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The matrix for the scattering of band electrons by a variable-valence impurity center in a 
crystal with a charge-density wave (CDW) or a spin-density wave (SDW) has been found. The 
calculations have been performed by the 1/N expansion method in the Anderson model 
with infinite Hubbard repulsion at the impurity center. The energies of the localized impurity 
states within an CDW or SDW target have been calculated. In the case of a CDW, the 
level remains N-fold degenerate, but its energy depends on the type of sublattice (with a 
charge-density maximum or minimum). In the case of an SDW, the degeneracy of the 
level is removed, but its energy does not depend on the type of sublattice (with a spin-density 
maximum or minimum). 

1. INTRODUCTION 

The behavior of impurities in crystals with charge- and 
spin-density waves (CDW's and SDW's) has been studied 
off and on for the last 20 years. Since the early studies (for 
example, Ref. I ) ,  the most popular model has been the 
nonself-consistent point-defect potential, which in some 
cases provides a qualitatively correct description of the 
electronic structure of impurity states, the redistribution of 
the electron and spin density in the vicinity of an impurity 
center, and the renormalization of the amplitude (and, in 
some cases, the spatial structure) of a CDW and an SDW. 
One common property of all the models of systems with a 
CDW and an SDW that have been considered for both 
nonmagnetic and magnetic impurity centers is the appear- 
ance of localized states within the gap in the spectrum of 
one-particle excitations even when the potential of the 
electron-impurity interaction is as weak as desired (see, for 
example, the discussion and references in Ref. 2).  The ra- 
dius and energy of these states are strongly dependent on 
the parameters of the CDW (SDW), and their genesis is 
governed by the special features of the density of states of 
the band electrons near the edges of the dielectric gap. A 
more detailed discussion of the situation for specific struc- 
tures was given in Refs. 3 and 4, and there is no need to 
repeat it here. 

We recently5 turned to an investigation of complex 
centers in systems with a CDW and an SDW, which, in 
principle, cannot be described by the nonself-consistent 
point-defect scattering potential model. 

More specifically, we examined the Anderson impurity 
model in the Kondo regime. The problem of the electronic 
spectrum of impurity states was reduced by the 1/N ex- 

the CDW (SDW) phase and T k  is the Kondo temperature. 
In this paper we study another limiting case, viz., a 

variable-valence impurity center with model parameters 
obeying the relationship Ts,,> T k .  We note that T k  should 
be understood to be the Kondo temperature renormalized 
under the influence of a CDW (or SDW) (which is gen- 
erally lower than in a normal metallic phase). Under these 
conditions a calculation scheme like the mean-field 
approximation,6 which was used in Ref. 5, is inapplicable. 
As before, we consider the N-fold degenerate Anderson 
impurity model in the limit U- co ( U is the Hubbard 
repulsion energy at the center), and the analytic calcula- 
tion will be performed by the 1/N expansion method in the 
limit N- C O .  

2. MODEL HAMlLTONlAN AND METHOD FOR CALCULATING 
PHYSICAL MEDIA 

A system that is unstable with respect to a transition to 
a CDW or SDW state can be described using the standard 
model of a metal with congruent regions on the Fermi 
surface separated by half the reciprocal lattice vector 
Q=G/2 (Ref. 7). An impurity center is described in a 
two-configuration model, in which it fluctuates between the 
states p= 10) and f '=  J m ) ,  where m =  (J,  ...,- J ) ,  N = W  
+ 1, and N is the multiplicity of the degeneracy of the f '  
state (the Anderson impurity model with N-fold degener- 
acy in the limit of infinite one-center repulsion). The in- 
teraction of the band states with states localized on the 
impurity center is specified in the form of one-particle hy- 
bridization. Thus, the Hamiltonian of the system under 
investigation is - - 

pansion method to the solution of a system of equations for H=Hl+H2+H3-pn.  (1)  
the poles of the one-particle Green's function of the band Here is the chemical potential, and is the operator of 
electrons in a self-consistent (with respect to the occupan- the total number of particles. The Hamiltonian de- 
ties the states) frequenc~-de~endent pseudopotential scribes the band electrons in the CDW or SDW phase: 
U(w). The situation formally treated in Ref. 5 corresponds 
to a range of parameters of the model which are such that 
T , , g  Tk ,  where T , ,  is the temperature of the transition to HI= x&(k)a&aka-  [Agaa~aak+p13+k.~.]. (2)  

k,a k,a,13 

147 JETP 79 (I), July 1994 1063-7761 /94/070147-06$10.00 @ 1994 American Institute of Physics 147 



Here Aga=(Ap)ga in the case of an SDW, and 
Apa= A$13n in the case of a CDW, where A, and A, are the 
corresponding order parameters. The dispersion law of the 
band electrons satisfies the "nesting" condition ~ ( k )  = 

-&(k+Q),  a and P are the spin indices, and u is the 
vector consisting of the Pauli spin matrices. The chemical 
potential is measured from the middle of the band gap. 

We write Hamiltonians H2 and H3 with the aid of 
auxiliary pseudofermion (f,) and pseudoboson (6)  fields, 
following Ref. 8: 

The operator of the total number of pseudofermions 
and pseudobosons on the impurity commutes with H: 

Strict fulfillment of the requirement Q= 1 is necessary 
in our problem. Nonphysical states can be formally elimi- 
nated by adding the term A(Q- 1) to H and making the 
transition to the limit A- oo in the expressions for the 
physical expected values9 

We write several general relations needed for subse- 
quent calculations. The partition function of the model 
with Hamiltonian ( 1 ) is 

= lim Sp[exp [ -PH(A) ] ] 
A-  m 

lim ( ~ X P  [PA1 (Q)A), 
a- w 

(6)  

B(w,A) 
D(ivn ,A) = J:W dw - , 

iv, - w 

where n(w) is the Bose-Einstein function, 
v, = 2 m  T, f (w) is the Fermi-Dirac function, 
w,= TT (2n + 1 ), n =0, j= 1, j= 2 ,..., Zband is the partition 
function for the band electrons, and B(w,A) and Am(w,A) 
are the spectral functions of the pseudoboson Green's func- 
tion D(ivn ,A) and the pseudofermion Green's function 
Gm (ion ,A), respectively. 

The scattering matrix % of the band electrons on an 
impurity center c!n be written as the projection of the 
scattering matrix Z(A) onto the subspace with Q= 1. 

2f(k,k1,w) = lim [2Ep(k,k ' ,w,A)/(~)~] .  
A- m 

(9)  

Similarly, the corrections to the self-energies of a 
pseudoboson ( I I )  and a pseudofermion (2,) can be ex- 
pressed by the relations 

n ( v )  = lim n(v+A,A), (10) 
A-  05 

2,(w) = lim B,(w+A,A). (11) 
a- m 

In the noncrossing approximation (NCA) the functions 
%(A), II(A), and 2,(A) satisfy the equations 

The Green's functions of the band electrons, pseudo- 
fermions, and pseudobosons are, respectively, 

For values of the momentum k close to the Fermi 
values, we assume that the matrix elements VLa(k) are 
independent of k, and we use the approximation 

Here Ro is the coordinate of the impurity center in the 
lattice (exp iQRo= + 1) in terms of the position of the 
impurity relative to a crest or valley of a CDW (or SDW). 
The dependence of the matrix elements Vma on the indices 
(m and a)  in the simple approximation of an isotropic 
scattering potential is specified in the form 

where the f m a  are the standard Clebsch-Gordan coeffi- 
cients. As can easily be seen, they satisfy the relations 
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which are needed below. 

3. CALCULATION OF THE SPECTRUM OF LOCALIZED 
STATES 

Deriving analytic expressions for the self-energy cor- 
rections II and 2, is fairly difficult even in the NCA (with- 
out considering vertex renormalization). Here we are in- 
terested only in the situation in which the hybridization V 
is small ( V g  W, where 2 W is the width of the allowed 
band) and the Kondo regime is inapplicable (Tk(2A, 
where Tk is the Kondo temperature and 2A is the width of 
the bond gap), and to obtain qualitative estimates it is 
sufficient to confine ourselves to the simpler random phase 
approximation (RPA) by setting the Green's functions D, 
G, and Gm on the right-hand sides of Eqs. ( 13 ) and ( 14) 
equal to their "zeroth" values. We also restrict ourselves to 
the case of low temperatures ( T 4 A, I Ef- Eo I ), and we 
then rewrite the expressions for II and 2, in the form 

hi,= - 1 (CDW), ht= -m/J (SDW), (25) 

A,=l (CDW), A,=O (SDW). (26) 

After summation with respect to the quasimomentum k, 
we can obtain explicit expressions for 2, and II as func- 
tions of w and Y (see Appendix). In Eqs. (23)-(24) the 
frequency of the pseudofermions w is calculated relative to 
the level of the chemical potential p, and the latter is as- 
sumed to lie within the band gap 2A ( p  < A). The energy 
of a one-particle pseudofermion excitation Ef-Eo is cal- 
culated relative to the middle of the gap, so that Ef-Eo 
can be either positive or negative, and the filling of the Ef 
level is determined by the sign of the expression 
Ef-Eo-p. 

Calculating scattering matrix (6) ,  we should recall 
that upon projection onto the subspace of states with Q- 1 
(i.e., upon the transition to the limit A+ co ) all the dia- 
grams containing two or more closed loops from the pseud- 
ofermion and pseudoboson Green's functions v a n i ~ h . ~  Af- 
ter some simple substitutions we write 

r m  ( 4  ) 
r m ( w )  = lim 

A - ,  < Q ) A  ' 

The calculation of Tm(w) is performed in the polar (qua- 
siparticle) approximation, which was discussed in detail in 
Refs. 8 and 9 and is valid in our situation, in which the 
Kondo regime is not realized. Calculating integral (29) 
and making the transition in (28) to the limit A- W ,  we 
have 

Yrn(w:) 
r m ( w )  z- * ' 

w-w, 

The values of q: and v* are found from the self- 
consistency equations 

An actual calculation is completed in the limit N- a ,  at 
which the 1/N expansion technique is applicable. In the 
zeroth order with respect to 1/N, the self-energy correc- 
tion (2,) to the pseudofermion Green's function 
(2,- 1/N-0) is negligible compared with the correction 
(n )  to the pseudoboson Green's function (we recall that 
V ~ N  remains finite in the limit N- co when the 1/N ex- 
pansion technique is used). After this we write a closed 
equation for the energy w: = -v* 

where II(v)  is given by Eqs. (A3), (A4), (A7), and 
(A8). The restrictions on the applicability of Eq. (38) will 
be described below. 

Real solutions of Eq. (38), which will be discussed 
below, exist in the energy range 1 u: 1 < A and describe 
localized states on a defect. Complex solutions in the 
ranges w: > A and w: < -A describe resonances, and 
we are not interested in them here. 

A. Systems with an SDW (Fig. 1) 

A solution exists in a semirestricted range of values of 
Ef (  - ccr < Ef < E;): 

As E ~ + - c o ,  w:(E,-) - -A, and as EJ - &;,WE(&;) - A. The asymptotic behavior at large negative values of 
E , - ( IE~I>A,  Uln2W/A) is given by 
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FIG. 1 .  FIG. 3. 

o z = - ~ [ I - ~  (&)2]. (41 ~ z ( & ~ + ~ j )  
- A [ I - ~ ( E ~ - E ~ ) ~ / ~ u ~ ] ,  o < E ~ - E ~ < u ~ / A  

-A[l-(Ef-&j)/A, E ~ - E ~ & u ~ / A ,  
6. Systems with a CDW (the "positive" half-wave 
cos QRo= 1, Fig. 2) (44) 

A solution exists in a semirestricted range of values of A 
ef (-a, < & / < & I ) .  Here o* , ( - a )= -A  and a:(&;) & 7 = - h + U l n -  2 W '  

=A: 

As E + - 03 ( I E 1 $A, U ln 2 W/A) the asymptotic 
behavior of w * , ( ~  f )  is similar to (38): 

C. Systems with a CDW (the "negative" half-wave 
cos QRo= - 1, Fig. 3) 

A solution exists in a restricted range of values of E~ 

( ~ 7  < ~f < ~ j ) .  Here w * , ( E ~ )  = -A and 
w*,(E[;) = A: 

FIG. 2 

Let us now turn to Eqs. (34)-(37) and more atten- 
tively discuss the derivation of relation (38) from them by 
the 1/N expansion method. Discarding the term Em,  
which has a small factor - (1/N) compared with KI, is 
justified in the limit of large N only if 2 ,  does not diverge. 
It is easily seen that as + Ef -+ Eo + A this requirement 
is violated for systems with an SDW and for the "negative" 
half-wave of systems with a CDW [see Eqs. (A2) and 
(A6)I. At any finite N the correction to the self-energy 
part of the pseudofermions for the indicated values of 
diverges. It is not difficult to understand that we are deal- 
ing here with the ranges of values E~ & E; (in systems with 
an SDW) and E & E: (in systems with the "negative" half- 
wave of a CDW), where there are no real solutions for Eq. 
(38). Isolating the divergent contributions to E,(v% 
+ Ef),  we can obtain asymptotic expressions for f )  in 
the lowest nonvanishing order of the 1/N expansion by 
directly solving system (34)-(37) for Ug l .  Omitting the 
simple intermediate calculations, we present only the final 
equations: 

A. for systems with an SDW (dashed line in Fig. 1) 

B. for systems with a CDW (the "negative" half-wave, 
dashed line in Fig. 3) 
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4. CONCLUSIONS dilute Cr alloys with rare-earth  metal^,^ should be singled 
out. 

Our results regarding the formation of localized states 
within an SDW (CDW) gap can be summarized in the 
following manner. 

A. In systems with an SDW, a localized state exists 
over the entire range of seeding energies - cc < E < cc . In 
the zeroth order of the 1/N expansion this state is N-fold 
degenerate, but this degeneracy is completely removed in 
the next orders with respect to ( l /N) .  The plot of 
w * , ( E ~ )  is strongly asymmetric at large negative and posi- 
tive values of E ,- (in the latter case the level is squeezed N~ 
times faster against the edge of the conduction band than 
against the edge of the valence band). 

B. In systems with a CDW in which an impurity is 
found in the region of the "positive" half-wave (i.e., at a 
site with excess charge density), a localized state exists in 
a semirestricted range of values of E ( - cc < E < E )  ) and 
is N-fold degenerate. 

C. In systems with a CDW in which an impurity is 
found in the region of the "negative" half-wave (i.e., at a 
site with insufficient charge density), a localized state ex- 
ists in a semirestricted range of values of & (&7 < & < cc ) 
and is N-fold degenerate. 

We note that the energies E )  and E[; [Eqs. (39) and 
(44)] thus simply mark the boundaries of applicability of 
the lowest approximation with respect to ( l /N)  in our 
calculation and do not have any great physical meaning. 
The asymmetry of the behavior of a;(& f )  at large positive 
values of E (for the "negative" half-wave of a CDW), like 
the aforementioned asymmetry of w;(E~) for a system 
with an SDW, is the result of the N-fold degeneracy of the 
f 1  state and the nondegeneracy of the P state. In the 
simple model of a resonant scattering center without a 
strong one-center correlation with nondegenerate f 1  and 
p states, the plots of w;(E,-) are symmetric upon the re- 
placement E ~ -  - E ~ ,  as well as upon the replacement of 
the spin index a- -a and cos QRo- -cos QRo (see the 
discussion in [5]). The conclusions regarding the following 
points are fundamental and not dependent on the choice of 
the approximation: a )  the existence and complete removal 
of the degeneracy of the localized state in a system with a 
SDW over the entire range of values of the energy of a 
one-particle one-center excitation E f ;  b )  the restricted 
range of values of E~ for the existence and maintenance of 
the degeneracy of this state in a system with a CDW. 

The foregoing results may be useful in studying the 
charge and magnetic states of local centers in numerous 
different systems. They include impurities of rare-earth 
metals in A4B6 semiconductors, in which the "ionicity" 
potential plays the role of the amplitude of a CDW in the 
context of the p model.2 They also include chemisorbed 
centers formed by metals or halogens on reconstructed 
W(100) and Mo(100) metallic surfaces with a CDW 
(Ref. 10) or a (2x1 ) semiconductor surface for Si( 11 1 ) or 
C(  1 1 1 ) (in the diamond structure) which has been recon- 
structed by the Pendey chain mechani~m.~ Among the sys- 
tems with a SDW, the group of ordered binary alloys of 
Mn with group-VII and group-VIII metals," as well as the 

APPENDIX 

The functions Z,(o) and n ( v )  have the following 
forms for systems with a SDW: 

X arctan 

[ l + ( a y J ) 1 / 2 ]  

('43) 
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For system with SDW 

arctan 

- 11 - 'I2 

- ( f )  ] - 'I2 

In 2 O-Eo W-Eo 

, l + T +  [(P) -11 X arctan 
- (y)2]'/2 

la-Ed2> l .  
A2 
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