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We suggest a model for calculating the van der Waals constant C6 for a pair of atoms of 
inert gases by means of the density-functional method. The calculated dispersion constants 
agree well with the experimental data. 

INTRODUCTION vanishes. In such conditions the dipole moments dl  and 
d2, whose averages are zero, contribute to the interaction 

A model for calculating dispersion forces using the 
only owing to fluctuations. 

density-functional method (DFM) was suggested in Ref. 
Let us assume that in atom 1 a fluctuation moment 

1. The correction Sp(r)  to the electron density in an atom 
dlsP(rl ,t) spontaneously emerges which generates a field 

in the presence of an external perturbing potential S ( r )  is El(r,t) .  In the other atom, 2, this field induces a dipole 
given by the following formula: 

moment 

where p ( r )  is the electron density in the unperturbed 
atom. 

The calculations carried out in Ref. 1 of the coefficients 
of dispersion dipole-dipole forces of ions in alkali-halide 
crystals yielded results that lay between the values ob- 
tained in Refs. 2 and 3, with the exception of sodium- 
halide crystals. 

Calculations for different pairs of atoms of inert gases 
using the expressions obtained in Ref. 1 yield values of the 
dispersion constant C6 10 to 100 times greater than values 
obtained through experiments (for the case where the elec- 
tron distribution in an atom in the ground state is assumed 
to be of the Hartree-Fock type). 

We believe that attempts to decrease C6 by introducing 
a limit on the electron density radius (equivalent to the 
absence of a strong overlap of the electron clouds of the 
interacting atoms1) is not entirely justified and leads to an 
asymptotic dependence of the dispersion constant on the 
separation between the atomic nuclei. 

where a2 is the dipoledipole polarizability of atom 2. 
The field El(r2,t) is the electric field generated by the 

dipole moment of the first atom, dlsP(rl,t), at the point 
where atom 2 is situated: 

Similarly, a dipole moment d2sP(r2,t) that spontane- 
ously emerges in the second atom generates a dipole mo- 
ment dlind(rl,t) =alE2(rl , t )  in the first. 

The interaction energy can be written as 

where dz(r2,t) is the total fluctuation dipole moment of the 
second atom, taking into account both the spontaneous 
fluctuation term and the fluctuation term induced by the 
first atom, and E(r2,t) is the total fluctuation electric field 
at the point occupied by the second atom. 

For systems with fairly high symmetry, for instance, 
for spherically symmetric atoms of inert gases, the dipole- 
dipole interaction energy has the form 

1. A MODEL FOR CALCULATING C, IN THE DFM U(R) = - c ~ R - ~ .  (6) 

Consider two neutral atoms separated by a distance R The main assumptions underlying this model are: 
much larger than the atomic dimensions 11,2. For R 9 a )  The (disP(t),disP(t')) correlation functions that de- 
we must allow only for the dipole4ipole interaction be- scribe the temporal correlations of the spontaneous fluctu- 
tween the atoms in the first approximation , with the cor- ations of the components of the dipole moment in each 
responding interaction energy4 atom are zero. 

(41) (d2) -3( ( d ~ ) n )  ( (42)n) 
b) A fluctuation dipole moment is generated by a fluc- 

U =  (2)  tuation in the electron density of the atom, whose time- 
R 9 

average has the form 

where (dl ( r l  ,t) ) and ( i2( r2  ,t) ) are the average dipole mo- Sp(r)  = kp(r)cosO, 
ments of atoms 1 and 2, which at time tare at points r, and 
r2, respectively, R=r2-rl ,  and n=R/R. By average we where k is a parameter ( k g  1 ), 8 is the angle between 
mean quantum mechanical and statistical averages. vectors ri and R, with ri the radius vector connecting the 

For two neutral atoms in the ground state the average center of the nucleus and the ith electron, and p ( r )  is the 
dipole moments are zero and the interaction energy (2) electron density of the atom. 
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Choosing the fluctuations of the electron density in the 
form ( 7 )  yields a finite dipole moment and conserves the 
normalization condition imposed on the electron density of 
the atom. 

The standard procedure for minimizing the energy 
functional in the perturbation leads to the following value 
for the perturbation energy: 

If we now combine Eqs ( 3 ) - ( 5 )  and ( 18) and integrate 
with respect to the angular variables, we obtain 

2 

U(R) = -4 R [a2k: [i rDl ( r )  d r ]  

where k1 and k2 are the values of the variational parame- 
ters for atoms 1 and 2, and al and a2 the polarizabilities of 
atoms 1 and 2. 

Employing Eq. ( 6 ) ,  we arrive at an expression for the 
van der Waals constant for heteroatomic pairs, 

is the electron-nucleus part, with Z the nuclear charge, 
and D ( r )  = 4 r  ? p ( r ) ;  

is the quantum correction; 

6 T = 6 T l  +ST2 
or, allowing for the fact that 

I r D ( r )  dr= ( r ) ,  ( 2 1 )  
is the kinetic energy; 

6Vex=6Vex1+6Vex2 
where ( r )  is the average radius, we get 

For homoatomic pairs we have 

c 6-9alk:(rl)2. -" 
is the exchange energy; and 

6  Vee=akC1 + k2c1  

is the electron-electron part, with 

Thus, to determine the dispersion constants self- 
consistently we must know how to determine polarizabil- 
ities in the DFM. 

2. CALCULATING THE ATOMIC POLARlZABlLlTlES IN THE 
DFM FOR INFINITELY DISTRIBUTED ELECTRON 
DENSITIES D(r ' )  [ (?+rf  ) 3 / 2 - r 3 ~  - 

r' 
dr' 

Statistical theory has been used to derive an expression 
for calculating the polarizability a in the form? 

The minimum condition GE/Sk=O yields the value 

where 

where the subscripts 1 and 2  stand for the first and second 
terms in Eqs. ( 1 1 )  and ( 12),  respectively, and the primes 
indicate the absence in the expressions of the factor k  or 
k2. Here the minimum energy value is 

[ p ( r l )  ] 1/3r'4 dr', ( 2 5 )  

and ro is the "boundary" value of the atomic radius. 
Equation ( 2 4 )  was derived without taking into ac- 

count the exchange, quantum, and correlation corrections 
since these are small compared to the kinetic and Coulomb 
parts of the perturbing potential, the latter having the same 
sign in the case at hand. 

The polarizabilities of inert gas atoms calculated ac- 
cording to Eq. ( 2 4 )  with an electron distribution minimiz- 
ing the energy functional exceed the experimental values 
by a factor of 10 to 100, which suggests that Eq. ( 2 4 )  is 
inapplicable for "infinitely distributed" electron densities 

Equation ( 1 5 )  determines the variational parameter k  and, 
hence, the fluctuation dipole moment: 

d l ( r 1 )  = r 6 p l ( r )  dr. I ( 1 7 )  

Allowing for the fact that r  = ( r  1 n cose, we get 
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of the Hartree-Fock type. This necessitates obtaining a 
new, more universal, formula for calculating the polariz- 
ability of atoms. 

To this end let us consider the physical principles de- 
veloped in Ref. 5 that led to Eq. (25). Most interesting 
here is that the perturbed electron density was chosen in 
the form5 

here A1 and A2 are variational parameters, O(x) the is 
Heaviside step function, and us is the external electric field 
(perturbation). 

The factor K ~ Y ~  in (32) was selected for dimensional 
considerations. In this approach, ro is the radius that di- 
vides the atom into "inner" ( r  < ro) and "outer" ( r  > ro) 
regions. 

From the continuity condition imposed on Sp(r)  at 
r=ro we obtain 

uo= ( J usp1/3 dr )  ( J d r )  I ,  

where A is a variational parameter, VY the electron- 
nucleus potential, and Vo a Lagrange multiplier. Then the 
perturbation is 

or for D(r)  = 4 d p ( r ) ,  

The continuity condition imposed on the derivative of 
6p at r=ro makes D(ro) proportional to 6 ,  which is sim- 
ilar to (34). 

The standard variational procedure5 makes it possible 
to determine the parameters ill and A2: 

which leads us to Eq. (24) for the polarizability. 
That we have chosen Sp in the form (28) follows, 

generally speaking, from the Thomas-Fermi equation with 
the Amaldi c~rrect ion,~ but clearly the choice of Sp in the 
variational method is very arbitrary, the more so if the 
DFM approach is broader than the Thomas-Fermi model. 

On the other hand, the expression for the perturbed 
density in the simple form 

is inapplicable in the Thomas-Fermi model (see Ref. 5) 
because the values of the derived polarizabilities are too 
small, since Eq. (29) ignores the fact that the perturbation 
most strongly deforms the outer, weakly bound, regions of 
the atom. This is reflected in the fact that (28) contains 
P- Vo in the denominator, and this difference rapidly 
decreases as we move away from the nucleus. 

The above ideas are valid, however, only for electron 
densities within a region of a certain radius ro. In the case 
of "quasi-Hartree-Fock" densities the denominator 
P- Vo tends to zero so rapidly at great distances that the 
asymptotically small values of the electron density far from 
the nucleus provide a large contribution and lead to polar- 
izability values overestimated by a factor of 10 to 100. This 
suggests that the perturbation of the weakly bound outer 
region of an atom cannot be described by Eq. (26) and it 
is natural to use the expression (29) for the perturbed 
electron density. 

Of course, specifying the "inner" and "outer" atomic 
regions in the statistical model is extremely arbitrary. 
Hence, a self-consistent approach must contain the possi- 
bility of such division. In this paper the perturbation of the 
electron density of an atom is chosen in the form 

Using (35) and (36) with (34), we can find ro, with the 
polarizability 

a 1 = a 1 1 + a 1 2 1  (37) 

where 

where 
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TABLE I. Polarizabilities (in units of cm-'). 

Atom 
Method He Ne Ar Kr 

Thomas-Fermi model5 
(Eq. (24) )  2.01 2.88 400. 
Suggested model 0.226 0.413 1.51 2.22 
Experiment (Ref. 6 )  0.392 1.65 2.50 
Experiment (Ref. 7) 0.201 0.390 1.62 2.46 

In this model we did not allow for the electron- 
electron Coulomb interaction between the "inner" and 
"outer" electrons. Estimates have shown that allowing for 
this interaction has little effect on the results for atoms 
with a small number of electrons. 

Table I lists the results in different models and the 
experimental data on the polarizability of atoms of inert 
gases. The discrepancy between the values calculated in the 
present model and the experimental polarizability values is 
roughly lo%, which suggests that the assumptions under- 
lying our model are true. The accuracy of calculations for 
all the atoms is roughly the same, although the errors have 
different signs. The statistical nature of the model, which 
raises the probability of agreement with the experimental 
data as the number of electrons increases, has no effect on 
the result. The reason is the growth in the contribution of 
the electron4ectron interaction between the "inner" and 
"outer" electrons, a factor not taken into account by the 
model. 

The results of calculations of C6 for different pairs of 
atoms of inert gases that incorporated the polarizabilities 
obtained in this paper and the quasi-Hartree-Fock electron 
densities8 are listed in Table 11. 

Comparison of the dispersion constants calculated by 
means of this model and the experimental data of Ref. 9 
proves that the present approach to calculating C6 is jus- 
tified. On the whole, the deviation from the exact values is 
less than 10% (30% for the He-He pair). The maximum 
deviations in homoatomic van der Waals constants for the 
He-He and Kr-Kr pairs are explained, for the first pair, by 
the statistical nature of the computation model and, for the 
second, by the increase in the contributions (not allowed 
for by the model) from the higher-order terms in the 
perturbation-theory expansion for the energy, and also by 
the fact that we ignored the differences in the binding en- 
ergies of the valence and atomic-core electrons in Eq. (7) 
and did not allow for the correlation energy. We believe 
that allowing for the these contributions can improve the 
agreement between the calculated C6 and the experimental 
data. 

We conclude with a few details about the reasons for 
choosing the time-average of the electron-density fluctua- 
tion in the form (7) .  In addition to those listed in Sec. 1, an 
obvious reason is the great simplicity and convenience of 
(7) for calculations. Clearly, allowing for the differences in 
the binding energies of the valence and atomic-core elec- 
trons requires choosing 6p in (7) the way it was done in 
(30). But we can also say that Sp in (7)  is chosen in the 

TABLE 11. Values of the dispersion constant C, (in atomic units). 

Pairs of atoms Calculated values Upper and lower bounds 

He-He 0.9754 1.441.47 
Ne-Ne 6.59 6.48-7.27 
Ar-Ar 72.68 63.670.8 
Kr-Kr 176.84 124-142 
He-Ne 2.7 3.03-3.20 
He-Ar 8.70 9.43-10.1 
He-Kr 13.81 13.CL14.2 
Ne-Ar 21.98 19.5-22.0 
Ne-Kr 34.16 26.5-30.9 
Ar-Kr 113.58 88.6100 

first approximation in the form (30) with ro=O. 
At present we are doing calculations that use the time- 

average of the fluctuations of the electron density of an 
atom in the form Sp=Spl+Spz, with Sp, - p"38(ro-r) 
and 6p2 - p8(r-ro), and that generalize the model sug- 
gested in this paper. Final results, however, are yet to be 
obtained. 

This model for calculating C6 is entirely different from 
that developed in Ref. 1, where the external perturbing 
potential enters into the expression for the correction to the 
electron density of the unperturbed atom (Eq. ( 1 ) ). 

The model of Ref. 1 is unsuitable for atoms with an 
electron distribution of the Hartree-Fock type, and basi- 
cally for any known distribution of electron densities 
(Thomas-Fermi, Thomas-Fermi-Dirac, etc.) yields only 
the upper bounds on the dispersion constants. The smaller 
the boundary value of the radius of the electron cloud in 
the theory, the more reasonable is the result obtained in the 
model of Ref. 1. The model suggested in this paper can be 
used for any atoms with a spherically symmetric distribu- 
tion of the electron density because no other suggestions 
linking our model precisely with atoms of inert gases have 
been made. 
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Translated by Eugene Yankovsky 
This article was translated in Russia. It is reproduced here with all the 
stylistic changes by the Translation Editor and the Editor of the Russian 
text. 
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