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We study the effects of strong magnetic fields, temperature, and high matter density-which 
are typical of pulsars--on an object consisting only of neutrons. The interaction of the 
neutrons is described by the Lagrangian of the relativistic mean-field theory (Walecka's 
model). An equation of state is derived, and it is shown that the object under study is 
degenerate and its polytropic index is identical to that of a white dwarf. The parameters of a 
neutron star are estimated as functions of the magnetic field intensity on the basis of 
the solutions of the Oppenheimer-Volkoff equations. 

Modern methods make it possible to take into account 
the effect of quantum phenomena on the parameters of 
macroscopic objects, establishing in the process a connec- 
tion between phenomena occurring at different scales. In 
particular, the behavior of neutrons in a magnetic field is of 
interest in application to such remarkable astronomical ob- 
jects as neutron stars. In addition to colossal density, tem- 
perature, and magnetic-field intensities, which are all taken 
into account in this paper, neutron stars have an admixture 
of charged particles, which have a considerable effect on 
the structure and radiation of the star. 

Thus, to describe a neutron star we must know the 
equation of state of its constituent matter. One way to 
formulate an equation of state at high densities ( p -  1 0 ' ~  
g/cm3) is to construct a relativistic Lagrangian that de- 
scribes the interaction of bare nucleons. Such a model was 
first proposed by ~a lecka . '  In Walecka's model, attraction 
is mediated by the exchange of scalar mesons and repulsion 
is mediated by the exchange of massive w vector mesons. 
The typical equations of state above the formation point of 
neutron droplets is discussed, for example, in Refs. 2 and 3. 
In the present paper we study (on the basis of the model 
mentioned above) the effect of an external uniform con- 
stant magnetic field, finite temperature, and density. The 
effect of the field will be taken into account by proceeding 
from the spectrum of a single-particle equation with all its 
attendant consequences. It is obvious from the foregoing 
constraints on the problem that a complete solution would 
require a considerable advance in a number of physical 
fields, and allowance for many effects. In spite of this, how- 
ever, we used the relations that we derive below for the 
pressure and number density as functions of the tempera- 
ture in the so-called low-temperature limit to describe a 
neutron star. We assume a spherically symmetric "stan- 
dard" metric for space-time. In spite of the qualitative 
nature of the results, even in such a primitive model in 
which the magnetic field is taken into account, the mass of 
the "star" is in the 2M0 range. This is obviously in better 
agreement with the astronomical  observation^^'^ than the 
corresponding results obtained neglecting the magnetic 
field. This result may not be model-dependent on the type 
of nucleon-nucleon interaction, but the complete answer to 
this question requires a serious check and study of the 

other models claiming to give a more complete description 
of the physics of neutron stars. 

1. THERMODYNAMIC POTENTIAL OF A NEUTRON GAS IN 
A MAGNETIC FIELD 

As we indicated above, the effective Lagrangian in Wa- 
lecka's model' has the form 

where u = ( ypyv- yvyp)/2. In this model the strong in- p". 
teraction is mediated by two types of particles, u and w 
mesons. The scalar u meson is identified with the res- 
onance and is responsible for the attraction between nucle- 
ons. The repulsion between nucleons at short distances can 
be approximated by introducing a single vector meson rcS1, 
corresponding to the term GpvPv/4 in the Lagrangian 
( I ) ,  apart from the mass term, where the tensor 
Gpv=dpwv-dpp. It turns out that this model has mean- 
field solutions, and pions do not contribute in the mean- 
field approximation.5 This corresponds6 to the restoration 
of chiral symmetry in dense nuclear matter, in which the 
pion effective mass approaches zero and the pion degrees of 
freedom become collective, so that even the formation of a 
pion condensate is possible. 

We take the following values for the masses and inter- 
action constants: 

m,=550 MeV, m,=783 MeV, 

The interaction of a neutron with the electromagnetic 
field is described in the Lagrangian by a term with an 
anomalous magnetic moment M N  (AMM). 

Using the fact that the number of particles Q=n+n is 
a dynamical invariant (Noether charge7) in our system, we 
introduce a chemical potential in accordance with the 
scheme described in detail in Ref. 8. 

Let the fields a and a,, be represented as coordinate- 
independent average values ii and G, which form a back- 
ground for fluctuations u ' (x)  and wl(x): 
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Then the mean-field approximation a f (x )=O and 
W;(X) = 0, with the addition of the term pn+n into Eq. 
( 1 ), will make it possible to treat the neutron gas as a free 
gas with effective parameters 

mo-+m=mo-gp,  ,u+p,=p-g,WO. 

We assume that the electromagnetic field in Eq. ( 1 ) is 
an external, constant and uniform, purely magnetic field: 
H= (O,O,H) and E=O. It is well known9 that the energy 
spectrum of a charged particle with an AMM in such a 
field has the form 

E~ =p2 + ( ,/-H+ ~ M H )  2, (2)  

where m is the particle mass, e is the particle charge, p is 
the projection of the momentum in the direction of the 
magnetic field H, n is the number of the Landau level, 
c= + 1, and M is the AMM of the particle. 

The thermodynamic potential is defined in the stan- 
dard manner" 

where Ek is the energy spectrum of a nucleon whose mass 
is replaced by the effective mass and p, is the effective 
chemical potential. 

The thermodynamic potential engendered by the spec- 
trum (2) has been studied before, for example, in Refs. 11 
and 12. 

A neutral particle interacts with the field via the 
AMM. For this reason, the energy spectrum can be repre- 
sented by an equation derived from the generalized Dirac 
equation corresponding to the Lagrangian ( 1 ) : 

E2(p) =pi+ ( (3) 

where B= MNH and MN= 6.25 . 10-l2 eV/G. This spec- 
trum can also be obtained formally from Eq. (2)  when the 
electric charge is zero and the transverse momentum is 
unquantized. The same expression is employed in Ref. 13. 

We replace the summation in the definition of the ther- 
modynamic potential R with our spectrum (3) ,  which is 
continuous as a function of p, by integration over momen- 
tum, and we take into account the antiparticles in the ini- 
tial Lagrangian and in the corresponding functional inte- 
gral. We then represent the total potential R in the form 

0 = Rparticles + Rantiparticles = fl (P) $. fl ( -P 1. 
Expanding ln(1 +x)  in a series, we obtain the representa- 
tion 

Here we use the effective values for m and p, and we 
denote the temperature by 6 = ~ - ' .  We use the system of 
natural units in which fi= c= 1. 

Since the energy ( 3 )  depends only on and p: , the 
integration over momentum separates into two steps: inte- 

gration over dp3 and dpl . The integration of dp3 can be 
easily performed by making the substitution of variables 

This substitution and the integration give modified Bessel 
functions, and the momentum integral in Eq. (4) reduces 
to the form Sdpl 2aKl (kpa). Using the definite integral of 
the modified Bessel function,I4 we obtain the initial for- 
mula for the thermodynamic potential of the model under 
consideration: 

where L,(z) is the modified Struve function. 
Here we have introduced the dimensionless parameters 

It is well known (see, for example, Refs. 8 and 10) that 
the complete thermodynamic picture can be obtained if the 
potential R is known. Differentiating the expression ob- 
tained for R and using the properties of the special func- 
tions (see Ref. 14), we can obtain an expression for the 
number density n and the entropy density E. As an exam- 
ple, we write out the expressions for n and &-the proper 
internal energy: 

We note that in the model of a neutron gas interacting with 
a magnetic field via the AMM, these expressions are accu- 
rate right up to the limits of applicability of the one-loop 
approximation. 

2. EQUATION OF STATE AND ASYMPTOTIC EXPANSION 

Equations (6)  and (7 )  are too complicated for direct 
calculations. It is therefore convenient to make use of the 
fact that w>l according to astrophysical estimates for a 
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neutron star (for temperatures in the range lo6-lo9 K, 
w' - lo4-lo7), and to employ asymptotic expansions of 

the special functions. 
Using the asymptotic expansions of the functions 

Kv(z) and L,(z) for large values of the argument z, 

and the fact that Lv(z) = L-,(z) for large values of the 
argument in terms proportional to eZ (Ref. 14), it is easy to 
show that only the term proportional to 

is not suppressed by a very small exponential factor. In- 
deed, even for the case w= lo4 and k= 1, this factor is 

In addition, it should not be forgotten that y, defined in Eq. 
(5), is a small parameter-y=10-~-10-~ and that 
w = w' ( 1 + y)  . We therefore employ the crudest approxi- 
mation. The point is that although summing each succes- 
sive term can contribute significant changes, the first term 
is by itself a good approximation. This is one of the prop- 
erties of an asymptotic ~ e r i e s . ' ~ " ~  

It is easy to show that the first two approximations 

do not depend on either the summation index k or the 
temperature, and that in carrying out the summation 
X5=, in the leading asymptotic approximation, it is pri- 
marily the first term, proportional to the cube of the tem- 
perature, that survives. After summing over k (see Appen- 
dix), the temperature dependence ultimately vanishes 
completely. Finally, collecting all preliminary calculations, 
we write 

The fact that the temperature dependence has disap- 
peared in the crudest approximation favors the result ob- 
tained, since a neutron star is a cold object and the physical 
situation is such that the neutron gas is a degenerate object. 
Neglecting this fact, however, we worked under the as- 
sumption that the temperature is finite and arrived at the 
same conclusion that the gas is degenerate. Moreover, if we 
still wish to determine the temperature dependence, how- 
ever weak it may be, we can use Joncquiere's relation (Eq. 
(A2) in Appendix). We give below the temperature cor- 
rections to the pressure and number density, for example: 

We now consider a purely neutron object whose char- 
acteristics have already been calculated [Eqs. (8)-( 1 1 )]. It 
is well known1' that the general conditions of equilibrium 
and stability have the form 

In the mean-field approximation, these conditions are 
equivalent to the equations of motion for the a and w fields, 
and yield two relations for the three parameters po, ZO, 
and a. 

Let the free parameter be the effective ratio of the 
chemical potential to the mass: 

This ratio is convenient in that it determines the total 
proper energy density p as a function of pressure: 

But we do not know the order of r: after all, we are dealing 
with a Fermi gas, and in our case there is no restriction 
r <  1, as there is for Bose particles, where the condition 
p = m means that the particles condense. In order to iden- 
tify the magnetic-field dependence of r, we introduce the 
parameter a defined by 

which obviously falls in the range 0 <a < 1 and character- 
izes the efficiency of nucleon interactions with the scalar 
field. Then the desired function has the form 

where 

We use the expressions ( 12) and ( 13) in the next section 
to derive the mass and radius of a neutron star as a func- 
tion of the field and the parameter a. 

According to Refs. 2, 4, and 17, the surface magnetic 
fields of pulsars are very high-H= 10'~-10'~ G-and in 
the interior layers of a star the field can reach values of the 
order of H= G. Even neglecting possible twisting 
of the field, which intensifies the field by another several 
orders of magnitude, we obtain the following range for 
investigation: 

Estimates obtained on the basis of the formulas presented 
above illustrate how the internucleon interaction is real- 
ized: for "weak" fields in the range (14) the nucleons in- 
teract predominantly via the o meson, which "stretches" 
the mass, and at the center of the range the nucleons in- 
teract via a change in the chemical potential due to the 
influence of the w meson. This result confirms the "naive" 
consistency of our model (at least to a first approxima- 
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tion), since the w vector meson approximates repulsion, 
and it is natural to infer that it plays a larger role in the 
interior layers. 

3. SOLUTION OF THE OPPENHEIMER-VOLKOFF EQUATION 

A neutron star, which is prevented from collapsing by 
the pressure of the neutron gas, is a cold object, for which 
relativistic effects play an important role. The general- 
relativistic calculation of the pressure, density, and gravi- 
tational fields inside spherically symmetric static stars have 
been examined in detail in Ref. 18. The conditions of 
spherical symmetry and hydrostatic equilibrium of an ideal 
fluid lead to the choice of the "standard" metric, and as a 
result the Oppenheimer-Volkoff-Tolman equation is ob- 
tained from Einstein's 

A prime denotes a derivative d/dx, and the following nu- 
merical values are used: G=1.475M&m and 
Ma= 2 - g. Given p(x) as the function p[p (x)], we 
can study two first-order differential equations: Eq. ( 15) 
for p(x)  and 

Given the equation of state p ( p )  and the initial conditions 

the system of differential equations (15) and (16) deter- 
mines the functions p(x) ,  M(x) ,  and p(x) .  This system 
must be integrated from the center of the star out to some 
radius x =  R at which p[p(x)] =O. 

To distinguish the ratio of the chemical potential to the 
mass from the radial coordinate, we relabel the radial co- 
ordinate as x. Usually, even in our case the characteristic 
internal energy density 

is proportional to the pressure 

The quantity y is called the polytropic index. In the general 
case it will not be the ratio of the specific heats unless E and 
p are proportional to the temperature, which is not the case 
in our equations. Nonetheless, the numerical values of y 
largely characterize star types (see, for example, Ref. 18): 

y =4/3-white dwarfs with the largest mass, 
y= 5/3-white dwarfs with the lowest mass, 
y = w -incompressible stars. 
In our case ( y  - I)- '  =2, i.e., y=3/2. Thus a neutron 

star is similar to a white dwarf with average mass. This 
qualitative result corresponds to the physical picture ac- 
cording to which the neutron gas is degenerate, the mag- 
netic field being neglected in this analysis.2'4"8 

FIG. 1. 

We integrated Eqs. (15) and (16) by the Runge- 
Kutta method19 with the initial conditions written out 
above, and obtained the following results. 

3.1. Stability 

Using the well-known theorems of Refs. 2, 4, and 18 
we rewrite the criterion of stability with respect to a par- 
ticular radial normal mode as 

i.e., above a critical density p,,(O) the star starts to com- 
press spontaneously. 

We can see (Fig. 1) the difference from the results 
obtained by J. ~ a ~ u s t a "  (line A) ,  who did not study the 
effect of a magnetic field on the system and immediately 
took the Fermi momentum pF as the parameter and as- 
sumed temperature independence. As a result he obtained 
the following range of energy densities for a stable config- 
uration 

MeV 
6 

MeV 
1 0 ~ ~ < p ~ < l 0  7, fm 

which in our notation is 

However, in our case, i.e., taking into account the magnetic 
field, the range is narrower and shifted in the direction of 
low central densities 

and increasing the intensity of the external field does not 
significantly decrease this interval. The radius R assumes 
satisfactory values from 5 to 10 km and the critical mass is 
not so high. 
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FIG. 2. 

3.2. Effect of a magnetic field noted in Ref. 5 that the pion degrees of freedom signifi- 

We studied first a constant uniform magnetic field and cantly influence the structure of the star and the state of its 

found that starting at 1016 G the field significantly com- matter. 

presses the star. The star becomes more compact: The mass 
and radius decrease from 1.95 to 1.6 solar masses and from 4. CONCLUSIONS 
9.5 to 7 km, but the average density 

The effects of an admixture of charged particles are far 
,ii= 3 ~ / ( 4 ? r ~ ~ )  from trivial for the following reasons. 

First, the general model Lagrangian of the system and 
increases. This result is realistic. Let us assume that the 

the equations for the averages will change. Correspond- 
thermodynamic formulas employed above do not change 

ingly, the solutions for the averages will change, as will a 
much if the magnetic field deviates from a constant value. 

number of other parameters of the system. 
We assume that the third axis remains parallel to the field 

Second, the separation of the main contributions in the 
H, but the field decreases in modulus from the center of the 

expressions for the thermodynamic potential will turn out 
periphery according to the law 

to be a very complicated problem with different parameters 
H(x)  =Ho exp( -0. l x  In H d H l ) ,  of the system. Thus, for-example, the term &-makes the 

where Ho and H1 are the values of the field at the center of 
the star and at a distance of 10 km from it, respectively. 
Then the result of differentiating the quantity p / p  with 
respect to x is added to the right-hand side of Eq. ( 15). We 
found that, first, this change is continuous and, second, the 
main compression occurs due to a strong field at the pe- 
riphery and not the center of the star. 

3.3. In practice the a dependence is insignificant in the 
interval 0.01 (a(0.99 

In Sec. 3 we studied the behavior of a neutron medium 
(in which the internucleon interaction is described by Wa- 
lecka's model ~ a ~ r a n ~ i a n ' ) ,  with a spherically symmetric 
metric, for densities at the center of the star. The fact that 
the masses and radii were found to be of the order of the 
values calculated previously in Refs. 2, 4, 18, and 20 is 
mainly due to our choice of the initial condition on the 
central density. Indeed, all thermodynamic quantities are 
calculated by differentiating the term proportional to 
Kv(z) Lv(z) and the magnetic field, i.e., they are of a com- 
pletely different nature from Refs. 18 and 20. For this rea- 
son, we do not discuss the limit of zero magnetic field. 

It should be kept in mind, however, that neutrons 
alone are not enough to construct a complete physical pic- 
ture of a star whose specific features include processes in 
which neutrinos, charged fermions, a pion condensate, and 
possibly also a number of exotic particles, such as the ax- 
ion, photino, and others, participate. For example, it is 

main contribution to the characteristic internal energy den- 
sity of the charged gas and the corresponding equation of 
state will be more complicated than in the case of neutral 
particles. 

Third, the system of seven equations with eight un- 
knowns is itself a complicated structure for further inves- 
tigation. A preliminary study of this system, using the con- 
jectured numerical values of the fields and temperatures at 
the center of the star, will make it possible to determine 
whether or not the choice of model and its predictions are 
qualitatively correct. 
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APPENDIX 

In order to calculate the leading asymptotic term in ro 
in a sum of the form 

m 

Xs(rm) = 1 ( - 1 ) k+lerok / P  
k= 1 

outside the circle of convergence I r o  I < 1 it is necessary to 
use Joncqui6re9s relations16 for the analytic continuation of 
the function F(z,s) into the range lz 1 > 1. Since by defini- 
tion 
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Then 
in our case z=e-'@ and we are interested in F ( l / z , s ) :  

Joncquihre's relation 

F (z ,s)  + eiTSp - ,s = - e'=I2 ( 1  ) [ ( I  -s,'"l) 27ri ( A l )  

is the analytic continuation of F(z,s)  into the region out- 
side the circle of convergence. Using the property of the 
Riemann zeta function for integer values of m 

where m = 1, 2, ..., and B, are Bernoulli polynomials, we 
obtain easily 

The appearance of i= ,/( - 1 ) in Eq. ( A 2 )  even though the 
initial series are obviously real should not confuse us, since 
the imaginary part cancels exactly, if the Bernoulli poly- 
nomial is written out explicitly as 

where ~ f :  are the binomial coefficients and Bk are the Ber- 
noulli numbers, and the fact that z= -e-" is also taken 
into account, i.e., 

For example, for s= 5 

Writing out the right-hand side of Eq. ( A 2 )  we obtain 

It  is obvious that the leading term from the Bernoulli poly- 
nomial will be 

and finally we obtain the leading term in rw in the desired 
sum 
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