- 
bol A (M=4096). For this sequence all even harmonics 
vanish.495 Hence we will compare it with the doubled ran- 
dom sequence (with zero odd harmonics). In what follows 

FIG. 4. Structural properties for a sequence generated by the logistic 
mapping with the same parameters as in Fig. 3 except r,-r=0.002; 
r, = 1 + $. 

all averages and sums are evaluated only for nonzero har- 
monics. Then F =  1/2, holds, and the calculated values of 
the dispersion and the structure entropy (4.17), (4.22b) 
for p= 12 are equal to 1.74 and 3.94 . lo3, compared with 
the values 0.5 and 8.66 - lo2 for the corresponding doubled 
random sequence with the same total number of symbols. 
The maximum height of the n =  1365 harmonic is equal 
to FAA,,,, = 3 1.0( F,,,/F = 62.0), and is considerably 
greater than the spikes in the random sequences [Eq. 
(4.2)]. Thus, the Toohey-Morse sequence is in fact far 
from random, in accordance with the rigorous theory. 
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spectrum in the region of harmonics with small wave num- 5.2. Symbolic dynamics 

A rough description of the behavior of dynamical sys- 
tems can be expressed in terms of symbolic dynamics.&* 
For this purpose all of phase space is broken up into 
nonoverlapping cells, each of which is assigned a specific 
symbol. The evolution of the point describing the system in 
phase space generates a sequence of symbols. A natural 
form of subdivision exists only for one-dimensional map- 
pings. As an illustration we take the thoroughly studied 
logistic mapping,33 

The interval [O,l] is determined by the zero of the product 
rx(1 -x), and the sequence is specified as follows. If 
0 <x, < 1/2 holds, then the nth position is filled with the 
symbol L, but if 1/2 < x ,  < 1 holds, then the symbol R is 
inserted. The average values of the harmonics are equal: 

where NL and NR are the total numbers of the symbols L 
and R, and NL+NR=M is the total length of the se- 
quence. 

Figures 3 and 4 display the results for completely cha- 
otic evolution ( r=4)  and the approximately period-3 dy- 
namics with random alternation (rc-r=0.002, re = 1 
+ fi) (Refs. 33 and 34). The numerical values of the 
various parameters for x, = 0.4 after p = 4095 iterations ( M  
=4096) are equal to: 1) r=4; NL=2040, NR=2056; 
F LL- -j7 RR-0.250; - a ( F L L )  =u(FRR) =0.251; the magni- 
tude of the structural entropy defined according to (4.17) 
and (4.22b) is 1.75 - lo3; the theoretical values of the en- 
tropy for random sequences [Eqs. (4.20) and (4.23b)I is 
1.73. lo3; 2) rc-r=0.002, rc = 1 + $; NL=1263, 
NR=2833; FLL=FRR=o.213; u(FLL)  =u(FRR) =0.370; 
the value of the structural entropy [Eqs. (4.17) and 
(4.22b)l is 3.39. lo3 when the theoretical value of the ran- 
dom sequences is the same, 1.73 - lo3. These results display 
the fairly high sensitivity of the spectral criteria. 

6. CONCLUSION 

Our results show that the spectral representation gives 
rise to simple and convenient criteria for the correlation of 
different symbols and the degree of disorder in a sequence. 
In this work we have restricted ourselves to comparisons 
with purely random sequences. It  is not difficult to under- 
stand qualitatively how the spectral properties change for 
sequences with a finite memory. For systems with a finite 
memory (including the case of damping p-periodicity ) we 
can use the following approximate expressions for pair cor- 
relation functions [Eq. (2.8) with m, < M/2]: 

By inverting the Wiener-Khinchin relation (2.10) we find 
that in the presence of additional correlations ( AK > 0) the 

bers (g, 5 l/r,) will be enriched with harmonics having 
larger amplitudes in comparison with the remaining part of 
the spectrum, while in the case of any correlations (AK 
< 0 )  the amplitudes in this part of the spectrum will be 
somewhat reduced. Damping of the periodicity [Eq. 
(6.lb)l leads to spearing-out and to a characteristic Lor- 
entz form of the Bragg peaks with width Aq- l/rc. These 
spectra enable us to roughly identify finite correlations, but 
the related quantitative criteria require additional consid- 
eration. Spectral analysis also enables us to exhibit long- 
range correlations in the system at distances comparable 
with the total length of the ~ e ~ u e n c e . " " ~ ~ ~ ~  Thus, the 
method covers essentially the whole range of investigation 
of the structural properties of sequences. 
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