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This paper presents a theoretical study of stimulated bremsstrahlung and absorption by an 
electron scattered by a nucleus in the field of two plane waves of arbitrary intensities 
and frequencies under conditions such that the Bunkin-Fedorov quantum parameters of 
multiphoton are small and multiphoton processes are determined by the quantum 
parameter and the quantum interference parameter a,. This occurs when the electron is 
scattered in the plane perpendicular to the wave polarization vector (for the case of 
equal linear polarizations of the two waves) and in the plane of the initial electron momentum 
and the wave vector (for the case of elliptical polarizations of the two waves). The effect 
of wave interference is found to be great, which leads to correlated emission and absorption by 
the electron of equal numbers of photons of the two waves. When there is no 
interference (a ,  4 I ) ,  the electron independently emits and absorbs an even number of 
photons of the first and second waves in the process of being scattered by the nucleus. This 
paper obtains the cross sections for these processes and shows that these may 
considerably exceed the scattering cross section in any other geometry. 

1. INTRODUCTION 2. PROBABILITY OF STIMULATED BREMSSTRAHLUNG 
AND ABSORPTION BY AN ELECTRON SCATTERED BY A 

Stimulated bremsstrahlung and absorption are well- NUCLEUS 

known phenomena that manifest themselves in the scatter- We select the 4-vector potential of the external field in 
ing of an electron by a nucleus in the of a single plane the form of the sum of two plane electromagnetic waves 
electromagnetic wave. The groundwork was laid by propagating to the axis: 
Bunkin and ~edorov'  and by Denisov and ~ e d o r o v ~  (see 
also Refs. 3 and 4 and Fedorov's monograph5). Kara- A=Al(ql) +A2(~)2), ( 1  
petyan and ~ e d o r o v ~  studied stimulated bremsstrahlung 
gnd absorption by electrons in the process of electron scat- where 

tering by a potential in the presence of two plane electro- 
magnetic waves in the nonrelativistic limit. Their analysis Fi 

Aj(qj) =- (ejx cos qj+Sjejy sin q j ) .  (2) 
was done in the dipole approximation in the interaction of @i 

electrons with the electric fields of both waves. More re- H~~~ S~ is the ellipticity parameter, e .  = ( o , ~ ~ , )  and 
J". cently stimulated bremsstrahlung and absorption was stud- ejY= (0,ejy) are the 4-vectors of wave polarization, F, and 

ied in the general relativistic case for an electron scattered m j  are the field strength and frequency of the first ( j  = 1 ) 
by a nucleus in the field of two plane waves propagating in and second ( j  = 2) waves, and the argument qj has the 
the same direction.' However, the study was restricted to form 
the kinematic region where the main multiphoton param- 
eter is the Bunkin-Fedorov quantum parameter yla2 [see qj=oj( t-z) ,  j=1,2. (3) 
Eq. (17)l. An expression for the probability of stimulated brems- 

This paper treats the given problem a kinematic region 
strahlung and absorption by an electron scattered by a 

where the Bunkin-Fedorov quantum parameter is nucleus Ze in the field of two plane electromagnetic waves 
and processes related to wave interference have a signifi- propagating in the same direction iEqs. and ( 2 ) ~  for 
cant effect on the scattering process- As will shortly be arbitrary intensities and frecluencies was derived in Ref. 7. 
seen, the main multi~hoton parameters are the quantum Here we write this expression in a form more convenient 
parameters and a, [see Eqs. ( 19) and (2011, and the for analysis: 
probability of such a process can be considerably higher 

m than that of the previous process. Below we use the rela- 
tivistic system of units, fi=c= 1. 

d W,= d wA"', 
Ls= - m 
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where the partial probability of emission (1,s > 0) or ab- 
sorption (1,s < 0) of I I I photons of the first wave and 1s 1 
photons of the second is specified as 

Here 

The scalar functions f and f2 ,  the vector functions f3 and 
f4, the 4-vector Dl,= (O,DIs) defined in terms of the 
4-vectors of polarization of both waves, and the complex- 
valued functions BlS have the following form: 

Here A is the angle between the polarization vectors el, 
and e2, of the two waves, n= (1,n) (n is the unit vector 
specifying the direction of propagation of the waves), 
K,=E,-np,, q l  and 772 are the classical relativistic- 
invariant parameters of the first and second waves, 

and the functions I/, depending on eight parameters (ac- 
tually on ten, but two parameters, r,, which affect only the 
phase factors in the argument, are not included) and ex- 
panded in a series of Bessel functions Jr of integral order 
have the form 

with the functions LlPrt-, and L,+ ,  _, determined by the 
parameters of the first and second waves, respectively, and 
describing multiphoton processes in the field of one wave: 

The parameters that determine the functions I/, are 

Imd,  S1+S2 
- tanr, =--- tan A. 

Red, l&S1S2 

Note that y1,2 specified by Eq. (17) represents the well- 
known Bunkin-Fedorov quantum parameter of multipho- 
ton. In_Eq. (5 )  the 4-vector q= (qo,q) and the 4-momenta - pi = (E j  ,&) before ( j  = i )  and after ( j  = f)  scattering are 
given by the following formulas: 

The expressions (4)-(5) for the probability are valid for 
arbitrary values of intensities and frequencies of both 
waves and for electron velocities viSf&Z/137. It can easily 
be demonstrated that if one wave is switched off (say, 
F2 =O), Eqs. (4)-(6) determine the probability of an elec- 
tron being scattered by a nucleus in the field of one wave,2 
and if both waves are switched off (Fl=F2=O),  they 
transform into the ordinary Mott probability of an electron 
being scattered by a nucleu~. '~  

Note that if the waves have equal frequencies 
(o1  = a 2 )  and the same polarizations (S1 =S2), Eqs. (4) 
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and (5 )  must transform into the expressions for the prob- 
abilities of an electron being scattered by a nucleus in the 
field of one wave whose field strength F and polarization 
vectors ex and e, are linked to the initial parameters of the 
waves through the following relations: 

F= , / F ~ + F ~ + ~ F ~ F ~  cos A, (24) 

Hence we assume that the frequencies of the waves differ 
by Aw = wz - w2. Then the energy conservation law [the 
argument of the delta function in Eq. (5)] assumes the 
form 

This shows that if 

given values of I and s) there are virtual processes with 
correlated absorption and emission of an equal number of 
photons of both waves, (wl +w2)r and ( a 1  -w2)r1, with 
the intensity of the virtual processes determined by the 
quantum interference parameters a, [Eq. (20)l. If 
a, 2 1 holds, the processes with correlated emission and 
absorption of one or several photons of both waves provide 
the same contribution (in order of magnitude) to the sum 
in Eq. ( 15). At the same time, when the interference pa- 
rameters are small (a ,  4 l ), such processes can be ignored 
(r=rl=O) and the functions IIs [Eq. (15)] separate into 
products of functions determining the independent emis- 
sion and absorption of photons of the first and second 
waves: 

this term in (26) can be ignored. Then we can introduce a 
new photon number I1=I+s and sum the probability spec- 
ified by Eqs. (4) and (5) over all the values of s. In doing 
this we use the easily verifiable relations 

Here we have introduced the notation 

The form of the functions IIs strongly depends on the po- 
larization of the waves. These functions are written below 
explicitly for circular and linear polarizations. When both 
waves are circularly polarized, Sf = 6: = 1. In view of this 
we have P1=P2=0 [see Eq. (19)l. If we combine this re- 
sult with ( 16), the functions IIs of Eq. ( 15) assume the 
following form: 

Here we have introduced the notation 

tan X= 
Ylsinxl+ Yzsinxz 

(30) m2 
Y lCOsXl+ YzCOSX2 ' a+=R1?72- (t-:), 

W1f 0 2  

y=  , / d + d + 2 ~ 1 ~ 2  cos(x,-x2), 8 = ~ 1 + ~ 2 .  (31) 

Allowing for all this, we can easily find that 

where 

Thus, in accordance with condition (27) we have the well- 
studied process of the scattering of an electron by a nucleus 
in the field of a plane wave.' Hence in what follows we 
assume that the frequencies of the waves are not close, that 
is, we assume the condition opposite to (27): 

In Eqs. (36)-(38), gfill is the component of gfi (Eq. ( 18) ) 
parallel to the polarization plane of the waves; the lower 
sign in the formulas corresponds to the case where electric 
field vectors rotate in the same direction (counterclock- 
wise, S1 =S2 = 1 ), and the upper sign to the case where they 
rotate in opposite directions (S1 = 1 and S2= - 1 ). Equa- 
tions (36)-(38) show that for a given number of emitted 
(absorbed) photons of both waves (for definite values of 1 
and s)  there are virtual processes with correlated absorp- 
tion and emission of an equal number of photons of both 
waves, ( a 1  +w2)r or ( a 1  - w2)r. For a, 4 1 we arrive at 
(35), that is, 

In Eqs. (4)-(6) the IIs are functions determining the mul- When both waves are linearly polarized, S1 =S2=0. Hence 
tiphoton processes. Here, as Eq. (15) shows, for a given X1,2=T, =0 and d, =cosA [see Eqs. ( 13), (17), and 
number of absorbed and emitted photons of the waves (for (20)]. If we allow for ( 16), Eq. (14) assumes the form 
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Here the Jr(  y,P) are generalized Bessel functions, studied 
in detail by ~e iss :"  

Note that the parameters a, specified by Eq. (44) strongly 
depend on the angle A. In a narrow cone near A = ~ / 2 ,  the 
interference parameters satisfy the condition a, 4 1, and 
for arbitrary wave intensities we can ignore virtual pro- 
cesses with correlated emission and absorption of an equal 
number of photons of both waves. Then the IIs [Eq. (15)] 
assume the form (35), that is, 

Note also that the functions I/ ,  assume the form (45) for 
arbitrary angles A in the case of low intensities, when 
a, 4 1. 

It would also be interesting to establish the regions in 
which the Bunkin-Fedorov quantum parameters are small 
and the quantum parameters (for elliptically polarized 
waves, excluding circularly polarized) and the quantum 
interference parameters a, (for circularly polarized 
waves) serve as the multiphoton parameters. Clearly, such 
a situation occurs for the general case where both waves 
are elliptically polarized when as a result of scattering of 
the electron the vector g [Eq. (18)] is directed along the 
wave vector, that is, when 

Obviously, this is true only if the electron is scattered in the 
plane formed by the initial electron momentum and the 
wave vector. Note also that condition (46) is met only 
when both waves are linearly polarized and A=O in the 
scattering of electrons in the plane perpendicular to the 
polarization vector of the waves. In view of (46), 
x1=x2=y1=y2=0 [see Eqs. (17) and (18)]. By allowing 
for L,(O,O,P) = J,, (fl)~5,,~,,, the functions IIs [Eq. ( 15)] can 
be reduced to the following form: 

Here Y = I- r1 - r, p =s+ r' - r, and S, ,  is the Kronecker 
symbol. The formula simplifies considerably when both 
fields are circularly polarized: 

Here the lower and upper signs correspond to the same 
(S1 =82= 1 ) or different circular polarizations of the waves 
(6, = -S2 = 1 ) and, in accordance with this, to correlated 
emission (absorption) of an equal number of photons of 
both waves: ( a l  - 02)I  and ( a l  +u2)I, respectively. Equa- 
tions (47) and (48) show that the Bunkin-Fedorov quan- 
tum parameters y1,2 do not affect the scattering of electrons 
at all in the region specified by (46). Multiphoton stimu- 
lated bremsstrahlung and absorption by an electron scat- 
tered by a nucleus are determined in this case by the quan- 
tum parameters or the interference parameters a, 
with correlated absorption and emission of an equal num- 
ber of photons of both waves. 

In what follows we assume that the wave frequencies 
obey the conditions wl > o2 and 

In view of what has been said, it is natural to isolate two 
kinematic regions of electron scattering: one where condi- 
tion (46) is not met in scattering and which we call the 
Bunkin-Fedorov region, and the other where this condi- 
tion is met. Clearly, in the Bunkin-Fedorov region the 
angle q, between the scattering plane and the polarization 
vector (when both waves are linearly polarized and A=0) 
is not close to ~ / 2  and the angle $ between vector g (Eq. 
( 18) ) and the direction of propagation of both waves (for 
elliptically polarized waves) is not small: 

(here ui =pi/Ei). In the region where condition (46) is met 
we have the opposite inequalities: 

Note that the expressions on the right-hand sides of (50) 
and (51) are small, since in the opposite case the Bunkin- 
Fedorov parameters are small. In the region (50) the 
Bunkin-Fedorov quantum parameters ylP2 are the main 
multiphoton parameters. Stimulated bremsstrahlung and 
absorption by an electron scattered by a nucleus in this 
region are studied in detail in Ref. 7. Here we consider 
stimulated bremsstrahlung and absorption by an electron 
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scattered by a nucleus in the region where conditions (5 1 ) 
hold, with the quantum parameters and a ,  being the 
multiphoton parameters. 

In the scattering region (50) the relation between the 
Bunkin-Fedorov quantum parameters and a ,  can be 
written as follows: 

where 6 is a parameter (see Sec. 3).  This shows that for 
nonrelativistic and relativistic electron energies (when 
7 1 , ~ <  1) and for ultrarelativistic electron energies [when 
61,24 1; see Eq. (55)] we have 

Now we can easily show (see Ref. 12) that 

Comparison of the probabilities of multiphoton stimulated 
bremsstrahlung and absorption in the electron-scattering 
regions (50) and (5 1 ) suggests that their ratio is equal, in 
order of magnitude, to the ratio of functions in (54) and, 
hence when conditions (53) are met, the probability of 
multiphoton stimulated bremsstrahlung and absorption by 
an electron scattered by a nucleus is much higher for scat- 
tering in region (51) than in the Bunkin-Fedorov region 
(50). 

3. ELECTRON SCATTERING IN THE PLANE 
PERPENDICULAR TO THE POLARIZATION VECTOR 

Let us assume that both waves are linearly polarized, 
with el,=e2,=e,, and that the electron is scattered by the 
nucleus in the plane perpendicular to the polarization vec- 
tor (the first condition in (51) is met). Here the main 
processes are emission and absorption of ( I  5 P1 )-photons 

of the first wave and (ssp2)-photons of the second (the 
interference parameters a ,  determine the virtual processes 
of correlated emission and absorption of an equal number 
of photons of both waves). Hence the fraction of the en- 
ergy that the electron emits or absorbs from the first and 
second waves, respectively, is, in order of magnitude, 

I 11 wl/Ei 5 el and 1s 1 02/Ei 5 c2 (in the nonrelativistic 
limit, Ill wl/mv' 5 el and Is1 w2/mu; 6 f2) ,  where 

Here 61,2 and are the classical parameters determining 
the integral characteristics of the process in the kinematic 
regions (50) and (5 1 ), respectively .7-9 When conditions 

(5 1 ) hold, the expression for H,(") of (6)  in probability 
(5)  simplifies considerably and assumes the following 
form: 

Here the arguments and a ,  of the functions BIs and 
Jls are given by Eqs. (43) and (44) and the functions 
assume the form 

Conditions (55) clearly show that in the general relativis- 
tic case for 1, and also nonrelativistic electrons with 

2 1, conditions (53) are met, that is, the probability of 
an electron being scattered by a nucleus in the plane per- 
pendicular to the polarization vector of the wave is consid- 
erably higher than the probability of scattering in the 
Bunkin-Fedorov region. We therefore study these cases in 
greater detail. 

Suppose that the external fields are moderately strong: 
< 1. Then the product of the intensities of the waves as 

a function of the electron energy satisfies the following 
conditions: 

In view of these conditions, we can ignore the photon en- 
ergy in comparison to the electron energy: I ll/wl/Ei< 1 
and 1s 1 /02/Ei < 1. Then E,fzpi , f ,  and the law of energy 
conservation assumes the form Ef=Ei.  After integrating 
with respect to the energy of the final electrons and divid- 
ing by the flux of the initial electrons, the partial cross 
section of stimulated bremsstrahlung and absorption as- 
sumes the following form: 

We see that the partial cross section can be written as the 
product of the Mott cross section by the probability of 
emission and absorption of photons of both waves. As 
noted earlier, in conditions (59) the cross section (60) 
considerably exceeds the cross section in the Bunkin- 
Fedorov region.' It must be emphasized that this result is 
also true for an electron scattered by a nucleus in the re- 
gion (5 1 ) in the field of a single wave ( F ,  =O) .  Indeed, in 
this case Eq. (60) yields 

(61) 
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and for pl 2 1 the cross section (61) is much larger than 
the cross section in the Bunkin-Fedorov region.12 Note 
that the scattering of an electron by a nucleus in the kine- 
matic region (5 1 ) was not examined in Ref. 2. From (61 ) 
we see that in the case of only one wave the quantum 
parameter pl determines the emission and absorption of an 
even number of photons of the wave (the emission and 
absorption of an odd number of photons are suppressed). 
But if there are two waves, because of virtual interference 
processes of correlated absorption of an equal number of 
photons of both waves, the cross sections of emission (ab- 
sorption) of an even and odd number of photons of the first 
and second waves are of the same order of magnitude ( I  
and s in (60) can be either even or odd). Note also that the 
conditions (59) imposed on the field intensities are less 
stringent than similar conditions in the Bunkin-Fedorov 
region (see conditions (42) in Ref. 7).  The partial cross 
section (60) can be summed over all possible processes of 
absorption and emission of photons of both waves. As a 
result all essentially quantum contributions originating in 
the quantum parameters and a, cancel out and the 
cross section of the process is determined by the Mott cross 
section: 

Now let us examine the case of relativistic electron 
energies in the range of strong fields, where gly2 2 1. Then 
the wave intensities satisfy the following condition: 

Here we also assume that 

Conditions (63) and (64) imply that the velocities with 
which an electron oscillates in the field of the two waves 
are large compared to the velocity of translation motion 
(771,2$ vi). The law of energy conservation in this case as- 
sumes the form 

where 

The final electron velocity can be found from Eq. (65): 

where 

From (67) and (68) it follows that uf-vi. With conditions 
(63) and (64) met, the partial probability integrated with 
respect to the final electron energy can easily be obtained 
from (5):  

where 

and re is the classical electron radius. In Eqs. (69)-(71) 
uf=vi, and in the case of two values of the final electron 
velocity the partial probability is the sum of two expres- 
sions of the form (69): one with vf=v+, the other with 
uf=v-  [see Eq. (67)l. Equations (70) and (71) show that 
in the intensity range specified by condition (63) we have 
a, - P ~ , ~ -  m v ~ / 0 ~ , ~ $ 1 .  In view of this, the given intensity 
range is characterized primarily by multiphoton processes 
with absorption and emission of ( 111 -&)-photons of the 
first wave and ( 1s 1 -P2)-photons of the second. Although 
the given partial probabilities are low, they are consider- 
ably higher than the respective probabilities when electrons 
scatter in the Bunkin-Fedorov region.' 

4. ELECTRON SCATTERING IN THE PLANE FORMED BY 
THE INITIAL ELECTRON MOMENTUM AND THE 
WAVE VECTOR 

Let us examine the scattering of an electron by a nu- 
cleus in the field of two waves when the second condition 
in (51) is met. In such a case the 4-vector g of Eq. ( 18) 
satisfies the following equalities: 

Equations (18) and (72) immediately imply that scatter- 
ing takes place in the plane formed by the initial electron 
momentum and the wave vector, with the azimuthal angles 
of the electron in the initial and final states being equal 
(q i=qf) ,  and the polar angles and the energies are linked 
by the following relations: 

Taking this into account, we can write an expression for 
vector g (Eq. ( 18) ) that satisfies conditions (5  1 ): 

Note that in what follows we exclude the polar angles 
6i,f=0,.rr from our consideration (i.e., the cases of forward 
and backward scattering are not examined). From (74) it 
follows that the polar angles 6i,f and the scattering angle 6 
are linked by the following relations (see also Fig. 1): 
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FIG. 1 .  The geometry of an electron scattered by a nucleus in the plane 
formed by the initial electron momentum and the wave vector. 

Relations between the final electron energy and mo- 
mentum and an expression for K~ can easily be obtained 
from (75): 

If we allow for (76), the law of energy conservation (the 
argument of the delta function in (5) ) simplifies consider- 
ably and assumes the form of a quadratic equation, rather 
than an equation of the fourth degree, in the final electron 
energy: 

Here we have used the notation 

Equations (76) and (77) make it possible to determine the 
energy and the scattering angle of the final electron. Note 
that at vizvf=: 1 Eq. (73) breaks down. Hence, in what 
follows we consider relativistic and nonrelativistic energies 
of an electron in fields whose intensities obey the inequality 

and conditions (53) are met, i.e., the probability of an 
electron being scattered in the plane formed by the initial 
electron momentum and the wave vector is much higher 
than that in any other geometry. Note also that when both 
waves are circularly polarized, the classical interference 
parameter 

is similar to f for the case of elliptically polarized fields 
(excluding circular polarization; see Eq. (55) ) . 

FIG. 2. The dependence of ai defined in (73) on the polar angle ai of the 
initial electron momentum at different electron energies: Ei=0.85 MeV 
(curve I ) ,  Ei=0.59 MeV (curve 2 ) ,  and E , ~ 2 . 5 5  keV (curve 3 ) .  Points 
A and B on curve 2 correspond to equal values of ai at ai=18" and 
6, = 130". 

We begin with relativistic electron energies, Eip-rn. 
Then, with condition (80) met, the law of energy conser- 
vation (77) implies EfzEi. In view of this, from (73) we 
can derive the following expression for the electron scat- 
tering angle: 

( cosai - h )  /sinai, 6, < ~ / 2 ,  
tan -= 

( I ~ 0 . ~ 6 ~  1 + ui) /sinai, 6, > ~ / 2 .  
(82) 

We see that for 6 ,<7~/2  conditions (73) are met only if 
c0s6~<4(the case of c0s6~=v, corresponds to forward 
scattering). The reason can easily be understood if we ex- 
amine the variable a, defined in (73) as a function of the 
polar angle of the initial electron (Fig. 2). The ai vs 6, 
curve exhibits a peak at cos6=vi. In the nonrelativistic 
limit of electron velocities the peak is symmetric with re- 
spect to polar-angle axis (ai=:?r/2). But as the energy in- 
creases, the peak shifts toward the region of small angles, 
and in the ultrarelativistic case merges with the vertical 
axis ( a i zO) .  Hence, excluding the ultrarelativistic case, 
we can always identify a range of angles 6, in the first and 
second quadrants for which ai has the same value at two 
distinct values of the polar angle. Since the left- and right- 
hand sides of (73) have the same structure in the given 
case, the a, vs 6; curve makes it possible to determine the 
outgoing electron angle af knowing the electron angle of 
incidence 6,. In Fig. 2 the intersections of the horizontal 
dotted line with curve 2 mark the points where a, has the 
same value (points A and B). Hence, if an electron with an 
energy Ei =0.59 MeV and an angle of incidence 6" 1 8", 
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its outgoing angle is 1300, and vice versa, i.e., for 
afBz 1300 we get a:=: 18" (the latter is true only if point B 
lies in the range where ai>?r/2). This result, obviously, 
also follows from (82). 

If we allow for (go), the scattering cross section for 
relativistic electrons integrated over the final electron en- 
ergies assumes the form 

Here and a, are defined in Eqs. (19) and (20) at 
Ef=Ei for the scattering angle specified by Eqs. (82) and 
(75). The above expression holds true when both waves 
are elliptically polarized. It must be emphasized that owing 
to virtual interference processes characterized by the pa- 
rameters a, there is emission and absorption of both an 
even and an odd number of photons of the first and second 
waves. Note that when both waves are linearly polarized, 
when the angle A between their polarization vectors is 
close to ~ / 2 ,  i.e., 

the interference parameters a, are much smaller than 
unity, and from (83) it follows that in the process of scat- 
tering the electron independently absorbs and emits an 
even number of photons of the first and second waves 
(emission and absorption of an odd number of photons of 
both waves is suppressed, as in the case of only one wave): 

When both waves are circularly polarized (61 = 1 and 
S2= F 1 ), Eqs. (83) and (48) yield the partial cross sec- 
tion for scattering of an electron by a nucleus with corre- 
lated emission and absorption of an equal number of pho- 
tons of the first and second waves (here the processes with 
emission and absorption of unequal numbers of photons of 
the first and second waves are suppressed): 

do'" 
-- do, 
d f l  -J;(a,) -. d f l  

This shows that when both waves are circularly polarized 
and the electron is scattered in the plane formed by the 
initial electron momentum and the wave vector and the 
scattering angles are defined in (82), wave interference 
manifests itself and the quantum interference parameter 
a, serves as the multiphoton parameter. 

It must be emphasized that in view of conditions (53) 
the cross sections specified by Eqs. (83), (85), and (86) 
are considerably greater than the respective electron scat- 
tering cross sections in the Bunkin-Fedorov region.' Note 
also that this remains true for the scattering of an electron 
by a nucleus in the field of only one wave (F2=O), with the 
exception of the case of a circularly polarized wave, for 
which, as Eq. (86) with a , = O  implies, the process is 
accompanied by neither emission nor absorption of pho- 
tons and the scattering cross section coincides with the 

Mott cross section. The cross sections specified by Eqs. 
(83), (85), and (86) can be summed over all processes of 
emission and absorption of photons of both waves, all the 
essentially quantum contributions that originate in the 
quantum parameters and a, cancel out, and the scat- 
tering cross section is determined by the Mott cross sec- 
tion. 

Now we consider the range of nonrelativistic electron 
energies, ui,& 1, assuming that condition (80) is met. After 
simple transformations the law of energy conservation 
(77) takes the form 

Combining this with (73), we find that the outgoing polar 
angle of the final electron obeys the following relation: 

where 

Equation (88) shows that generally the scattering angle 
depends on the number of absorbed and emitted photons of 
the waves, with a possible restriction on the values of the 
initial electron polar angle (if prs < 1 ) : 

Since for the case when both waves are elliptically polar- 
ized (excluding circular polarization) the quantum param- 
eters serve as the multiphoton parameters, while for 
circularly polarized waves the quantum interference pa- 
rameters a, serve as such parameters, in what follows we 
distinguish between these two cases. Clearly, for fairly 
strong fields with 11:,,) ui (for elliptically polarized waves) 
or v lq2$-4  (for circularly polarized waves) the second 
term on the right-hand side of (89) may be large, i.e., there 
are chiefly multiphoton processes of absorption of photons 
of both waves. As a result the final electron velocity can be 
considerably higher than the initial electron velocity, 
uf)vi, i.e., we find that pis) 1 and, in view of Eq. (88), 
af =: 0 (forward and backward electron scattering). Hence, 
we restrict the intensities of the waves as follows: 

rli,2 5 4 for elliptically polarized waves, 

q1v2 5 ui for circularly polarized waves. (91) 

With such restrictions the scattering cross section for non- 
relativistic electrons scattered in the plane formed by the 
initial electron momentum and the wave vector, with the 
outgoing angle af satisfying Eq. (88), can easily be ob- 
tained from Eqs. (5) and (6): 

where 
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5. THE MAIN CONCLUSIONS 

When both waves are linearly polarized and the angle A 
between their polarization vectors is close to n/2, i.e., con- 
dition (84) is met, Eq. (92) implies, as Eq. (85) does in 
the nonrelativistic case, that in the process of scattering the 
electron independently emits and absorbs an even number 
of photons of the first and second waves: 

When both waves are linearly polarized (S1=l  and 
a2= r l ) ,  Eq. (92) yields the partial cross section with 
correlated emission and absorption of an equal number of 
photons of both waves (here the processes with emission 
and absorption of unequal numbers of photons of the first 
and second waves are suppressed): 

Here p, is given by formula (89) with s= & I .  
If the intensities of the fields meet the conditions 

6 ui for elliptically polarized waves, 

qlq2 6 q for circularly polarized waves, (97) 

we can neglect the number of emitted (absorbed) photons 
of both waves, i.e., in these conditions v f z v i  and the elec- 
tron scattering angle is (see curve 3 in Fig. 2) 

Consequently, the expression (92) for the scattering cross 
section assume the form 

where 

Note that if conditions (97) are met, Eqs. (95) and (96) 
assume the form of (99) with I JI,I '= J;,J:, and 
J;= J?(a,),  respectively. Note also that for k 1 and 
a, 2 1 the cross sections (92), (95), (96), and (99) are 
considerably larger than the respective scattering cross sec- 
tions in the Bunkin-Fedorov region (this is also true in the 
field of a single (F2 = 0) elliptically polarized wave, exclud- 
ing the case of circular polarization). The cross sections 
(99) can be summed over all processes of emission and 
absorption of photons of both waves. As a result we get the 
Mott cross section. 

The study of stimulated bremsstrahlung and absorp- 
tion by a relativistic electron scattered by a nucleus in the 
field of two elliptically polarized waves propagating in the 
same direction shows that, depending on the intensities, 
polarizations, and frequencies of the two waves, the pro- 
cess of electron scattering takes place in different kinematic 
regions and is characterized by different multiphoton pa- 
rameters. For instance, when the electron is scattered in 
the Bunkin-Fedorov region, the quantum parameter yl,2 
serves as the multiphoton parameter and the classical pa- 
rameter c1,2 determines the integral characteristics of the 
process. But if the electron is scattered in the plane formed 
by the initial electron momentum and the wave vector (for 
elliptically polarized waves, with the exception of circular 
polarization) or in the plane perpendicular to the polariza- 
tion vector of the waves (for waves with equal linear po- 
larizations), the quantum parameter serves as the mul- 
tiphoton parameter and the classical parameter 
determines the integral characteristics of the process. A 
special case is when both waves are circularly polarized 
and the scattering of the electron takes place in the plane 
formed by the initial electron momentum and the wave 
vector. This is a direct manifestation of interference of 
waves, which leads to correlated emission and absorption 
of an equal number of photons of both waves (processes of 
emission and absorption of unequal numbers of photons 
are suppressed). Here the quantum interference parameter 
a, serves as the multiphoton parameter and the classical 
interference parameter tin, determines the integral charac- 
teristics of the process. 

Note that when the intensities and frequencies of both 
waves are such that P1,2<1 and a, < 1 hold (at optical 
frequencies these conditions correspond to the following 
restrictions on the field strengths: F1,,( lo7-lo8 ~ c m - '  
for relativistic electron energies, and F1,2( ( 10~-10~)u~  V 
cm-' for nonrelativistic energies), stimulated bremsstrah- 
lung and absorption by an electron scattered by a nucleus 
take place in the Bunkin-Fedorov region. However, if we 
have Pl,,k 1 and a, k 1 but ql,,(l 
( 10~-10' 6 F,,,( 10'~-10' V cm- ' for relativistic electron 
energies, and (107-108)ui6~1,2<1010-1~11 Vcm-' for 
nonrelativistic energies), electron scattering occurs in the 
plane formed by the initial electron momentum and the 
wave vector with a fixed scattering angle (scattering in any 
other geometry is suppressed). Here, for linearly polarized 
waves, when the angle between the polarization vectors is 
close to ~ / 2 ,  in the process of scattering the electron inde- 
pendently emits and absorbs an even number of photons of 
the first and second waves (processes of emission and ab- 
sorption of unequal numbers of photons are suppressed), 
and for circularly polarized waves the electron emits and 
absorbs an equal number of photons of both waves in a 
correlated manner. 

I would like to express my sincere gratitude to V. P. 
Kra and M. V. Fedorov for useful discussions and valuable 
remarks. 
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