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In the linear approximation, the initial-value problem is solved for the evolution of an 
arbitrary perturbation in the density and velocity of a magnetized hollow electron beam 
propagating in a circular waveguide with a smoothly varying radius. The beam charge 
in the unperturbed state is neutralized by a fixed ion background; the dispersion of the 
space-charge waves is disregarded. It is shown that a virtual cathode develops at the 
point where the velocity of the slow space-charge mode passes through zero. An expression 
is derived for the perturbation growth rate at this point. 

1. INTRODUCTION 

It is well known that a time-independent electron beam 
can propagate in a drift space bounded by electrodes with 
a prescribed electron energy at the entrance to the drift 
space only for beam currents less than some maximum 
value. For currents above this limit the beam develops a 
virtual cathode, a cloud of electrons which on the average 
allows the maximum current to propagate and reflects 
"surplus" electrons back to the injection point. This phe- 
nomenon occurs both for beams with unneutralized space 
charge and for quasineutral beams. In the latter case there 
exist beam steady states with current above the limiting 
value, but these are unstable and the problem of interpret- 
ing the mechanism by which the virtual cathode forms 
reduces to explaining the reasons for the instability. 

We refer to beam-waveguide systems as "open" if an 
electron beam passing through the waveguide does not in- 
tersect electrodes with the prescribed potentials on enter- 
ing or leaving the drift space (in general the two boundary 
conditions have no preassigned correlations) which differs 
from the well-known Pierce mechanism, which occurs in 
the opposite case of "closed" drift space configurations. 

The Pierce instabilitylp2 results from positive feedback 
produced by the electric field of charges induced in the 
bounding electrodes. When they redistribute themselves in 
the external electric circuit connected to the bounding elec- 
trodes (the role of the circuit may be played by the wave- 
guide walls), the induced charges allow the prescribed 
boundary conditions to be satisfied at the entrance and 
output from the drift space, but at the same time they 
create an additional electric field in the drift space, which 
assists or impedes the removal of space-charge perturba- 
tions from the drift space; the latter case corresponds to the 
formation of a virtual cathode. (Here and below we will be 

beams this situation occurs in "long" systems, when a cur- 
rent above the limiting value is injected into a drift space 
whose longitudinal dimension is greater than the trans- 
verse dimension (in the limiting case, for injection into a 
semiinfinite waveguide,3 in which case there is no feed- 
back). As shown by numerical and laboratory experiments 
(e.g., in vircators, which generate microwaves and have a 
virtual cathode), in long systems the virtual cathode oc- 
curs either close to the injection point or in the region 
where the waveguide or beam radius is varying, i.e., in the 
nonuniform part of the system where the beam current 
passes from the sub- to the superlimiting state. In the 
present work the role of this transition region in the for- 
mation of a virtual cathode is studied in the model of an 
open system with a quasineutral beam. 

2. FORMULATION OF THE PROBLEM 

A hollow infinitely thin electron beam of radius R is 
propagating in a circular waveguide with smoothly varying 
radius Ro(Z) (Fig. 1). We assume that the beam is non- 
relativistic and cold; the waveguide is a perfect conductor; 
the beam charge in the unperturbed equilibrium state 
(No,Vo) is neutralized by a fixed ion background; in the 
direction of the axis of symmetry Z of the system an infi- 
nitely strong external magnetic field is imposed; we neglect 
the self-magnetic field of the beam; we consider only azi- 
muthally uniform states. Such a beam is described by the 
following system of hydrodynamic equations: 

a N  a -+- (NV) =0, 
a t  az 

discussing only the electrostatic instability mechanism.) 
The growth rate of the Pierce instability is proportional to av  av e a @ ( ~ , z , t )  -+V-=- 
1/L, where L is the length of the drift space, and ap- a t  a 2  m az ' 
proaches zero in the limit L+ m. 

Open systems model the situation in which a Pierce 1 a a@ d2@ S(r-R) 
mechanism is ruled out or unimportant. For unneutralized ;$ ( r d r ) + @ = 2 e S ~  R ' 
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FIG. 1 .  Model of an open system; 1 )  waveguide; 2 )  hollow electron 
beam. 

Here we take the charge to be positive, e>O; m is the 
electron mass, t  is time; N(Z , t )  is the electron linear num- 
ber density, V(Z , t )  is the hydrodynamic velocity; and 
@(R,Z,t)  is the beam potential. 

The beam current Jo in the initial unperturbed state is 
chosen so that at the point Z=O it is equal to the limiting 
value (for L - P  cc ) of the Pierce current for a quasineutral 
beam of radius R  in a waveguide with constant radius 
equal to Ro(0)  : 

[Note that the same expression ( 4 )  determines the value of 
the maximum possible steady current for a nonrelativistic 
unneutralized beam in the same geometry.8] 

In what follows we will describe the longitudinal vari- 
ation of the system given by the function R o ( Z )  in a more 
general form, using the local margin A ( Z )  above the 
threshold: 

A  ( Z )  - Jo-J*( Vo,Z) R o ( Z )  Ro(0)  A'Z' -- 
J*(vo , z )  R o ( 0 ) - (  R  ) ( 5 )  

-1 < A ( Z )  < co, 

where the current J,(Vo,Z) is defined in Eq. ( 4 )  with 
R o ( Z )  instead of Ro(0) .  

3. SOLUTION OF THE INITIAL-VALUE PROBLEM AND 
CONCLUSIONS 

First we solve the Poisson equation ( 3 ) .  For a slowly 
varying function R o ( Z )  and for long perturbations S N ( Z ) ,  
the second term on the left-hand side of the equation is 
small in comparison with the first. Under these conditions 
the solution of Eq. ( 3 )  can be found to any desired accu- 
racy by means of iterations in the form of a perturbation 
series. We limit ourselves to the leading term of this series: 

The conditions under which the corrections to this approx- 
imation can be ignored reduce to a system of inequalities: 

Here k  and x are the reciprocals of the length scales for the 
variation of S N ( Z )  and A ( Z ) ,  A, is the amplitude of 
A ( Z ) ,  and we have written Ro= R o ( Z )  [for AO( 1 we can 
use Ro= R,(O) in estimates]. 

Substituting Eq. ( 6 )  for the beam potential into the 
equation of motion ( 2 ) ,  we can go over to "long- 
wavelength" hydrodynamics, in which higher derivatives 
with respect to Z  of SN(Z, t )  are disregarded, beginning 
with the second. Physically this implies that diffusion of 
the space-charge waves associated with the terms of the 
form - [ ~ A ( Z ) / ~ Z ] ~ ~ S N ( Z , ~ ) / ~ :  2 6 ' ~ 2 ,  is neglected, and 
so is their dispersion, the contribution of which begins with 
the term - a 3 6 ~ ( z , t ) / k :  ,az3. (Note that the Pierce in- 
stability cannot grow in beams with bounded transverse 
dimensions unless there is dispersion, since in such beams 
if we neglect dispersion there is no slow space-charge wave 
with k#O and with phase velocity equal to zero for beam 
currents above the limiting value.) 

After substituting expression ( 6 )  for the potential into 
the right-hand side of Eq. ( 2 ) ,  we go over in Eqs. ( 1 )  and 
( 2 )  to the dimensionless variable 

and linearize these equations with respect to n and u. The 
system of equations thus obtained can be transformed into 
the characteristic form 

here the prime denotes differentiation with respect to z, and 
the plus and minus signs refer to fast and slow space- 
charge waves respectively. 

Even at this stage the physical significance of the vir- 
tual cathode formation is obvious. As can be seen from the 
characteristic equation (10) for the slow space-charge 
waves, at the point z=0 where the current of the unper- 
turbed beam is equal to the local threshold [A(O) = O ] ,  the 
velocity of the slow wave vanishes. Throughout the re- 
mainder of the beam space the velocity vector of this wave 
is directed toward z=0. That is, the slow space-charge 
wave accumulates the perturbations it transports at the 
point where its velocity goes to zero. But that still leaves 
the fast wave, for which the point z=0 is not singular and 
which carries off its share of the perturbations in the di- 
rection of the beam motion. In a nonuniform system the 
linear modes are not independent, so the question remains: 
how is an arbitrary initial beam perturbation divided be- 
tween the fast and slow space-charge waves, and what is 
the result of their subsequent competition? 

Assuming that the margin A, by which the threshold is 
exceeded is a small quantity, we can restrict ourselves in 
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FIG. 2. Evolution of an initial density perturbation with A(z) of the form 
(12) for A0=0.3, q=0.3. 

Eqs. (9)  and ( 10) to quantities that are first order in A (z) . 
By means of the transformation of the independent vari- 
ables given by 

we can convert Eqs. (9)  and ( l o )  to the Riemann form 

dr+ 
-- -0 [A:] on the characteristics 
dT + 

dr- 1 
- [r- +r+  ] A1(z) on the characteristics 

dT 2 ( $ ) - 

To first order in A, the variable r+ is the Riemann invari- 
ant. Because of this we can solve Eqs. ( 12) exactly without 
further simplifications. 

In order to find the solution explicitly we use for the 
profile A (z) the function 

A (z) =Ao tanh (qz) . (13) 

The solution of the initial-value problem for Eqs. ( 12) with 
A (z) is given by Eq. ( 13) for arbitrary initial perturbations 
of the density no(z) and velocity vo(z) and is 

cosh(qz) 
r - ( z , ~ )  =r& [6- ( 2 , ~ )  lCOSh(q6-) exp ( Ao4r/2 

Here z and T are the coordinates of the point of observation 
in the (z,r) plane; (z,T);(, (z,r) are the points at which 
the ( * ) characteristics intersect the z axis as they pass 
through the point of observation; r t  (g) are the initial val- 
ues of rf  evaluated using Eqs. ( 11 ) with no((),uo(6) in 
place of n(z,r),v(z,r) respectively. Using the transforma- 
tion ( 1  1) with respect to these values of r* ( z , ~ )  we can 
reconstruct n (z,r) and v(z,r). 

The growth rate y of the perturbations vanishes in the 
uniform part of the tube and is a maximum at the point 
z=0, where it equals 

(We recall that the growth rate of the Pierce instability for 
a quasineutral beam in a uniform tube of length L with a 
small margin 0 < A41 above the threshold is equal to 
y,= VoA/L.) To illustrate this solution, in Fig. 2 we dis- 
play step-by-step the stages through which an initial per- 
turbation of the form no(z) =a cos(kz) ,uo(z) =O evolves in 
accordance with Eqs. ( 14). 

This mechanism for the formation of a virtual cathode 
is a special case of a universal phenomenon which takes 
place in nonuniform material flows of any sort, namely 
cumulation of perturbations at a point (on a line or sur- 
face) where the characteristic velocity with which pertur- 
bations propagate for the given medium goes through zero. 
This includes such phenomena as the formation of shock 
waves in gas flows at the sonic point, traffic jams9, etc. 
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