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In this paper the lifetime, energy shift, and phase-relaxation time of a parapositronium atom 
in a two-photon annihilation decay process is calculated using the Heisenberg equations 
of motion for atomic and photon operators, without resorting to perturbation techniques. 

1. INTRODUCTION 2. THE EQUATIONS OF MOTION 

The Feynman diagram representing the process of 
Positronium (Ps) is a two-particle lepton system pos- 

two-photon annihilation of the Ps atom is depicted in Fig. 
sessing annihilation channels with different lifetimes. The 

1. Hence, the effective energy of interaction of Ps with 
system has proved ideal for studying relativistic two- 

photons can be found from the following matrix element: 
particle interactions. Hence interest in it has been unflag- - 
ging ever since the possibility of formation of an electron- 
positron bound state, a positronium atom, was predicted 
theoretically. More than that, recent years have seen an 
increasing interest in the positronium problem in connec- 
tion with the possibility of using a system of such atoms to 
build an annihilation gamma-ray laser.I4 

Studies of the relativistic corrections to the energy of a 
Ps atom in different states occupy an important place in the 
physics of the positronium atom. For instance, the result of 
well-known calculations can be expressed in the following 
manner: 7 

where a2=e2/tic is the fine-structure constant, and Wo the 
correction to the energy of the Ps atom caused by QED 
second-order effects, which include virtual-photon ex- 
change between the electron and the positron and virtual 
creation and annihilation of Ps (the correction is of order 
203 000 MHz). The term W1 of order a5mc2 ( 1000 MHz) 
is the first correction to the main interaction and incorpo- 
rates vacuum polarization. ~arshenboim' also found the 
main logarithmic contributions to hyperfine splitting of 
positronium with the relative order of a3 1n2(1/a). All 
these corrections can be regarded as nonradiative electron- 
positron interactions since they do not allow for processes 
of emission and absorption of real photons. 

This paper calculates the energy of a parapositronium 
atom and the lifetime in the event of two-photon decay 
without employing perturbation-theory techniques but by 
using the simultaneous system of Heisenberg equations of 
motion for photon and atomic operators. We will show 
that the proposed theory of the Ps atom allows for calcu- 
lating the energy shift and the lifetime by using the adia- 
batic and rotating wave approximations. The meaning of 
these approximations is clarified as we develop the theory. 

where $:+) and $!*) are the solutions to the Dirac equa- 
tion for a bound electron (positron); a: ,  a, ,  b: , b,, 
c&, and cw are the respective creation and annihilation 
operators of electrons, positrons, and photons; g u  
= .\I-, VR is the electromagnetic-field quantiza- 
tion volume, and wk and k the frequency and wave vector 
of photons, respectively. 

The Hamiltonian of an electron-positron system inter- 
acting with photons and having fixed electron and positron 
states can be written 

where the vector potential operators 

correspond to the annihilation photons, $1 and $2 are the 
photon unit polarization vectors, p,v=x,y,z, and 
Al,A2= 1,2. The matrix U in (2.2) reflects the QED 
second-order effects, which correspond to the term Wo in 
Eq. ( 1.1 ). In operator (2.2) summation over repeated in- 

FIG. l .  
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dices is assumed, as is summation over the different modes 1 
of the annihilation photons in accordance with the laws of P+P+PP++- 2 n2=const=no. (2.9a) 
energy-momentum conservation in annihilation decay. 

The Heisenberg representation requires using the com- Let us now determine the corresponding integral of 
mutation relations9 motion for the photon operators. Such integrals of motion 

are represented in the simplest form if we use the rotating 

[A,(x)PV(xf) 1 1 t=tl=o, A,(x), p A v ( x f  wave approximation (RWA), in which the Hamiltonian 
t=tl (2.2) is 

[$,(x)df,(xf) ]t=t*=o (2.4) Then from (2.6) and (2.7) we find 

and the Heisenberg equation for an operator F: 
d 

aF - (cTcl+c2+c2+n) =O 
-ifi -= [H,F]. (2.5) 

dt 
a t  

and 
After applying the commutation relations (2.4) and per- 
forming certain calculations we arrive at the following op- d 

(c:c1 -c$c2) =O. erator equations, assuming that P ~ a b ,  P-b+a+, 
n-a+a+b+b-1, and flo=w(+)+w(-): 

2.2. Modified system of equations of motion 
(2.6a) 

We apply the adiabatic approximation, with 

2i 2i P+ =P$ (t)eint, cG2)(t) =c;?:)+ (t)eiwl(2)', (2.13) 
n=--S fi p ,/I ifi29+7;S;d1fi2fl. ( 2 . 6 ~ )  

where Po, P:, ci:i), and c:&, are slowly varying ampli- 
These equations for the atomic operators must be aug- tudes, and fl = no-fi- ' u is the Ps frequency. Then Eq. 

mented by appropriate equations for the photon operators: (2-7a) yields the 

I I 
C2= -iw2c2+* S(k,,k2)c:P+- fi S( k 1  ,k2)clP where clu(t) =cl,(0)exp( - iwlt) is the vacuum field oper- 

ator, and 
i i 

+j jS*(k1,k2)~:~++-S*( fi -k1,k2)Picl, t > t f ,  
GI(?- tf)= lim 

B- +o exp[-i(wl-i&)(t-tf) t > t f  (2.7b) (2.15) 

where normal ordering of operators is employed, and 
is the retarded Green's function. Thus, in the photon field 

1 2  -lkIre-lk2r 
S(ki  ,k2 ) = S , ~ k ~ ~ ~ g k ~ ~ ~ e ,  e,, e (2.8) operators we can isolate the vacuum part and the part 

representing the effect of the photon self-field. 

2.1. Conservation laws Using (2.13), we can write the following operator 
equation instead of (2.14): 

From Eq. (2.6) we can derive the conservation law: 
ci( t )  =clu(t) + d l ( t ) ~ $ ( t )  +d2( t )c~( t ) ,  (2.16) 

5 
dt  (2'9) where 

Hence, we have the following integral of motion: d l ( t )  =lfi  S(kl,k2)f*(-fl+w2+wl)P(t) 
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(2.16b) 

with the zeta function [(x) defined following ~ei t ler :"  

In the same manner we obtain the second equation: 

c2(t) = ~ 2 ~ ( t )  +d3(t)c:(t) +d4(t)cl( t ) ,  (2.17) 

where 

From Eqs. (2.16) and (2.17) and from the respective 
Hermitian conjugate equations for c: and C$ we can ex- 
press the photon operators in terms of the atomic operators 
P and P+. Let us make several simplifying assumptions. 

1. The positronium atom is immobile. Then momen- 
tum conservation yields w1 = w2 and, hence d l  =d3. 

2. We select the phases of the wave functions in the 
matrix element S,, in such a way that S,,= -il S I .  YV 

3. We employ the rotating wave approximation, in 
which the Hamiltonian operator of the system has the form 
(2.10). 

With these assumptions in mind, we obtain 

This makes it possible to easily determine the following 
operators: 

We now transform the operator ( 1 - d jd l  ) - ' using its 
series expansion, 

where 

In finding this representation of the operator we have em- 
ployed the ordinary properties of fermion operators: 

Thus, the origin of the parameter po in our treatment 
lies in the fact of photon mode mixing in the self-field of 
the annihilation photons. More than that, calculation of 
the photon self-field of a parapositronium atom is done 
with allowance for arbitrary powers of the fine-structure 
constant a (or the matrix S ) ,  that is, as expansion (2.20) 
shows, we do not use any of the restrictions imposed by the 
perturbation-theory expansion. 

Substituting the operators (2.19) into the equations of 
motion of the atomic operators (2.6), we can transform 
these equations. To this end we express the atomic-field 
operator in Eq. ( 2 . 6 ~ )  in the form 

We transform this operator by reasoning as follows. For 
the parameters estimating the contributions of various 
terms of this operator we select do and po. 

We assume that the free (vacuum) field contains no 
initial photons of modes 1 and 2. This means that the 
following relations hold true: 

cLu I vacuum) = 0, (vacuum I cA = 0, 

cAcAU I vacuum) =0, A= 1,2, (2.23) 

where I vacuum) is the wave function of the vacuum field 
in the photon-state occupation-number representation. In 
addition we use the following identities: 

Summing all terms in the operator (2.22), instead of 
Eq. ( 2 . 6 ~ )  we have the following equation: 

where 
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are real quantities. 
The atomic-field operator in Eq. (2.6a) is transformed 

similarly: 

After performing the necessary calculations, instead of Eq. 
(2.6a) we have the following equation: 

3. THE LIFETIME OF A PARAPOSITRONIUM ATOM 

Let us find the lifetime of a parapositronium atom 
from Eq. (2.25) by averaging this equation weighted by a 
function 1 @) in the occupation-number representation for 
electron-positron states. To this end we perform several 
preliminary calculations. We use the conservation law 
(2.9a) to determine no. Assuming that initially (P+P) = O  
and (n) = 1, we find that no= 3/2. This yields 

F~=Fo=( l+po)( l / f i )  l S ( d ( - n + w l + ~ 2 ) .  

We allow for the multimode nature of annihilation de- 
cay when Fl and F2 resemble delta functions and also 
when the first simplifying assumption in Sec. 2 is true. 
Then the solution to Eq. (2.25) assumes the form 

where the inverse lifetime of the parapositronium atom is 
determined after integration with respect to frequency by 
the formula: 

Here R- w2 replaces w1 in S and po after integration with 
respect to o l ,  and dQl is the element of the solid angle in 
the direction of emission of an annihilation photon of mode 
1. 

The value of 1 S I can be calculated by taking into ac- 
count the definitions (2.1 ), (2.2), and (2.8). The matrix of 
the effective energy of interaction between a parapositron- 

ium atom and the photon field corresponding to the Feyn- 
man diagram in Fig. 1 can be represented as follows: 

where we have set Vi( j) =4/37rai j ) ,  a;( j) is the character- 
istic radius of the positronium atom in the state i( j )  with 
a set of quantum numbers n, 1, m, m, and R is the radius 
vector of the center of inertia of the Ps atom. Summation in 
the above expression is done over intermediate states with 
positive and negative energies. For fixed states of the elec- 
tron and positron in the Ps atom we have 

where the real quantity Mj(wl ,a2)  is given by the follow- 
ing relation: 

(3.4) 

At (kl  - k2)r=0 and (k l  - k2)R=0 the quantity specified 
by (3.4) can be calculated using hydrogenic wave 
 function^.^ 

Let us find IS1 in Eq. (3.2) when po+O. Such a situ- 
ation corresponds to annihilation decay of a positronium 
atom into two photons without allowing for the reaction of 
photons on the annihilation process. By W$;)(A~R,) we 
denote the rate (probability per unit time) of "free" anni- 
hilation decay into the solid-angle element An1 (or AR,). 
The directions of emission of photons of modes 1 and 2 in 
the solid angles An1 and AR2 are related to each other 
through the law of momentum conservation and assump- 
tion 1 of Sec. 2.  hen^'^ 

For an isotropic decay we have wi:)(AR1) 
= (4a)  - ' W$)AQ,, and in this case I S I is independent of 
the solid-angle element. Here IS I is the energy of interac- 
tion between the positronium atom and the field of free 
photons. 

Now we need only calculate the parameter po to esti- 
mate the variation of the lifetime of the positronium atom 
caused by the reaction of the photon field. From (3.2) we 
find the rate WZy of annihilation decay as a function of the 
respective quantity w$!) for "free" decay: 

(3.6) 
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where 

with T the characteristic observation time of the annihila- 
tion decay process. The appearance of this parameter in 
(3 .6 )  is caused, according to (2 .18) ,  by the squaring of the 
absolute value of the zeta function at the point 
o l + w 2 - O = O .  On the other hand, from Eqs. ( 3 . 7 )  and 
(3 .5)  we find that 

FIG. 2. 
This quantity can be interpreted in the following way. 

In conditions of annihilation decay we can fix two mo- 
ments in time, one corresponding to the initial value of the 
energy of the positronium atom, and the other to the state 
of the electromagnetic field with two photons. The energy 
of interaction between the field and the Ps atom is deter- 
mined by 15'1. According to the uncertainty relation for 
energy," the energy of a system capable of decaying in a 
quasistationary state can be determined to within f i / ~ ,  
where  ti/^ is the width of a level of the Ps atom in relation 
to annihilation decay, that is, T s T 2 1  Thus, from Eq. (3 .6 )  
we get 

where a is a parameter of the order of unity that deter- 
mines the accuracy with which the energy of the positro- 
nium atom is measured. Thus, we have a parameter a that 
makes it possible to estimate the limits within which W 2 y  
varies in relation to the respective value of the rate of free 
annihilation decay. 

Let us now return to Eq. ( 3 . 6 )  and assume that 
T =  T Z y  -- WG'. After performing the necessary calcula- 
tions, we find 

where 

In accordance with ( 3 . 9 ) ,  we leave the upper sign in 
Eq. (3 .10)  and write it as follows: 

To calculate the variation of the decay rate (3 .11) ,  we 
must determine the field quantization volume V,. For this 
we note that the characteristic parapositronium frequency 
in the 1s state must be "allowed" by an appropriate choice 
of the electromagnetic-field quantization volume. We then 
find that 

and the final expression for the rate of annihilation decay 
of a parapositronium atom into two photons with allow- 
ance for the retroaction of photons is 

where we have used the value w$:)= (a5mc2/2f i )  for the 
respective "free" decay rate. 12" 

Let us now calculate the characteristic frequency of the 
effective interaction of the parapositronium atom with the 
photon field. Combining (3 .5 )  and (3 .12) ,  we obtain 

which agrees with the uncertainty relation for energy: 

4. THE SHIFT OF THE ENERGY OF A POSITRONIUM ATOM 
IN THE PHOTON FIELD 

Let us use Eq. ( 2 7 )  to calculate the energy of a para- 
positronium atom in the field proper of annihilation pho- 
tons. Equation (2 .27)  yields 

where we have introduced the notation 

and, according to Sec. 3, T has the meaning of the lifetime 
of a parapositronium atom with allowance for the retroac- 
tion of photons, that is T =  WG'. The properties of the 
function ( 4 . 2 )  are known: its maximum value is ( 1 / 2 ) 2  at 
point m1 + m2- a = 0 ,  and the integral (4.1 ) at this point 
must be interpreted in the principal-value sense. 

Figure 2  depicts the frequency dependence of the en- 
ergy of a positronium atom, SE=fifl + S w l d ( A E ) / d w l ,  in 
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the neighborhood of frequency a ,  with use made of Eqs. 
(3.12)-(3.14). The differential value of the energy shift 
(4.1 ) has the form 

where wl = w2 = (mc2/fi) + Swl, a= (2mc2/fi) - me4/4fi3, 
and 

As formula (4.3) shows, in exact resonance 
(w + w2 - fl = 0) the function f vanishes and the energy 
of the positronium atom is fin. According to the uncer- 
tainty relation (3.15) for energy, the allowed values of 
frequency wl are determined by the interval TF;. Hence, 
the energy of the positronium atom is determined by the 
interval (2a, -2a) of variation of the argument off  and 
F. The maximum variation of the energy of the positro- 
nium atom caused by the retroaction of the photon field 
proper occurs at (wl + w2 - a )  72y= f T, and according to 
(4.4) we have 

where ISI, according to Eq. (3.5), is weakly dependent on 
frequency Sw,. Thus, the photon reaction changes the fre- 
quency of a positronium atom by tens of gigahertz, which 
is much greater than the value W1 in ( 1.1) caused by 
nonradiative interactions. 

Let us now examine the role of the second term on the 
right-hand side of Eq. (2.27), which resembles a delta 
function. To this end we calculate the coefficient standing 
in front of the operator, just as we did in Sec. 3 when 
calculating 7 ~ ' .  We then find that 

Here T2y is a quantity similar to the phase relaxation time 

T; in coherent resonant optics.13 The physical meaning of 
this quantity is as follows: T,, is the time during which the 
mean value (P) tends to zero according to an exponential 
law owing to random phase factors determining the wave 
functions of the electron and positron in a positronium 
atom. This explains why in calculating no in the conserva- 
tion law (2.9a) we assumed (P'P) = O  initially. As a result 
of the interaction between the positronium atom and the 
photons a certain coherence sets in the system consisting of 
the positronium atom and the photon field, a coherence 
determined by the finite values of the means (P) and (P') 
and, hence, a relaxation time T2y. 

Thus, this paper gives a fairly complete description of 
the interaction of the parapositronium atom with the pho- 
ton field that makes it possible to determine the necessary 
characteristics. The proposed method of description also 
allows examining the three-photon annihilation decay of 
an orthopositronium atom. This problem will be examined 
in subsequent research. 
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stylistic changes by the Translation Editor and the Editor of the Russian 
text. 
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