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The scaling approach previously suggested by the present authors1,* [Adv. Phys. 36, 695 
(1987) and Phys. Rep. 150, 265 (1987)l in order to describe the diffusive processes in 
disordered systems has been generalized to the case in which the random-walking 
particles interact differently with the different components of the medium. A procedure is 
described for coarsening the lattice and a system of renormalization-group equations 
is introduced to describe the infinitesimal scale transformation in the system, taking into 
account the differences in probabilities for the direct and reverse passages of a wandering 
particle through the boundary separating the components of the disordered medium. 
The effective diffusion coefficients of the medium are calculated, along with the time 
dependence of the mean square displacement of a particle when the components are in various 
proportions, and also for different probabilities of direct and return crossings of the 
separation boundary. In the case in which one of the components of the medium is absolutely 
impenetrable for the particles a regime is observed in which the diffusion is bounded and 
the effective diffusion coefficient exhibits critical behavior as a function of the density. 

1. INTRODUCTION lattice-coarsening procedure) in lattice statistical models, 
one can also find it possible to employ the scaling approach 

The study of random-walk processes in disordered sys- 
to describe random walks in a two-component disordered 

tems is currently an actively pursued and complicated 
medium. Thus, in our previous work we constructed a scal- 

problem, attracting the interest of many i n ~ e s t i ~ a t o r s . ~ - ~  
This interest is occasioned by the fact that many physical ing description of particle random walk in 

two-dimensional' and three-dimensional2 two-component processes in actual condensed media have a diffusive na- 
ture or are related to diffusive processes, and in a number disordered media whose components differ in their diffu- 

sion coefficients (for the one-dimensional case see also Ref. of cases the diffusive stage is the limiting one. As examples , . 
we can cite diffusion in amorphous systems and polymeric 
solutions,' the kinetics of diffusively controlled chemical 
 reaction^,^,^ dispersive transport,I0 the description of the 
properties of polymeric macromolecules'"'2 using the lan- 
guage of nonintersecting random walks, etc. 

Despite the seeming simplicity of the problem, the 
mathematical difficulties that arise, related to the non- 
Markovian nature of random-walk processes in disordered 
media, often make it impossible to find an exact solution 
for the problems of interest. Usually random-walk pro- 
cesses in disordered media are studied in the simple lattice 
models either by mathematical modeling techniquesI3 or 
by analytical techniques using various approxi- 
mation~.~-~"" '~ The most widely used methods are the 
mean-field approximation5"4 and expansion in the density 
of impurities'5 using the generating functional.I6 

The scaling approach1' has been used to describe the 
process of random walks in a special case, namely over 
fractals; this success seems to us very promising. Note that 
real systems have actual fractal dimensions only over a 
narrow range of scales, and on the whole real systems must 
be regarded as fractals with variable dimensionality. How- 
ever, using the ideas formulated by   ad an off'^ and 
~ i r k ~ a t r i c k ' ~  to describe scale transformations (the 

6). 
In the present work we generalize the technique pro- 

posed in Refs. 1 and 2, including the difference in the 
interaction of the random-walking particles with the com- 
ponents of the medium. It is clear that by virtue of this 
difference the probability for a particle to pass through the 
interface separating the components depends on direction 
(inward or outward). Consequently, the system develops 
local anisotropy when the direction of particle motion is 
specified, although macroscopically the system remains 
isotropic. In the limiting case when one of the components 
of the medium is completely impenetrable (when the prob- 
ability for the particle to penetrate into the region occupied 
by this component goes to zero) we have a model of an 
excluded region, which was treated, e.g., in the mean-field 
approximation by Harrison and Zwanzig.I4 

In Secs. 2-4, using the model of hopping diffusion on a 
square lattice, we derived a system of equations describing 
the infinitesimal scale transformation including both local 
anisotropy in the choice of the direction of motion and the 
difference in the diffusion coefficients of the components of 
the medium. 

The procedure described in Sec. 2 for coarsening the 
lattice is based on a widely known fact: in the hopping- 
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diffusion model there exists a certain arbitrariness in the 
choice of the characteristic spatial and temporal scales. 
Changing one of these gives rise to a corresponding alter- 
ation in the other, so as to leave the properties of the 
system unchanged. If we treat the original (seed) square 
lattice with a characteristic hopping scale (segment) Lo, 
consisting randomly of two kinds of segments ("good," 
type I and "bad," type 11) with time scales (temporal 
jumps) 7IO and $, corresponding to the different compo- 
nents of the medium, we arrive at a new coarsened lattice, 
whose spatial scale corresponds to a mean-square displace- 
ment of two hops. Thus, the procedure of scale transfor- 
mation is derived from comparing the results of particle 
random walk over one- and two-segment trajectories. A 
detailed description and justification for this procedure is 
given in our previous work (Refs. 1 and 2). 

Then, in Sec. 3 a system of equations is derived de- 
scribing the discrete scale transformation of the system, 
and in Sec. 4 the infinitesimal scale transformation. How- 
ever, since this system of equations is excessively compli- 
cated, in Secs. 5-8 we restrict consideration just to local 
anisotropy in the choice of the direction of the hop in order 
to simplify the problem, with the same particle diffusion 
coefficients in both components of the medium. (These 
diffusion coefficients, which we will call "intrinsic," are 
determined by DL = L ~ T ;  and D: = ~ 2 7 : .  The model in 
which they were assumed to be different, but without local 
anisotropy, was studied previously in Refs. 1 and 2. 

2. LATTICE-COARSENING PROCEDURE 

We will evaluate the magnitude of the mean diffusion 
coefficient D, of the medium (lattice) on the spatial scale 
L, corresponding to the mean square displacement of a 
particle over 2" hops (for the detailed determination of D, 
see Refs. 1 and 2). 

In order to quantitatively characterize the local anisot- 
ropy in the choice of the direction of the next hop, we 
define the preference factor x, as the ratio of the probabil- 
ities for a particle to jump through one of the two adjacent 
segments, bad or good. To be specific we will assume that 
good segments attract the particle and bad ones repel it. 
Thus we have O<xo<l. In evaluating the contributions to 
the diffusion coefficient from one-segment trajectories (tak- 
ing into account their probabilities) we must keep in mind 
the fact that if at the start of observation the particle dis- 
tribution over the sites of the initial lattice has already 
reached equilibrium, then the probability that a particle 
will be found at this initial time in a particular site depends 
on the relative number of good and bad segments connect- 
ing with this site, as well as the preference factor xo. While 
this is taken into account automatically on the second and 
subsequent steps of the trajectory, at the first step of the 
random walk it is necessary to treat this dependence, in- 
troducing into the formula for the probability of the cor- 
responding single-segment trajectory an additional factor 
that takes into account the probability that the particle will 
initially be at a site with the specified environment. 

Simple calculations show that the probabilities for 

achieving single-segment random-walk trajectories consist- 
ing, respectively, of good and bad segments are equal to 

here po and 1 -po are the respective fractions of good and 
bad segments; the subscript 0 signifies that these quantities 
belong to the initial lattice. 

Using Eqs. ( 1 ) we find that the effective diffusion co- 
efficient averaged over single-segment trajectories on the 
initial lattice is equal to 

where we have written ho = D ~ D ; .  
To introduce the coarsened lattice it is necessary to 

treat all possible two-segment trajectories, the mean-square 
displacement over which determines the new coarsened 
segment. Altogether, three types of two-segment trajecto- 
ries are possible: "good," "bad," and "mixed." If both of 
the consecutive steps of the random walk on the original 
lattice are performed on good segments, then the segments 
of the coarsened lattice corresponding to these two- 
segment trajectories will be called good. If both steps of the 
random walk on the original lattice are performed over bad 
segments, then the segments of the coarsened lattice cor- 
responding to these two-segment trajectories will be called 
bad. And finally, on mixed trajectories the particle executes 
a jump through both a good and a bad segment of the 
original lattice, where we must treat trajectories on which 
the first step is performed on the good segment and the 
second on the bad separately from those in which the order 
is reversed. 

Since in the process of a systematic classification of 
trajectories it is found that a particular segment of the 
initial lattice contributes to trajectories corresponding to 
adjacent (emerging from a single site) segments of the new 
coarsened lattice, the properties of these adjacent segments 
are found to be correlated. As in our previous work,ls2 we 
take into account this effect by introducing new probabil- 
ities for the properties of segments that meet in the second 
step. Thus, Q(p) is the probability that a segment adjacent 
to a good segment is also good, while 1 - Q(p) is the prob- 
ability that it is found to be bad. Similarly, we introduce 
the probabilities W(p) and 1 - W(p) such that a segment 
adjacent to a bad segment will turn out to be, respectively, 
bad or good. (We will make the simplifying assumption 
that the correlation, i.e., the conditional probability Q or 
W, is the same for all segments of a single type that can be 
met by the particle in the second step.) The functions Q(p) 
and W(p) that prescribe the initial probabilities must sat- 
isfy the following obvious requirements: 
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Property (3a) corresponds to symmetry of the system 
in question with respect to simultaneous interchange of 
good and bad segments and p and 1 -p. Property (3b) is a 
reflection of the fact that the probability of a mixed trajec- 
tory should not depend on the order in which the segments 
of different types are traversed: first good and then bad or 
vice versa. Note that with this way of including correla- 
tions expressions ( 1 ) and (2) do not change. We also note 
that the correlation should decrease as the scale increases, 
when the medium becomes macroscopically uniform (p 
approaches either zero or unity). Hence for p sufficiently 
close to zero or unity it is necessary that Q(p) z p  and 
W(p) z 1 -p hold. 

In analytical calculations we do not need the specific 
form of the functions Q(p) and W(p) (it suffices to deter- 
mine the values of these functions at the characteristic per- 
colation point p = 1/2). For numerical calculations we 
limit ourselves to polynomial functions of the lowest order 
sufficient to satisfy the requirements given above: 

with the parameter a determined from the value of the 
function Q(1/2)= W(1/2)=x: a=16(2x-l) ,  O < x <  1. 

By going through all possible two-segment trajectories 
for all possible configurations of good and bad segments we 
can calculate the contributions of the corresponding tra- 
jectories to the diffusion coefficient. 

For a good trajectory the geometrical probability of 
which (i.e., the fraction of all possible combinations of two 
adjacent segments) is equal to poQ(po), we find that the 
contribution to the diffusion coefficient is equal to 

for a bad trajectory, the geometrical probability of which 
equals ( 1 -po) W(po), the contribution to the diffusion co- 
efficient is equal to 

for mixed trajectories in which the order is first a good 
segment and then a bad one, for which the geometric prob- 
ability is po[l - Q(po)], the contribution to the diffusion 
coefficient is equal to 

for mixed trajectories in which the order is first a bad 
segment and then a good one, the geometrical probability 
of which equals ( 1 -po) [1 - W(po)] [by virtue of condition 
(4) this probability also equals po[l - Q(po)]], the contri- 
bution to the diffusion coefficient is equal to 

Note that under the simultaneous interchange p- 1 
-p, x-l/x, h-l/h expressions (5),  (6)  and (7) ,  ( 8 )  
transform pairwise into one another, which corresponds to 
the symmetry of this system with respect to interchange of 
good and bad segments. 

The diffusion coefficient, averaged over all possible 
two-segment trajectories, is equal to 

In order to construct a coarsened lattice consisting, like the 
original one, of segments of both types, we must write the 
expression for the mean diffusion coefficient (9)  in the 
form of two terms, analogous to (2): 

here # corresponds to diffusion over the good segments of 
the new coarsened lattice and D:' to diffusion over the bad 
ones, and the subscript 1 indicates the first step in the 
coarsening procedure. 

Since in the coarsening process segments have ap- 
peared on the new lattice not of two but of three types 
(good, bad, and mixed), with respective fractions 
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we can divide all mixed segments into two kinds: 

and combine one part (the fraction proportional to the 
subdivision parameter a,) with good segments of the 
coarsened lattice and the other mixed segments of the new 
lattice with bad ones. 

Then the fractions of good and bad segments of the 
new lattice, which agree to within geometrical probabilities 
with the corresponding two-segment trajectories, are equal 
to 

3. DISCRETE SCALING TRANSFORMATION 

In accordance with the division of the mixed trajecto- 
ries (12) we determine D: and D:' from (10) using Eq. 
(9) as follows: 

here the quantities o l ,  o"", on,', and D" are defined by 
expressions ( 5 )-( 8). 

In what follows, along with the quantities D: and D:' 
which characterize the contributions of the good and bad 
segments of the new coarsened lattice to the average diffu- 
sion coefficient D l ,  we will use D:~ and ~ f :  (the intrinsic 
diffusion coefficients corresponding to segments of the new 
lattice, which we define in terms of D: and D:') and the 
fractions (13a) and (13b) by analogy with (2): 

Here 8 and 8 E 1 - 8  are the probabilities for realizing 
single-segment trajectories consisting, respectively, of good 
and bad segments of the coarsened lattice [cf. Eq. (1)). 
Straightforward calculation shows that the probabilities P f  
and P f ' ,  which coincide with the probabilities of realizing 
the corresponding two-segment trajectories on the initial 
lattice, are given to within an overall factor by the expres- 
sions 

The quantities D', D", 6'~" , and D"" are given, respec- 
tively, by relations (5), (6),  (7) ,  and (8), in which we set 
D' *- - D" &-ho=l. - 

From ( 15) it follows that the preference factor x1 of 
the coarsened lattice is defined analogous to xo as the ratio 
of the probabilities for jumps on the bad and good seg- 
ments when they are equal in number: 

In exactly the same way, in analogy with the definition of 
ho and using Eq. ( 15), we give for h, 

In order to complete the definition of the procedure for 
passing to a coarsened lattice we have only to prescribe the 
form of the subdivision parameter ao(po,xo,ho) of the 
mixed trajectories into two groups. There is no compact 
recipe for determining the form of ao(po,xo,ho), and we 
can only indicate some ideas which underlie our choice. 

First, for xo-0, when a particle undergoing random 
walk is totally excluded from the bad regions, macroscopic 
diffusion in this system is possible only for values of po 
above the percolation threshold for the problem of links on 
a two-dimensional square lattice [i.e., D,,> 0 only for 
po> 1/2; see Eq. (36) below]. In order to satisfy this re- 
quirement, conditions (40) must be satisfied at x-0 (see 
Sec. 5), and for this it is necessary that Eq. (30) take the 
form (38) at x-0; consequently we must have 
ao(po,xo=O,ho) =Po. 

Secondly, at xo= 1, when the direction of the random 
walk does not depend on the environment of the particle, 
the problem reduces to that which we treated earlier:' the 
problem of random walks in a heterogeneous medium 
whose components differ in their diffusion coefficients, 
while the interaction of the diffusing particle with the dif- 
ferent components in the medium is the same and 
ao(po,x = l,ho) =h,gd[h,go+ 1 -pol holds. 

In order to satisfy these requirements we choose 
ao(p,x,h) in the form 

and 

By virtue of the symmetry in our problem, i.e., the 
invariance under the interchange p- 1 -p, x- l/x, h - l /  
h, the function f satisfies the relation 

Let us consider the ratio 
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(here and below we omit the subscript 0 from the subdi- 
vision parameter a ) ;  by virtue of the conditions given 
above the function F(x,h)  should have the following prop- 
erties: 

We look for F(x,h) in the form of a ratio of polyno- 
mials. By virtue of property (23a) the polynomials of the 
numerator and denominator in Eq. (22) should be of the 
same degree. The lowest degree of these polynomials which 
enables us to satisfy the above requirements is found to be 
two, so the function F(x,h)  using (23) can be represented 
in the form 

Using the property (23a), we find for y(h)  the functional 
equation 

whence we have 

and the function P2 (h)  is expressed in terms of P1 (h)  and 
y(h)  by 

Using the ratio (26), from (23a) we find for the func- 
tion p, (h)  the functional equation 

whose solution takes the form 

The parameter A can be evaluated from the natural re- 
quirement that the extremum of the function F(x,h)  with 
respect to x should coincide with the distinctive point 
x=  1, the inversion point. The parameter A is found to 
equal zero, and finally we obtain 

[so that condition (23b) is satisfied automatically]. 
Using (22) and (28) we find an expression for the 

function a (p,x,h) : 

and 

The above sequence of relations (2) ,  (5)-(8), ( lo ) ,  ( 11 ), 
( 13)-( 18) and (29) completely specify the transition from 

the initial lattice to the new coarsened one. Taking the new 
coarsened lattice as the starting one, but with the new 
parameters derived in the above procedure and repeating 
this procedure we can pass to a still larger scale. Repeating 
this procedure as many times as necessary, we ultimately 
arrive at a scale on which the system becomes uniform and 
the diffusive properties evaluated on each step of the coars- 
ening are found to be effective macroscopic diffusive prop- 
erties of the original nonuniform medium. 

4. INFINITESIMAL SCALE TRANSFORMATION: THE 
SYSTEM OF RENORMALIZATION-GROUP EQUATIONS 

On the (n + 1 )th step of the above procedure for coars- 
ening we obtain recurrence relations which connect the 
parameters p ~ ' ,  D", h, and x of the lattice with the scales 
corresponding to the (n + 1 )th and nth steps of the coars- 
ening. Using these recurrence relations we can easily derive 
the renormalization-group equations for the infinitesimal 
scale transformation: 
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FIG. 1. The most interesting cross sections of the phase portrait of the 
system of kinetic equations (30)-(34). The heavy lines indicate the tra- 
jectories on which the separatrix surface passing through the unstable site 
(p= 1 ,  x=O, h=O) and the saddle points (p= 1, x =  1, h=O), (p= 1/2, 
x =  1 ,  h= 1) and (p= 1/2, x=O, h= 1), intersects the phase planes x=O, 
x =  1 ,  h=O, and h= 1. The planes p = O  and p= 1 are attractive and cor- 
respond to a macroscopic uniform medium with infinitely large scale. The 
phase portrait lying on the separatrix of the surface with xo#O end at a 
saddle point (p= 1/2, x =  1, h = I ) ,  which also corresponds to a macro- 
scopically uniform medium. The medium remains nonuniform on any 
scale in one case, for x=O, p= 1/2. The phase portrait of the x= 1 plane 
was studied in detail in Ref. 1. 

The phase portrait (more precisely, its most interesting 
cross sections) of this kinetic system is shown in Fig. 1. 

The initial conditions for the system of kinetic equa- 
tions (30)-(34) are determined by the properties of this 
system on the original scale: 

The system of kinetic equations (30)-(34) with the 
initial conditions ( 35 ) completely describe the properties 
of the system of interest and enable us to calculate the 
effective diffusion coefficient of the disordered medium: 

Der= lim [D1(n)+D"(n)].  
n -  m 

( 3 6 )  

The solution of the system of kinetic equations (30)- 
(34) also enables us to determine how the mean square 
displacement of a particle undergoing random walk de- 
pends on time, using the relations which we derived pre- 
viously in Refs. 1 and 2: 

here the coarsening parameter n and the random-walk time 
t are related simply by 

where .< is the characteristic hopping time over a good 
segment of the original lattice. 

In this case, when complete averaging is performed in 
the system and it becomes macroscopic on large scales, the 
dependence (37) after long times becomes linear and ran- 
dom walks through the disordered medium enter the dif- 
fusive regime. 

5. THE CASE IN WHICH ONE OF THE COMPONENTS OF 
THE MEDIUM IS TOTALLY IMPENETRABLE (x,=O); THE 
EXCLUDED-REGION MODEL 

In this section we consider the simplest special case in 
which one of the components of the medium is completely 
impenetrable to the particle undergoing random walk, i.e., 
in the initial condition (35) we set xorO. Despite its sim- 
plicity, this limiting case turns out to be very interesting: 
even for xo=O we can observe a regime in which the dif- 
fusion is bounded, and the effective diffusion coefficient 
behaves critically as a function of the fraction of the im- 
penetrable component. 

From the definition of the quantity xo and Eqs. ( 1 ) it 
follows that if at xo=O the fraction po of the good compo- 
nent in the medium is nonzero, then the probability for a 
particle to penetrate into the bad region (segment) is equal 
to zero. Moreover, the random walk of particles in a uni- 
form medium consisting only of bad regions (po = 0)  is not 
restricted at all even for xo=O, while the diffusion coeffi- 
cient D,, in this case is equal to D:. Consequently, at 
xo=O the bad regions are excluded for the particle only for 
Po ' 0. 
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At xo=O the system of equations ( 3 0 ) - ( 3 4 )  simplifies 
considerably. First, Eq. ( 3 4 )  for the quantity x ( n )  has the 
trivial solution x ( n )  r 0 ,  where the right-hand sides of 
( 3 0 )  and ( 3  1 ) do not depend on h. Furthermore, by virtue 
of the initial condition ( 3 5 )  for po#O we have ~ " ( n )  = O ,  
and hence Eqs. ( 3 2 )  and ( 3 3 )  for the quantities ~ " ( n )  
and h ( n )  can be disregarded. The explanation for this fact 
is obvious: since the trajectories of particles undergoing 
random walk cannot pass through the impenetrable com- 
ponent of the medium, its properties (which we label by 
the superscript 11) cannot influence the diffusion coefficient 
of the medium. 

The remaining equations ( 3 0 )  and ( 3 1 )  assume the 
form 

and the initial conditions ( 3 5 )  are D1(n  = 0 )  = DL,  
p(n=O) =po. Here we have assumed that, in accordance 
with ( 2 9 ) ,  we have a (p,x,h) = p  at xo-0. 

Note that Eq. ( 3 8 )  does not depend on the solution of 
Eq. ( 3 9 ) ,  and its roots (p=O, p= 1/2, p= 1 )  exactly coin- 
cide with the roots of the equation for the conductivity in 
the percolation model with respect to coupling.19 Its solu- 
tion has a critical behavior with critical density (percola- 
tion threshold) p,, = 1/2, where 

I 0 ,  Po < 112, 
lim [ p ( n ) ]  = 
n- m 1 ,  po> 1/2. 

Dividing Eq. ( 3 9 )  by ( 3 8 ) ,  we obtain an ordinary dif- 
ferential equation which can easily be integrated: 

Retaining only the principal terms in the integral, we fi- 
nally find 

where c = 2 / 3 + x ( l w x / 3 ) ,  S =  1 - x ( 1 - x / 3 ) ,  x = Q  
x ( p =  1/21. 

Since in the present case xo-0 the effective diffusion 
coefficient of the medium is equal to the value DeK 
= lim { ~ ' [ ~ ( n ) ] ) ,  given by ( 3 6 ) ,  from ( 4 2 )  using ( 4 0 )  

we 'kin2 

Note that for 0  < x  < 1 the inequality 0  < S < 1 applies to 
the exponent 0  < S < 1 .  

The value of the parameter x  which determines the 
scaling index S in the critical dependence ( 4 3 )  can be eval- 

uated by comparing the radius within which the random- 
walking particle is localized in the regime where the diffu- 
sion is bounded for po <pCrit with the correlation radius, 
which is the average size of the bound cluster in the per- 
colation problem also for po <pCri, .  

Taking into account ( 3 7 )  we determine the particle 
localization radius as follows: 

where t ( n )  = 7;en. 

Using Eq. ( 3 9 )  we can find a relation between the 
quantities t and p: 

and using ( 4 0 )  in the expression ( 4 4 )  we can pass from the 
coarsening limit n  - co to the limit p  + 0 :  

Note that as the density po approaches the percolation 
threshold 1/2 the size of the localization region for the 
random-walking particle diverges, since the exponent in 
( 4 6 )  is negative for 0  < x  < 1 .  

The resolving localization radius is comparable to the 
correlation radius of this system, which can easily be esti- 
mated by using Eq. ( 3 9 )  and the equation for the trans- 
formation of the spatial scale, 

which follows from the discrete transition to diagonal 
coarsening of the lattice: L:+ = 2 ~ : .  Integrating ( 3 9 )  us- 
ing ( 4 7 )  we find that the correlation radius depends on the 
density of the conducting component as follows: 

Equating the exponents in expressions ( 4 6 )  and ( 4 8 )  
we find ~ ~ 0 . 6 5 .  This value of x  yields something of an 
underestimate for the critical index of the correlation ra- 
dius, which is well known from percolation theory:20 1.19 
compared with 1.33. This discrepancy, which in our opin- 
ion is unimportant, can be explained by the errors which 
entered in the transition from the discrete scaling transfor- 
mation to the infinitesimal one. 

To conclude this section we briefly summarize the re- 
sults. 

The dependence of the effective diffusion coefficient on 
the density 1 -po of the "impenetrable" component be- 
haves critically, since its derivative near the percolation 
point pCri, = 1/2 has a square-root singularity [see Eq. ( 4 3 ) ,  
where 6=0.49 and c =  1.181. 

This result agrees qualitatively with the results of Ref. 
14, where particles undergoing random walk in a medium 
with an excluded region were studied using the mean-field 
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approximation. The reduced value of the critical density 
obtained in Ref. 14 (p,,, ~ 0 . 3  ) is explained by the error of 
the mean-field approximation used in Ref. 14, whereas in 
the present method the critical value of the density coin- 
cides with the percolation point of the system. On the other 
hand, since the error in the scaling approach increases with 
distance from the percolation point, the value of the deriv- 
ative of the effective diffusion coefficient with respect to po 
in the limit po-. 1 is slightly underestimated, and in the 
region 1 -po< 1 the results obtained in Ref. 14 are more 
trustworthy. 

Using relations ( 3 7 ) ,  ( 4 2 ) ,  and ( 4 5 ) ,  we can estimate 
the way the mean square of the displacement depends on 
time. In the initial stage of the process, where Ip( t )  - l /  
2  ( < 1 holds for arbitrary values of the density po near 1/2, 
the function R k S ( t )  is nonlinear: 

~2 ( t )  - t(x/3)(x2-4x+6) -t0.83 
ms - .  ( 4 9 )  

However, subsequently, depending on the value of the den- 
sity po, the particle is either localized for po < 1/2 or for 
po> 1/2 its random walk at late times carries it into the 
diffusive regime and the function ~ ; , ( t )  becomes linear: 

It would seem that this result contradicts the conclu- 
sions of Ref. 12, in which the conformation of the phantom 
polymer chains in a random potential was studied both 
numerically and analytically. In that work it was shown 
that a phantom polymer chain undergoes localization in 
the presence of any arbitrarily small quantity of impene- 
trable impurity. However, in the same work the question 
arises about the rigor of the description of phantom poly- 
mer chain statistics in the general case using a hopping 
diffusion model. Our result shows that despite the success- 
ful application of the hopping diffusion model to describe 
the statistics of a polymer chain," this approach is impos- 
sible in the presence of an external random walk. 

6. CASES OF STRONG REPULSION OF PARTICLES OF THE 
COMPONENTS OF THE MEDIUM ( x 0 4  1) HAVE THE 
SAME DIFFUSION COEFFICIENT 

The components of the medium have identical intrinsic 
diffusion coefficients, and in accordance with Eq. ( 3 3 )  this 
identity is preserved in the process of coarsening the lat- 
tice, h ( n )  E ho= 1 .  Dividing Eqs. ( 3 1 ) ,  ( 3 2 ) ,  and ( 3 4 )  by 
Eq. ( 3 0 )  and integrating with respect top, Eqs. ( 3 1 )  and 
( 3 2 ) ,  using the initial condition ( 3 5 ) ,  we find the following 
relations describing the effective diffusion coefficient: 

Here we have assumed that DL = D: and [in accordance 
with Eq. ( 2 9 ) ]  a (p,x,h - 1 ) = p  hold. Since for h  - 1 Eq. 
( 3 0 )  assumes the form ( 3 8 ) ,  the limiting relations ( 4 0 )  
also apply. Consequently, Eq. ( 3 6 )  together with ( 5  1 ) and 
( 5 2 )  yields 

lim [ ~ ' - b ( n ) l ) = ~ ' ( l ) ,  112; 

lim [ ~ " - b ( n ) l ) = ~ " ( o ) ,  P,< 1/2. 

Assuming that x ( p )  1 holds for all p, and retaining in 
what follows only the leading terms in the expansion in 
powers of x,, we find the solution of Eq. ( 5 3 )  : 

from the form of which the restriction on the initial con- 
ditions for which it is valid is easily found: 
xog l p 0 -  1 /2 1 0.78. 

Then for po< 1 / 2 - ~ ; ~ ~  we have pa = O  and the effec- 
tive diffusion coefficient is determined from ( 5 2 )  for p  = 0 .  
For po$ 1/2+xk2' the limiting value is p ,  = 1 and the 
effective diffusion coefficient is determined for p= 1 from 
( 5 1 ) .  

If the initial value pa is close to the percolation point 
pait= 1/2, i.e., lpo- 1/2 I < x ; ~ ~ ,  then the range of integra- 
tion in ( 5  l  ) or in ( 5 2 )  is broken into two integrals from po 
to p , ,  where x ( p )  increases rapidly from xo almost to 
unity, and from pl to unity or zero, from which we can 
assume x ( p )  = 1 .  The value of the parameter pl is deter- 
mined from the conditions 

here the sign + ( - ) is taken in accordance with that in 
Po> ( < )1 /2 .  

Integrating ( 5 1 )  and ( 5 2 ) ,  assuming that we have 
x ( p )  =:O or x ( p )  z 1 depending on the range of integration, 
using the condition ( 5 5 )  we finally obtain 
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Here y =  (7t2 - 7x + 5 )/3 -0.29, holds and 6 and c are de- 
fined in (43) to be 6 = 0.49, c = 1.18. [The accuracy of Eqs. 
(56) decreases as the value of the density po moves further 
away from 1/2.] 

Note that in contrast to the case xo-0, for small but 
nonvanishing xo the function Deff(po) has a minimum 
which, as follows from (56), is attained at the value 
po-0.39. A numerical calculation based on relation (52) 
for x(p)  & 1 yields a more precise value for the position 
where the function Der(po) has a minimum, poz 0.25. As 
xo increases the location of the minimum moves to the 
right, and for xo close to unity it coincides with the point 
po=1/2 (see Fig. 2).  

This behavior of the effective diffusion coefficient is 
completely natural. If almost the entire medium consists of 
the second component (po 9 1 ), then a particle undergoing 
random walk rarely needs to pass through the interface 
between the components, and the quantity Deff is close to 
D: = DL, the diffusion coefficient in a uniform medium. 
As the fraction of the medium consisting of the first com- 
ponent increases, attracting the random-walking particle to 
itself, trapping regions arise in the medium and the effec- 
tive diffusion coefficient sharply decreases. As the fraction 

of the first component increases further the volumes of the 
regions where the probability for particles to penetrate is 
small begin to overlap, and for po> 1/2 these regions form 
a continuous cluster. As a result, the effective diffusion 
coefficient increases abruptly and ultimately for some small 
fraction of the repulsive impurity ( 1 -po 9 1 ) the medium 
again becomes almost uniform, and Deff reaches its original 
value DL. 

7. CASES IN WHICH THE PARTICLES ARE WEAKLY 
REPELLED FROM ONE OF THE COMPONENTS OF THE 
MEDIUM (1 -x ,g  1) AND THE DIFFUSION COEFFICIENTS OF 
THE COMPONENTS ARE IDENTICAL 

When the particles are weakly repelled from the bad 
component the magnitude x(p)  remains close to unity for 
all values ofp, i.e., the local anisotropy of the system in the 
process of the scale transformation remains weak. It is 
found that in order to take into account the affect of this 
weak local anisotropy of the system, the linear approxima- 
tion is inadequate. Specifically, if we linearize Eq. (53) 
then it acquires the form 

FIG. 2. Results of the numerical calculation of the effective 
diffusion coefficient D,,(p,) at h= 1 for different values of x,: 
1-0.7; 2-0.45; 3-0.25; 4-0.1; 5-0.05; 6-0.03; 7-0.01; 
8-0.001. 
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d d p )  -- &(PI [ 1 [Q(P) 1 (57) 
- -- I-- - +- , 

dp p-1/2 4 p 

where we have ~ ( p ) = l - x ( p ) < l ,  with E(PO)=EO 
= 1 -xo< 1. 

From Eqs. (5 1 ) and (52), retaining only terms to first 
order in EO, we find 

2 

Integrating (57), we can represent ~ ( p )  in the form 

where 

Using Eqs. (60) and (61) we can easily show that, 
e.g., the integrand in (58) is a total derivative of the ex- 
pression - ( 1 -p)exp[- f (p)], and hence 

Similarly it can be shown that to within terms O ( E ~ )  we 
also have o ( E ~ )  and 1n[d1(0)/DL] - 0. Consequently, to 

I first order in E~ we have Deff(p0) - D,, . Including second- 
order corrections does not present any problem in princi- 
ple, although the resulting expressions are quite lengthy. 
For this reason we will not report them here. We note only 
that Deff(po) is a symmetric function about the point 
po= 1/2 to second order in E,, which is a consequence of 
the symmetry of the problem for h- 1 and eO<l with re- 
spect to the interchange PO- 1 -po, E ~ -  - EO. 

Since for arbitrary initial conditions xo and po it is 
impossible to find an analytical solution for ho= 1, we have 
integrated the corresponding equations numerically for 
several values of x .  The results of the calculation are 
shown in Fig. 2. 

8. RANDOM WALK IN A PERCOLATION STRUCTURE 

If the fractions of the components in the system are the 
same, i.e., po= 1/2, then on large scales there is no absorp- 
tion of one component by the other [in Eq. (30) the point 
po= 1/2 is an unstable fixed point, p (n )  - 1/21. Such sys- 
tems are called percolative, and one of the notable proper- 
ties of such systems is the infinitely large correlation ra- 

dius. The description of random walks over the structures 
of such systems is of unquestionable interest. 

As before we assume ho= 1 and write down equations 
for the quantities x ( n )  and D'.I1(n) at po= 1/2: 

. I (65) 

Here we have written 

and the initial conditions for Eqs. (63)-(65) assume the 
form 

It can easily be shown that Eq. (65) in the physical 
region has only two fixed points, an unstable one at x=O 
and a stable one at x =  1. Consequently, we have x ( n )  - 1 
asymptotically for n - cu . 

By integrating the expressions (63) and (64) and us- 
ing (65) to transform from integration with respect to n to 
integration with respect to x, we can determine the effec- 
tive diffusion coefficient over a percolation structure: 

The relation (66) is a reflection of the fact that for 
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ho=l and po=1/2 we have Deff = 2lim, , ,~ ' (n)  
= 2 lim,,,dl(n), which is a consequence of the symme- 
try in the problem with respect to interchange of the good 
and bad segments, noted previously. 

The integral in ( 6 6 )  can be carried out analytically, 
and we finally obtain 

where a= ( x 2 - 3 x + 3 ) / 2 ( 1  - x )  ( 4 - x )  ~ 0 . 6 3 .  
Note that these values of Den for difference values of xo 

agree well with the results of the numerical calculation of 
De,(po) at PO= 112. 

Using Eqs. ( 6 3 ) - ( 6 5 )  and relations ( 3 7 )  we can also 
determine how the mean square displacement depends on 
time for random walks in a percolative structure. Elemen- 
tary calculations yield the following imperfect dependence: 

where x ( t )  is given to good accuracy by the inverse of the 
function 

The behavior of Eqs. ( 6 8 )  and ( 6 9 )  in the nonlinear stage 
of the process is nonlinear, but at late times the random 
walk enters the diffusive regime and the function ~ i , ( t )  
becomes essentially linear. The explanation for this behav- 
ior of particles undergoing random walk, as in the case of 
their localization, is obvious. At early times the fluctua- 
tions play a major role, since the particles themselves have 
still not managed to enter many regions of space, while at 
late times, although the space itself remains nonuniform, 
the average reflects the fact the particle has managed to 
pass through many regions and the local nonuniformity no 
longer affects it seriously. 

It is especially worthwhile to consider the case in 
which we have po= 1/2 and xo=O simultaneously, i.e., the 
fractions of the two components are equal and the bad 

regions are absolutely impenetrable to the particle. In this 
case, after carrying out the limit xo-0 we find that expres- 
sion ( 6 8 )  reduces to 

which agrees with ( 4 9 ) ;  the latter holds for po= 1/2 not 
only at early times but also at late times. The function 
~ k , ( t )  given by ( 7 0 )  remains nonlinear at all times, i.e., it 
does not approach a diffusive regime. The exponent in ( 7 0 )  
is positive for any value of x, so in the limit t -  co we have 
R;,( t )  + CO,  which agrees with ( 4 6 )  for po+ 1/2. 
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