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We use the atomic density matrix formalism to investigate how the shape of an emission line 
is affected by the population dynamics of the radiating atomic states, and also to discuss 
the problem of lifetimes of metastable levels. The special case of a three-level system is 
investigated in detail. Our results show that spectral line shapes in a plasma cannot be 
treated properly unless we simultaneously account for changes in both the spectral function 
and the populations of the radiating atomic levels. 

1. INTRODUCTION 

The traditional theory of spectral line broadening is 
based on calculating the spectral functions for the radiating 
atomic states, while assuming that the populations of these 
states are prespecified and treating their calculation as a 
separate problem in atomic kinetics. Although calculations 
that include simultaneous variability of atomic populations 
and spectral functions have been carried out for problems 
in nonlinear spectroscopy,' these calculations only treat 
interactions with a quasimonochromatic (laser) field. The 
calculations of the broadening of atomic spectral lines due 
to collisions' in a dense plasma described in Ref. 2 simul- 
taneously included the evolution of populations and polar- 
ization within the framework of a static approximation; 
similar calculations in Ref. 3 were based on numerical 
multi-frequency simulation of the ion dynamics. In this 
paper we will calculate the influence of mixing of atomic 
states on the shape of atomic spectral lines in the approx- 
imation of binary (pairwise) collisions; this approximation 
allows us to evaluate the contribution of these effects in 
explicit analytic form, both for the static and collisional 
portions of the line shape. 

Note that the problem of mixing of atomic states is 
closely related to problems of radiation and decay during 
atomic collisions (see Refs. 4-9), and in particular to the 
problem of calculating the lifetime of metastable - 
and the generation of forbidden spectral line 
c ~ m ~ o n e n t s . " ~  

Actually, loss of metastability during a collision is a 
by-product of radiative deexcitation of the atomic systems 
in the course of a collision, i.e., it accompanies the gener- 
ation of spectral line intensities that are specifically due to 
collisions. When these intensities are integrated over the 
spectrum, they give rise to a nontrivial dependence of the 
radiative deexcitation cross section on the radiative decay 
rate r, as noted in Refs. 4, 5. In what follows, we investi- 
gate not only the integral of the line shape but also the 

the duration of the collisions is long, a characteristic of 
collisions involving long-range interactions (dipole- 
charge) in a dense 

With regard to general theoretical principles, the 
present paper is a generalization of the classic theory of 
Griem, Barange, Kolb, and 0rte19 to the case of states with 
large radiative decay constants, i.e., states that are charac- 
teristic of multiply-charged ions. It also generalizes the 
theory of generation of forbidden atomic emission line 
components in a plasma to include ionic emission  line^."^ 
In line with this formulation of the problem, we discuss the 
simplest three-level scheme for atomic states (Fig. l ) ,  in 
which level 2 decays to the lower state 1 with a rate r by 
an allowed dipole transition, whereas the decay 3- 1 is 
assumed to be dipole forbidden (levels 2 and 3 are sepa- 
rated in energy by an interval ~ 3 2 ) .  This scheme leads to 
formulations both of the problem of metastable state 
 lifetime^^'^ and that of generation of forbidden components 
of spectral linesc9 For both the allowed I, (2- 1) and 
forbidden If (3 + 1 ) transitions, the cause of radiative de- 
excitation and line broadening is pairwise collisions be- 
tween the aforementioned radiating ion (atom) and a sec- 
ond atom that causes the broadening; this atom (ion) is 
assumed to have a charge Zi, and (for simplicity) to move 
along a straight-line trajectory 3 ( t )  = p2 + (2- vt)* with 
impact parameter p and velocity v. The condition that the 
collisions be pairwise (binary) corresponds to 

where N is the ion density and peff the effective radius of 
the collisions that cause the broadening or radiative deex- 
citation. 

Thus, the density dependence of the line shape under 
discussion is trivial (proportional to N), and the primary 
problem consists of calculating its dependence on velocity 
and relaxation constant. 

2. GENERAL EQUATIONS. ADIABATIC APPROXIMATION 

spectral characteristicc associated with the possibility of The starting equations, which take into account the 
radiation during collisions. evolution of both populations and polarization, are the 

Radiative deexcitation effects can make themselves felt equations for the atomic density matrix 6 (Refs. 
during collisions under the following two conditions: when 
the value of the decay constant r is rather large, a char- d6 
acteristic, e.g., of states of multicharged and when -+Ti=  dt [b,ri,+ f +  fpl + ~ B + Q ,  
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FIG. 1 .  Diagram of the levels used in the calculation of the emission line 
shape. 

where f is the relaxation matrix, 6) $ the matrix for col- 
lisional mixing of states by electrons, Ho is the Hamiltonian 
of a free atom, Q is the collisional pumping, 

is the interaction of the atom with the field of the perturb- 
ing ion, which is characterized by the interaction constant 
a (where a=(21dz13)), 

is the interaction of an atom with a mode of the spontane- 
ous radiation field characterized by the observed frequency 
w and interaction constant G, whose square is related to 
the radiative decay rate T, see Ref. 1. 

The solution to (2.1) is constructed as usual according 
to perturbation theory in the quantity G, so that 
fi=fiO+jY, where fiO determines the evolution of the pop- 
ulations and jY (for brevity denoted simply by fi) the 
evolution of the polarization. 

In the zeroth approximation we obtain for the matrix 
p0 the equations (see Ref. 2) 

p;3= (p!2)*. 

For the polarization matrix fi we have to first order 
in G 

+ ip:2~ exp( - iwt), 

+ ip!2~ exp( - iwt) , 

where @..=mi-wj 11 (i, j=  1, 2, 3). 
The perturbation V(t) in Eqs. (2.4), (2.5) we will 

assume to be slowly varying in time (adiabatic) in the 
sense that 

Condition (2.6) is the basis for constructing an adia- 
batic theory of broadening analogous to that used in Ref. 8. 
Within the framework of this condition it is still possible to 
separate the lineshape into quasistatic (peffl Aw 1 / u s  1 ) 
and collisional (per[ Aw l / u g  1) broadening regions (in 
this notation, =a- w3], -O are offsets 
from resonance). 

Even when condition (2.6) is used, the general solu- 
tion to this system (2.4), (2.5) is still too cumbersome. 
Therefore, we consider the solution in two ranges of the 
variables. 

When m a ~ { ~ ~ , ~ ~ ~ / w ~ ~ u , r ~ ~ ~ / u } ~  1, the system may 
be considered adiabatic not only with respect to the spac- 
ing 032, but also with respect to the effective decay rate in 
the collision process, i.e., max{rv2/w:,,r}. In this ("dou- 
bly" adiabatic) case the solution to system (2.4) has the 
form 

where the evolution operator $(t,r) is 

Here we have introduced the notation 

The off-diagonal element of the density matrix p!2 is 
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In the opposite limiting case max{rpeffV2/ 
w : ~ u , ~ ? ~ , ~ / u )  (1, relaxation during the collision can be ne- 
glected, and the solution of the system (2.4) has the form 

The solution to the polarization equations (2.5) in the 
adiabatic limit (2.6) can be written in the form 

i t - t  -ill ~ T K ( T )  

where we have introduced the notation 

The spectrum of emitted power in the vicinity of the 
transition 2- 1 ( ~ 3 ~ 4 ~ )  is calculated by evaluating the 
work done by the probe field G according to the expression 
in Ref. 1: 

In what follows we will be interested in both the total 
probability of radiative deexcitation of the metastable state 
3 (integrated over w) and the frequency distribution of 
radiatively deexcited power (i.e., the shapes of the allowed 
and forbidden spectral lines). 

3. LIFETIME OF METASTABLE STATES DUE TO RADIATIVE 
DEEXCITATION DURING A COLLISION 

The problem of finding the lifetime T of metastable 
levels of atoms and ions in a plasma is a classic problem 
with applications to astrophysics and plasma 
physi~s.4,5,1G13 Here we will be interested in the lifetime 7 

arising from slow adiabatic collisions during which the 
metastable state 3 has the option of radiating (i.e., radia- 
tive deexcitation) due to its mixing with the radiating state 
2. This problem was investigated in Refs. 4, 5 within the 
framework of an amplitude approach. Here we will find 
corresponding results by using the density matrix method, 
and refine some of the results of the calculations in Ref. 4. 

Let us consider the system (2.4). It  has a steady-state 
solution in the absence of collisions, due to the pumping Q 
and relaxations r, @. Let us separate this solution from the 
general one and consider only those solutions ApO that 
arise from collisions. In light of what was said above, we 
represent the matrix in the form 

Substituting (3.1) into (2.4) we find 

As we have already noted, the general solution (3.2) is 
quite complicated. Therefore, we limit ourselves, as before, 
to calculating its solutions in two limiting cases: small and 
large effective decay constants T. In the first case we may 
neglect the decay within a collision time peff/u, and the 
corresponding results for Ap follow from solving (2.1 1 ), 
so that 

In the second case the decay during the collisions is 
significant (Tpeff/u % 1 ) and we must use the general solu- 
tion (2.8)-(2.10). However, it is important to take the 
decay into account only for distant collisions, which pos- 
sess long durations (large peff). For these the effective 
value of the perturbation V(t) is small ( Veff<~32) ,  SO that 
we may use an expansion of the evolution operator S(t , r) .  
This leads to the following result for Ap: 
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It is easy to verify using (2.12) that the integrated 
radiative probability I (with respect to w) of interest is 

where the symbol (...) denotes averaging over an ensemble 
of perturbing particles (see (2.2) ) : 

It is obvious that averaging with respect to dz=vdt elimi- 
nates the time dependence in (3.5). 

Further calculation of the quantity I requires the use of 
the limiting expressions ( 3.4), ( 3.5 ) . In this case it is con- 
venient to divide the corresponding expressions by the 
steady-state population Q3/2@, and to use Eq. (3.6) to 
introduce effective radiative deexcitation cross sections, 
which are determined by integrals over p. As a result, for 
rpeE/v= 69 1 (where peff = d z )  we obtain 

In the opposite limiting case 6) 1, using (3.4) we like- 
wise obtain 

where after carrying out the integration with respect to t 
and substituting in the explicit form of V(t) we get 

Here the symbol a, corresponds to the "Weisskopf" 
cross section determined in Refs. 4, 5. 

A detailed comparison of the results (3.7), (3.9) with 
the data of Ref. 4 shows that the Weisskopf cross section 
(3.9) coincides in accuracy with that derived in Ref. 4. At 
the same time, for the case of the adiabatic cross section 
(3.7) our numerical coefficient differs from the analogous 
coefficient in Ref. 4. Analysis shows that the difference is 
related to the approximate choice of coefficients made in 
Ref. 4 when treating the amplitude of the metastable state. 
Incidentally, the numerical difference of the two coeffi- 
cients is negligible in this limit (less than 10%). 

Thus, the method we have developed not only repro- 
duces the results of Ref. 4 obtained earlier, which are based 
on the amplitude approach, but in the general case refines 
them. Let us now turn to calculating the spectral depen- 
dences of the radiated power. 

4. CALCULATION OF THE SPECTRUM. SHAPES OF THE 
ALLOWED AND FORBIDDEN LINES 

The general expression (2.12) describes the polariza- 
tion for a radiative transition to state 1 from a system of 
two nearby mixed levels 2 and 3, described by the matrix 
pO(t).  In the present case of densities that are not too high 
(Npaff(l), the spectrum of this system consists of two 
pronounced maxima near the allowed component (with a 
frequency offset of AmZ1) and forbidden component (with 
a frequency offset of Am3,). Therefore, we will investigate 
them separately. Let us first consider the normalized line 
shape J (w)  : 

We begin the discussion by examining the shape 
J,(Aw2,) of the allowed line, which according to (2.12) 
has the following form: 

here the symbol (...) denotes averaging over the phase 
volume of all the broadening particles. In the approxima- 
tion of binary collisions, this average can be reduced in the 
standard way to an average over the phase volume of a 
single particle using the so-called collisional volume m(t) 
(see Ref. 8).  For the cases discussed below, the use of this 
averaging is not critical. Nevertheless, in the interest of 
generality we will compute it. 

In the present case of binary collisions, it is easy to 
verify that the character of the broadening is determined 
by a transition from a collisional region to a static region as 
we move away from the line center. This transition takes 
place entirely within the region of the quadratic Stark ef- 
fect ( A further transition to the region of the 
linear Stark effect ( Veff,wj2) takes place even in the static 
portion of the spectrum. 

Let us begin this discussion with the most interesting 
region (with regard to the transition from the collisional 
broadening mechanism to the static mechanism), i.e., that 
of the quadratic Stark effect V(<w32. 

In the limit rpeff/ug 1, in which the decay during a 
collision is small, using for p0 the result (2.11) when 
V(<w32 leads to 
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1 
J - R e  'IT dtl exp [ -iAm21(f-tl)- 

1 N Q3r 
+Nml(t,tl) +- 

'IT (Q2+Q3)2@ 

Xexp - i A ~ ~ ~ ( t - t ~ ) + i  I 
Here m (t,tl ) is the collisional volume: 

Equation (4.3) contains three terms. The first of these 
describes a standard binary line shape for the allowed com- 
ponent, broadened by relaxation and collisions. The second 
term describes a contribution from the forbidden compo- 
nent to the shape of the allowed component due to the 
pumping Q3. This contribution is entirely due to mixing of 
forbidden and allowed states in the course of the broaden- 
ing collision. 

From (4.3) it is easy to obtain an expression for the 
line shape both in the collisional region ( p w )  Am2, 1 / u <  1) 
and in the static region ( p  1 AmZ1 I /US 1 ) (where pw is 
the Weisskopf radius, which determines the cross section 
of the broadening collision for the case of the quadratic 
Stark effect). Thus, in the collisional regime 
( I Am,, I (R ,= u/pw) we obtain 

Q3r 'IT a2 - Prnax 
N--In - 

( Q2 + Q3 ) 2B ~ ~ 3 2  ( h i n )  ' 
(4.5) 

where A,y are the collisional adiabatic shift and broaden- 
ing of the allowed line. 

In the static region (Am2,>flw) we have 

From (4.5), (4.6) it is clear that the standard profile 
of the allowed line is changed in both the collisional and 
static regions, due to contributions caused by the pumping 
Q, at the forbidden transition and by state 3 "mixing into" 
the allowed state 2 because of this pumping. In this case 
even the spectral dependence of the wings of the static 
contour are changed, as is clear from (4.6) [ (AW,~)-~/*  

instead of (Am,,) -'/*I. However, this change is character- 
istic only of the spectral offsets Am21(m32 that correspond 
to the region of the quadratic Stark effect. Nevertheless, 
according to (4.5), (4.6) the contour of the allowed line 
Ja(Amzl) undergoes a considerable change: the intensity in 
the collisional region decreases, and there is an increase in 
the static wing of the line. 

In the limit Tpeff/uS 1, which corresponds to a large 
decay constant r ,  it is necessary to include in the matrix 
the possibility of decay during the collision; see (3.4). 
Then from (4.2) we obtain 

1 
J a = - R e J f m  'IT dtlexp [ -iAmzl(t-tl)- 

where we have introduced the collisional volume mr ( t, t1 ) 
related to the decay (compare with Ref. 4):  

Estimating the integrals in (4.7) for large r, we find 

i.e., for large r the line shape consists of a Lorentz contour 
for spontaneous emission and the usual static contour 
(proportional to for large Ao.  

Let us now calculate the line shape in the region of the 
linear Stark effect, which corresponds to the distant wings 
( A W , ~ ) ~ ~ ~ ) .  In this case we separate the Lorentz contour 
for spontaneous broadening caused by the decay rate l- 
from the contour caused by collisions. Let us write P:2(t) 
in the form 

By integrating the term in (4.2) with (p022(t)) by parts and 
retaining only terms proportional to the density N, we find 
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The integrals in (4.9) in the region under discussion, 
i.e., static broadening, are calculated by the method of sta- 
tionary phase. When r ' ( ~ ' / ~  3/2/v~:2 > 1 we obtain 

For ~ a ' / ~ ( A w , ,  ) 3'2/vo:2 g 1 we have 

This latter result reproduces Eq. (4.6) for A w ~ ~ < w ~ ~ .  
However, in the region Ao2,)03,, the falloff of the static 
line shape has its standard form, i.e., J, cc -5/2. In 
this case, the role of mixing effects reduces to a simple 
redistribution of the populations caused by pumping at 
levels Q2 and Q3. 

Let us now calculate the line shape Jf near the 
forbidden line 3 + 1. From the general expression (2.12 ) , 
after dividing by the normalization we obtain 

In the calculations that follow, we will omit the colli- 
sion volumes, which are unimportant in the binary- 
collision regime under discussion here. 

In the region where the quadratic Stark effect is im- 
portant ( A w ~ ~ < w ~ ~ ) ,  by proceeding in the same way as we 
did for the allowed component, we obtain for large and 
small values of r 

In the collisional broadening region I Am3' 1 <fl w ,  we 
obtain from (4.13), (4.14) 

Comparing (4.15) with (4.5), we verify that the falloff 
in intensity of the allowed component is precisely compen- 
sated by the increase in intensity of the forbidden compo- 
nent. 

In the static region Ao31)fl w, Eq. (4.13) contains 
both limiting cases (4.13) and (4.14). Using it in this limit 
to perform the necessary integrations by the saddle-point 
method, we likewise obtain 

2 
nP" Iopm pdp 1 Jf (Au31) E N  
( ~ 2 2 )  

where p , = a ' / 2 / ( ~ 3 2 ~ 0 3 1 )  
In the limit r ' a 1 / 2 ( ~ ~ 3 1 ) 3 / 4 / v ~ : ~ 4 4  1, we find from 

(4.16) that 

69 JETP 79 (I), July 1994 I. N. Kosarev and V. S. Lisitsa 69 



while in the limit I'a1l2 (A@,,) 3/4/vo:g4$ 1, 

In the present case of A w ~ ~ ~ w ~ ~ ,  this latter limit can be 
realized only when the inequality ( = r &/u ,/a 
holds. 

Thus, the characteristic falloff in the spectral depen- 
dence of the forbidden component in the region of the 
quadratic Stark effect is determined by the factor 
( A w ~ ~ ) - ~ / ~ .  The expressions in front of this factor depend 
on the ratio between the pumps Q2 and Q3, and on the 
possibility that their populations could decay in the course 
of a broadening collision. 

In the region of transition to the linear Stark effect 
(Am3, the effective impact parameter responsible for 
the broadening is peff=p,. Accordingly, the results for 
small and large values of the parameter r have the form 

Comparing these expressions with (4.9), (4.10), we 
verify that they coincide precisely in structure with the 
factors that determine mixing for the allowed component. 

The limiting cases we have discussed above exhaust the 
possible regions of spectral functions for the allowed and 
forbidden components. 

5. CONCLUSION 

The basic conclusions of the investigation we have car- 
ried out can be summarized as follows: 

1. The shape of a line depends not only on the spectral 
function but also on the relation between the pump and 
relaxation parameters of the radiating levels. This re- 
veals new possibilities for diagnostics of the popula- 
tions of excited atomic states in a plasma based on 
studying the line shapes. 
2. One of the most striking effects of the mixing of 
states is the possibility of abruptly increasing the in- 
tensity in the wings of the allowed and forbidden lines 
[see (4.6), (4.1 I ) ,  (4.17), (4.19)]. 
3. The mixing of states during a broadening collision 
leads to a redistribution of intensity among the various 

components of the spectral line, in particular, among 
the allowed and forbidden components in the colli- 
sional region, which corresponds to maximum inten- 
sity [see (4.5), (4.15)]. 

Let us assess the possibility of observing the effects we 
have computed here. According to our discussion in this 
paper, this possibility is contingent on the magnitudes of 
two basic parameters: the ratio of the radiative and colli- 
sional line widths r/2Q, and the probability of decay dur- 
ing the collision process r2a/wv2. We should expect a de- 
viation from the results of the standard theory of 
broadening at large values of the first parameter (where 
radiative decays predominate) and small values of the sec- 
ond parameter (steady-state populations cannot be set up 
during a collision). Furthermore, the conditions for pair- 
wise collisions and adiabaticity should be satisfied. 

For hydrogenic ions, all of the conditions listed above 
are satisfied with regard to order of magnitude under the 
conditions of the experiments5; however, the correspond- 
ing threshold values are found to be at the edge of appli- 
cability of these conditions. For the conditions discussed in 
Ref. 3, the conditions for applicability of our approxima- 
tions are satisfied for the broadening of A~-H+ pairs at 
densities N,< ~ m - ~ ,  which exhibits a sudden growth 
in intensity of the wings of the line as is qualitatively pre- 
dicted by our calculations. The largest effects should be 
expected when we go to heavier elements. 

For forbidden transitions in helium-like ions, the situ- 
ation as a whole is analogous. The most radical changes in 
the spectrum should be expected when heavy ions are 
broadened by light ones; for ionic charges greater than 25, 
and for comparatively small electron densities ~ ~ ~ 1 0 ~ ~  
~ m - ~ ,  we should expect changes in the intensity of several 
orders of magnitude. 

Evidence for these effects can be found not only in the 
spectra of multiply-charged ions, but also in the spectra of 
neutral hydrogen under astrophysical conditions corre- 
sponding to the plasma parameters investigated in Ref. 14. 
Here, despite the smallness of the fine-structure intervals 
that separate the individual sublevels of the hydrogen 
atom, the temperature of the broadening ions is on the one 
hand low enough that a portion of the broadening colli- 
sions will be adiabatic, and on the other hand high enough 
that steady-state populations cannot be established in the 
levels. 

The authors are grateful to A. V. Demura, N. 
Feautrier, A. N. Starostin, and C. Stehle for discussing the 
results of this work. 

This work was carried out with the support of the 
George Soros Fund for Fundamental Research. 

' S. G. Rautian, G. I. Smirnov, and A. I. Shalagin, Nonlinear Resonances 
in Atomic and Molecular Spectra (in Russian), Nauka, Novosibirsk 
(1979). 

'A. V. Anufrienko, A. L. Godunov, A. V. Demura et al., Zh. Eksp. 
Teor. Fiz. 98, 1304 (1990) [Sov. Phys. JETP 71, 728 (1990)l. 

'A. V. Anufrienko, A. E. Bulyshev, and A. L. Godunov, Zh. Eksp. Teor. 
Fiz. 103, 417 (1993) [Sov. Phys. JETP 76, 219 (1993)l. 

4 ~ .  I. Kogan, V. S. Lisitsa, and A. D. Selidovkin, Zh. Eksp. Teor. Fiz. 
65, 152 (1973) [Sov. Phys. JETP 38, 75 (1973)l. 

70  JETP 79 (I), July 1994 I. N. Kosarev and V. S. Lisitsa 70 



'1. L. Beigman, V. A. Boiko, S. A. Pikuz, and A. Ya. Faenov, Zh. Eksp. 
Teor. Fiz. 71, 975 (1976) [Sov. Phys. JETP 44, 51 1 (1976)l. 

6 ~ .  Talin, R. Stamm, V. P. Kaftanajian, and L. Klein, Astrophys. J. 322, 
804 (1987). 

'I. M. Gaisinskii and E. A. Oks, Fiz. Plazmy 12, 14 (1986) [Sov. J. 
Plasma Phys. 12, 7 (1986)l. 

'A. J. Barnard, J. Cooper, and E. W. Smith, JQRST 14, 1025 (1974). 
9G. Griem, Spectral Line Broadening by Plasmas, Academic Press, New 
York ( 1976). 

JETP 79 (I), July 1994 

'OE. M. Purcell, Astrophys. J. 116, 457 (1952). 
I'M. J. Seaton, Proc. Phys. Soc. London A 68, 457 (1955). 
1 2 ~ .  I. Chibisov, Opt. Spektrosk. 27, 9 (1969). 
"A. I. Gurevich, V. M. Dubovnik, and V. M. Satarov, in Problems in the 

Theory of Atomic Collisions (in Russian), Atomizdat, Moscow ( 1970). 
I4c. Stehle and N. Feautrier, J. Phys. B: At. Mol. Phys. 186, 1297 

(1985). 

Translated by Frank J. Crowne 

I. N. Kosarev and V. S. Lisitsa 7 1 


