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Strong three-dimensional pinning and creep explain many low-temperature properties of 
systems with charge-density waves. Among these is the increase in the dielectric constant E 

when the temperature increases and when the frequency decreases. 

1. INTRODUCTION low which an individual impurity does not give rise to 

Recent years have seen the discovery of many remark- 
able low-temperature properties of systems with waves of 
charge or spin density.'92 The temperature dependence of 
the dielectric constant has an additional sharp peak with a 
height that decreases as the frequency increases. The spe- 
cific heat is a power function of temperature and is non- 
equilibrium, while the conductivity is of hopping origin. 
These properties suggest that the low-temperature state is 
glasslike. 3-5 

Any glass is characterized by the presence of metasta- 
ble states separated by tall barriers. Usually calculating the 
energy of these barriers is extremely complicated. This pa- 
per considers a simple model of strong three-dimensional 
pinning, when sparsely spaced strong pinning centers 
(chain breakoffs) give rise to plastic deformations in 
charge-density waves (CDWs) and cause metastable states 
to form. 

An impurity in such a metastable state acts on CDWs 
with a force directed against di~~lacement.~" On the other 
hand, impurities near which CDWs are in equilibrium act 
on CDWs with a randomly directed force dependent on the 
position of the impurity. After averaging over random po- 
sition this force vanishes. In the event of strong pinning, 
the average force is proportional to the concentration of 
the impurities in a metastable state, while the barrier en- 
ergy is independent of concentration and fairly low. Hence, 
only at extremely low temperatures can such metastable 
states survive long and determine the physical properties. 
As the temperature grows, their contribution to the force 
rapidly decreases and the dielectric constant grows. 

This paper considers only the low-temperature region 
of strong pinning. The condition for strong pinning is 
found by applying the mean-field approximation to the in- 
teraction between chains. Unlike the one-dimensional case, 
in the three-dimensional the CDW-impurity interaction 
energy must exceed a critical The neutral (dipole) 
or charged solitons generated on such impurities determine 
the low-temperature behavior of the specific heat and the 
dielectric constant. 

2. DIPOLE SOLITONS 

The systems considered below are three-dimensional 
objects. In the three-dimensional case there is a critical 
value for the energy of the CDW-impurity interaction be- 

pinning. We will see that this energy is equal to a quarter 
of the soliton energy. Impurities with an energy below this 
critical value lead only to weak collective pinning, when 
metastable states appear only as a result of the collective 
action of many impurities.G8 At these low temperatures we 
will be considering the collective-pinning force is exponen- 
tially small because of the long-range Coulomb 
intera~tion,~ while the size of the region where there is 
short-range order is exponentially large. Hence, we can 
ignore collective pinning at low temperatures and consider 
the interaction with CDWs of individual sparsely spaced 
impurities. 

Let us assume that an impurity interacts only with the 
chain on which it is situated. The interaction of a specified 
chain with the other chains will be taken into account in 
the mean field approximation. Quantitatively this approx- 
imation is justified by the fact the cell of the superstructure 
in the transverse direction is large (2X 8 for TaS3), which 
suggests that the interaction between chains is long-range. 
Thus, the problem is reduced to a one-dimensional one 
with the energy8-'' 

where w is the energy of the interaction between chains, 
which is of the order of the transition temperature T,, and 
Vi is the energy of the CDW-impurity interaction. For a 
weak interaction ( V <  w), V is the Fourier transform of 
the interaction potential. For a strong interaction, the im- 
purity'leads to CDW breakoff at the chain. The tunneling 
of CDWs through the impurity occurs in this case via 
virtual disintegration of CDWs into individual electrons1' 
and their tunneling through the impurity or neighboring 
chains. The constant V provides a phenomenological de- 
scription of these processes. When V is large, the impurity 
fixes the phase and q(xi) is close to exi. 

An equation for the phase is obtained by minimizing 
H: 
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Without impurities the solution to this equation has the 
form of a soliton: 

tan q/4=exp[+ (x-xo)]. ( 3 )  

Here, in one direction from the soliton the phase on one 
string differs by 29 from that on the other strings.'' The 
energy of such a 2~-soliton is w, and the charge is +2e. 

Sparsely spaced impurities, the distances between 
which are much greater than the soliton size, can be con- 
sidered independently. For one impurity a soliton solution 
(3) with energy w also exists, but now the soliton is pinned 
by the impurity and xo is not arbitrary but is found from 
the condition q (xi) = exi.  

Without impurities there is a state q = O  with a zero net 
charge that energetically is more advantageous than a soli- 
ton. The solution p=O does not hold near an impurity; 
instead there exists a solution with a zero net charge but 
with a dipole moment: 

tan q(x)/4=tan($/4)exp(- Ix-xil ), (4) 

where $ = q(xi) is found from the matching condition 

+ ( w/2 ) sin ( $/2 ) + Vsin (exi+ $1 = 0. (5) 

Solution (4) is a linear combination of two solitons of 
opposite sign with centers at the points x = xi 

ln tan $/4. 
The energy of such a dipole soliton is 

which is smaller than the energy w of a charged soliton. 
Equation (5) for $ follows from the condition dE/a$=O. 

3. THE CONDITION FOR STRONG PINNING 

When the interaction is weak ( V(w), an impurity 
perturbs CDWs only weakly, $ is small (or close to 2 ~ n ) ,  
and the interaction energy is 

E= V( 1 -cos Qx,). (7 )  

The force with which the impurity acts on CDWs is 
aE/axi. Averaging this force over the random distribution 
of impurities or over time yields zero. A finite value 
emerges only due to collective effects that are quadratically 
or exponentially small in the impurity concentration. An 
effect linear in the impurity concentration emerges only 
when the energy (6) is not a one-valued function of xi, 
that is, Eq. (5)  has two intersecting solutions. It can be 
verified that this occurs when V > w/4. For instance, 
when V ) w/4 holds the impurity fixes the phase, $ 
= -exi, and the energy is 

If we ignore the exponentially weak quantum- 
tunneling processes, the two branches intersect at Qxi 
= P, and the energy depends on the history. For instance, 
when the wave propagates to the left, the position of the 
impurity relative to the wave, xi(t), increases as a function 
of time, and in Eq. (8) we must select the upper sign. 

When Qx; approaches 2 ~ ,  the two solitons of opposite sign 
move away from the impurity, and the energy approaches 
2w. The impurity-wave interaction force does not change 
sign and is given by the following expression: 

After averaging over the period of xi, we get the average 
force: 

When the wave is displaced by ~ P / Q  this force per- 
forms work in order to create two outgoing solitons. The 
solitons never return, and further displacement of the wave 
by one period creates a new pair of solitons. 

The same average force emerges for all impurities with 
energy V> w/2. As noted earlier, impurities with 
V < w/4 do not lead to the formation of metastable states 
and contribute nothing to the average force. Impurities 
satisfying w/2 > V> w/4 do not fix the phase and do not 
lead to the formation of solitons but do form metastable 
states with a zero net charge. The work spent on their 
formation is finite but smaller than w, with the result that 
the average force is smaller than the value given by Eq. 
(10). 

The upper critical electric field is 

eE,= wn, (11) 

where n is the line density of strong impurities. For fields 
higher than E, the CDWs move coherently and a periodic 
signal (narrow-band noise) is generated due to soliton cre- 
ation. 

4. CHARGE-DENSITY WAVE 

Above we ignored thermal and quantum fluctuations. 
Allowing for such fluctuations causes the CDW to "creep" 
through the impurities at a field strength below the critical. 
The probability of quantum tunneling of CDWs through 
an impurity was found in Ref. 9 via the theory of instan- 
tons (or macroscopic quantum tunneling) and is given by 
the following relation: 

where m* is the effective soliton mass (m* ) m). 
Impurities of large transverse size simultaneously pin 

many chains, that is, one or several superstructure cells. 
Such pinning has apparently been observed by the electron 
diffraction method.12 For such multichain tunneling the 
effective mass m* in Eq. (12) must be increased. Because 
of the large CDW mass (m*) this probability is exponen- 
tially low, but it is important in the event of slow CDW 
motion. Quantum tunneling leads to repulsion of the 
branches of the spectrum, with the transitions between 
these branches described by the Landau-Zener theory. If 
the velocity of CDW motion is high, so that the time it 
takes the wave to travel one wavelength past an impurity is 
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short compared to TO, there is no quantum transition be- 
tween the branches, so that it is proper to apply the clas- 
sical approach to the problem. But if the velocity is low, 
then to within exponential accuracy the system remains on 
the lower level and these impurities provide nothing to the 
average force. 

Thermal fluctuations play a similar role. If thermal 
equilibrium has time to establish itself while the CDW 
travels through the impurity, the average force is propor- 
tional to the lifetime of the metastable state and is weak. 
The time it takes thermal equilibrium to set in is deter- 
mined by the activation energy, that is, the saddle point of 
Hamiltonian ( I ) ,  or the maximum of energy (6). This 
maximum corresponds to the third solution of Eq. (5).  For 
V) w the solution is $ = -exi + P, and the energy is 
close to 2 V. Hence, the time for thermal equilibrium to set 
in is exponentially long: 

Here, as in Eq. (12), we have not written the pre- expo- 
nential factors, which are model-dependent. 

Depending on the temperature and the interaction en- 
ergy V, either thermal relaxation or quantum relaxation is 
important. Hence, it is logical not to solve the problem of 
macroscopic quantum tunneling but write an interpolation 
formula: 

T - ~ = T ~ ~ + T ? ' .  (14) 

Creep processes give rise to a nonlinear current- 
voltage characteristic below the critical field.I3 

5. SPECIFIC HEAT 

As noted earlier, impurities at points where Qxi is close 
to P lead to states with close energies. These states provide 
the main contribution to low-temperature specific heat.3 If 
the temperature is not too low ( T T ~  % 1 ), quantum repul- 
sion of levels can be ignored and the specific heat is given 
by the following formula: 

where n is the impurity density, and v the density of states 
with equal energy. Equation (6) yields 

where P( V) is the function determining the distribution of 
impurities with respect to their interaction energy. If this 
function falls off rapidly with increasing V, the tempera- 
ture dependence may depart from linearity because impu- 
rities with a threshold energy V= w/4 yield a specific heat 
proportional to T'~. Above we assumed that the temper- 
atures are not too low, and that in the course of the exper- 
iment there is time for the essential impurities with ener- 
gies V z  w to establish a state of thermal equilibrium. 

6. DIELECTRIC CONSTANT 

The displacement q, of CDWs caused by a weak elec- 
tric field E can be found from the equilibrium condition 

eE= C fia aEia(Qxi-~)/axi 
ia 

(17) 

where the energy of the two branches, Eia (a = +, - ), is 
determined by Eq. (8), and the distribution functions f, 
satisfy the equation 

Solving the system of equations (17) and (18) to first 
order in the displacement q, of the wave, we arrive at the 
following expression for the dielectric constant E = ~ S /  
E: 

where S is the transverse size of a unit cell. Because of the 
exponential dependence of 77- On V specified by Eq. ( 13), 
at low temperatures only impurities whose energy V is 
much higher than Tln w-I contribute to E. As the temper- 
ature rises or the frequency falls, the number of such im- 
purities rapidly decreases and E grows. 

This temperature and frequency dependence of E has 
been observed in e ~ ~ e r i m e n t s . ~ " ~ " ~  As Eq. ( 19) implies, in 
the low-temperature region E depends only on the product 
Tln o-'. For instance, for an exponentially decreasing dis- 
tribution function P( V) =: exp( - V/Vo) we have 

As the temperature grows still further, the effects of 
collective pinning become important and lead to a decrease 
in E as T increases.16 

7. HOPPING CONDUCTIVITY 

Below the Peierls transition temperature, a CDW is a 
glass. As in any glass, there are arbitrarily high barriers to 
overcome in order to reach a state of thermal equilibrium. 
A CDW in a weak field is pinned and there is no collective 
motion. Singular charges can serve as electric current car- 
riers, and at high temperatures (=: T,) these charges are 
electrons. These excitations have a large energy gap A,,, 
and as the temperature is reduced the role of carrier 
switches to topological excitations, solitons with a lower 
energy w, which can be considered to be a dislocation loop 
with a small radius.". At intermediate temperatures the 
conductivity is proportional to the number of free 
electrons5: 

The smallness of the pre-exponential factor proportional to 
7;' (see Eq. ( 12) ) is due to the low probability for soli- 
tons to pass through the impurity.9 Hence at T =; T, the 
soliton contribution to the conductivity is lower than that 
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of electrons, although the number of solitons is great. Only 
at temperatures noticeably below T ,  does soliton conduc- 
tivity take over. As the temperature drops still further, the 
number of free solitons decreases exponentially and hop- 
ping conductivity sets in. The solitons pinned to impurities 
do the hopping. Coulomb interaction between solitons re- 
sults in the following expression for hopping conductivity: 

The pre-exponential factor in this expression is propor- 
tional to the number of pinned solitons. 

The energy w of such a soliton is higher than that of 
state (8) with zero net charge. But for V large and Qxi 
close to .n the difference in the energy of such states is 
small, with the result that the density of such pinned soli- 
tons decreases with temperature only algebraically. 

Commensurability effects, so far not taken into ac- 
count, lead to a situation in which the number of pinned 
charged solitons remains finite even at absolute zero. These 
effects make the chemical potential of charged solitons fi- 
nite, although lower than w. The energy of charged soli- 
tons is w &p, and for solitons of the same sign can be lower 
than the energy of a dipole soliton (8). These charged 
solitons provide the principal contribution to the hopping 
conductivity. 

8. CONCLUSION 

We have examined a model of strong CDW pinning. In 
it impurities distort the wave only on the chains containing 
the impurities, while interaction with neighboring chains is 
taken into account in the mean-field approximation. Quan- 
titatively the model provides a condition for strong pin- 
ning: the wave-impurity interaction energy must exceed a 
quarter of the energy of a 2.n-soliton. 

Deformation of neighboring chains may change the 
quantitative relations but has no effect on the quantitative 
picture. Here a strong impurity fixes a local value of the 
CDW phase. A charged soliton may appear on the impu- 
rity, but the formation of a dipole soliton, in which charges 
with different signs appear on opposite sides of the impu- 
rity, is energetically more advantageous. Two states that 
differ in the sign of the dipole moment generally have dif- 
ferent energies. One is metastable. The existence of such 
states makes it possible to explain qualitatively many low- 
temperature properties of systems with CDWs, say, the 
increase in E when the temperature rises and when the 
frequency decreases. 

The decrease in E brought on by a further increase in 
is related in this picture to the change in 

the nature of pinning.16 At high temperatures the pinning 

is collective; each impurity gives rise to a weak elastic de- 
formation of CDWs, short-range order exists in large re- 
gions containing many impurities, the average force is 
weak, and the barrier energy is high. At low temperatures 
strong single-center pinning, where sparsely spaced strong 
pinning centers (chain breakoffs) give rise to plastic defor- 
mations in CDWs, is more important. In this picture a 
CDW is assumed to be in a glassy state everywhere below 
the three-dimensional transition temperature T, .  This as- 
sumption is supported both by the theoretical reasoning 
that random pinning transforms any structure into a glassy 
state and by the experimental evidence about the existence 
of a hysteresis loop at high temperatures.' The picture does 
not require the hypothesis that there is an additional low- 
temperature glassy phase transition.314 
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