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Spontaneous parametric light scattering in a system of plane-parallel linear and nonlinear 
anisotropic layers is analyzed. It is shown that regular layered systems (superlattices) 
permit generation of photon pairs (biphotons) with a broad spectrum, i.e., with a high degree 
of localization of photons belonging to one pair. Scattering in a three-layer nonlinear 
system provides a way of preparing biphotons with arbitrary polarization given by four 
parameters. 

1. INTRODUCTION 

Spontaneous parametric light scattering in transparent 
birefringent piezocrystals is an efficient method for gener- 
ating optical radiation consisting of pairs of correlated 
photons.192 As noted in Ref. 1, this radiation can be used 
for measuring group delays. However, in direct measure- 
ments of photon detection times, the precision of the 
method is restricted by the time response of existing pho- 
todetectors and electron circuits, which is typically - 1 ns. 

An ingenious method for overcoming this restriction 
was demonstrated in Ref. 3 (see also Refs. 4-7). As a 
result, the limiting measurement accuracy is determined by 
the scatter of the emission times of photons belonging to 
one pair, i.e., the second-order coherence time (Ref. 8). 
For a monochromatic pump wave in the absence of addi- 
tional filtering, this time is determined by dispersion of the 
refractive index of the piezocrystal and its thickness I. 
When a linear approximation is used for the dispersion law 
w(k), the distribution function f (T) for the difference 
T= tl - t2 in the photon emission times from a crystal has a 
rectangular shape. It is constant within the interval 

and is equal to zero outside of this interval. Here, the group 
velocities of the signal and idle photons inside the crystal 
(which are assumed different) and the effective radiation 
spectrum width are denoted by u=dw/dk and An, respec- 
tively. Note that the radiation spectrum has the shape 
(f ( a )  ( 2 = s i n c 2 ( ~ ~ / 2 )  where f ( 0 )  is the Fourier trans- 
form of the distribution function f (7). For I= 1 cm and 
other typical experimental conditions, Eq. ( 1 ) gives T - 1 
ps [in the degenerate case, we have U I  = u2, and quadratic 
terms should be taken into account in the expansion w(k)]. 

An obvious way of decreasing T and hence increasing 
An and the accuracy of measuring small group delays by 
the method of Ref. 3 is to decrease the crystal thickness 1. 
However, in this case, the intensity of photon pair emission 
("biphoton flux") decreases too. 

In the present work, we examine a method for reduc- 
ing T which makes use of multilayered crystals (superlat- 
tices) and is not accompanied by an intensity drop. The 

essence of the method is to cancel the dispersion o ( k )  by 
means of the neighboring layers. 

A general treatment of parametric scattering in a lay- 
ered anisotropic medium with neglect of wave reflection 
from the layer boundaries is given in Sec. 2. Two types of 
superlattices are examined in Secs. 3 and 4. The use of a 
two-layer medium to symmetrize the function f (T) is an- 
alyzed in Sec. 5. The feasibility of using a three-layer me- 
dium for preparing biphotons with arbitrary polarization 
states is studied in Sec. 6. 

2. PARAMETRIC SCAlTERlNG IN A LAYERED MEDIUM 

We start from an effective interaction Hamiltonian of 
the following form 

where x is a real quadratic susceptibility tensor, @, is the 
classical positive-frequency pump field, and ED is the oper- 
ator of the positive-frequency scattered radiation field. We 
are interested in collinear scattering parallel to the pump 
beam (the z-axis) which is nearly degenerate in frequency. 
In this case, a, fl, y =x,  y. We neglect the longitudinal field 
components and other factors introducing small correc- 
tions. 

In the diffractionless approximation, the field does not 
depend on the transverse coordinates x and y, so ( 1 ) takes 
the form 

where 

Here m is the layer number, counting to the left from the 
6 6 exit" plane z=0, z, and zm-I are the boundaries of the 
layer m, and x(") is its nonlinearity. Some of the layers 
may be linear with x(")=O. The indices a, P, and y refer 
to the laboratory frame rather than the crystallographic 
one. 
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We restrict ourselves to the case of optically uniaxial 
layers with axes belonging either to the xz-plane or to the 
yz-plane. The waves polarized in the x or y direction are 
thus normal waves (ordinary or extraordinary) for the 
whole system of layers. As a result, the field in layer m may 
be represented in the form 

where a:(w) is the operator for photon creation in the 
longitudinal mode with a frequency o and polarized par- 
allel to the axis a =x,y, DAm)(z,w) is the propagator deter- 
mining the phase change in the path from the z-plane be- 
longing to the layer m to the z=0 plane. The factor & 
multiplying a ( o )  is omitted here. It can be allowed for in 
finite normally ordered expressions through the inclusion 
in the propagators D(w) or the detector efficiency 7 (0 ) .  

Neglecting reflected waves, we have 
m- 1 

~ A ~ ) ( z , w ) = e x ~  i k~)l ,+ik~m)(zm-l-z)  . (5) I .=I 1 
Here we have written I,=z,-z,-~, and kp)(w) is the cou- 
pling resulting from the dispersion relation for an ordinary 
or an extraordinary wave polarized in the a direction in the 
layer n. 

We assume the pumping field to be monochromatic: 

where iA, are the pumping field components in the plane 
z=0 and t=O. The phase i is added for convenience. 

From (3)-(6), we get 

where 

and we have allowed for a possible dispersion X. There is 
no summation over the a, P, and y indices here because we 
assumed that phase velocity matching necessary for effi- 
cient interaction occurs in each nonlinear layer only for a 
certain combination of indices, a,, Dm, and ym . 

Hence, we find the state vector of the scattered field in 
first-order perturbation theory 

where the following notation is used: 

Here, rm and 8:) represent parametric gain factor in the 
layer m and the phase detuning in the layer n, respectively, 
for the fields with polariiations a,, Dm, and 7,. The ap- 
proximation o(wo-o) -- is used. 

Thus, the function 

determines the contribution of the mth layer to the ampli- 
tude of the state I l)n,8m 1 1) -n,ym in which one photon has 
a frequency w* + and polarization Dm and another pho- 
ton has a frequency w* - R and polarization ym . All the 
photons belong to one transverse mode with an axis par- 
allel to the z-axis. The contributions from different layers 
to the total biphoton field can interfere. In the case of 
identical nonlinear layers separated by a linear gap (vac- 
uum, in particular), this is an analog of Ramsey interfer- 
ence observed in beam spectroscopy (see Ref. 9). 

3. CANCELLATION OF DISPERSION BY MEANS OF LINEAR 
INTERMEDIATE LAYERS 

We assume there are N identical nonlinear layers of 
thickness I with optical axes in the plane yz and a type-I 
interaction (a&= yxx=eoo) separated by N - 1 linear 
gaps of thickness 1'. This model has already been treated in 
Ref. 9, and only a part of the results are presented here. 

We adopt the notation S2,+,=6, S2,=S1. Then it fol- 
lows from (9) that qm= (m - 1) (S+Sf ) and 

+ (N- 1)Sf]/2). (11) 

Here, the first factor describes ordinary parametric 
scattering in a layer of thickness I and the second describes 
interference between layers. Assume S ( a  ) + 6' (R ) 
= const, i.e. the dispersion is cancelled out. Then the spec- 
tral width is determined solely by the nonlinear layer thick- 
ness. As a result, for small I a wide spectrum results, and 
the photons in a pair can be localized precisely, [see ( I*)]. 
In this case the total biphoton flux intensity is determined 
by the total thickness N1. 

The Fourier transform f (7) of the function f ( a )  de- 
termines the probability amplitude for emission of a pair of 
photons from the plane z=0 at times t and t+r.  As shown 
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in Ref. 9, the function f (7) consists of square pulses of 
length T [see (I*)]. These pulses overlap and interfere if 
dispersion is cancelled. 

4. CANCELLATION OF DISPERSION IN TYPE-II 
INTERACTION 

Let us consider a system of identical nonlinear layers. 
Assume the axes of the odd and even layers lie in the 
planes yz and xy, respectively. The optical axes make the 
same angle with the z-axis in all the layers, providing phase 
matching 6(0) =0 at the degenerate frequency R =0 for 
type-I1 interactions: yxy=eoe in odd layers and xxy=eeo 
in even layers. Thus, the orientations of crystallographic 
axes in adjacent layers differ from one another by a 90" 
rotation about the z-axis. 

According to (8), 

where F = H X m .  In the group-velocity approximation, we 
have 

6(R) [ke(oo) -ko(w*+R) -k,(o*-R)]lzRT, 

S1(R) = [ko(oo) -ke(w*+R) -ko(o*-R)]IzE-RT, 

where ~=l(u;'-u;') and e=S1(0). 
For m =2n + 1, we find from (9) 

r m  XyxyAy 9 

f l(fi)  = (1 -e-iaT)/if)~=e-iaT/2 sinc(flT/2). 

For m = 2n, we have 

cpm=n(6+6') -6-,n~-RT. 

Here, x ~ ~ = x ~ ~ ( ~ o  to*+f%o*-Q) = X ~ ( W O ~ @ * - - ~ A  
w* + R)  are the components of the tensor x m the labora- 
tory frame. Neglecting the dispersion of on the interval 
An we get XxxY=Xxyx~ 

Let x' and y' be unit vectors linked to the crystal in the 
even (rotated by an angle of 90") layers, then xl=y, 
y'=-x. Consequently, for even layers, we have 
x ~ ~ ~ = x ~ ~ ~ ~ ~ I  and the parameters r2n+l and r2,, differ only 
in the components A, and Ax of the pump field. 

We require that I rzn+ 1 = 1 r2,, 1 . This necessitates 
that the condition A,/A,=~* be fulfilled, i.e., the pump 
polarization in the plane z=0 should correspond to a point 
on the Poincark sphere with coordinates (90"- 6,q = 90"). 
For 6 = 0 and 6 = 90", these correspond to linear polariza- 
tion at an angle of 45" and circular polarization, respec- 
tively. The necessary pump polarization at the input to the 
system (at z = z ~ =  -21,) is determined from (5) and 
(6). 

As a result we find 

The spectrum of a biphoton wave packet is described 
by a function 

Let 6 =0 and E= 2kr. Then for an even number of layers 
M, we get 

M 
F ( R )  =- rl f 1 ( ~ )  (1 +eiaT) = M T ~  sinc(RT). 

2 
(17) 

The bandwidth IT/T and the intensity are thus determined 
by the thickness 21 of a pair of layers and the total thick- 
ness MI of the material, respectively. Note that F ( R )  does 
not contain a frequency-dependent phase factor, so the dis- 
tribution function f (tx-t,) is even (t, are the times at 
which photons with polarization a are detected). 

Let the pump be polarized parallel to the y-axis. Then 
we have l?2n=0, i.e., even layers play a passive part com- 
pensating the dispersion in odd layers, as in the model 
presented in Sec. 3. The even terms in the sum ( 16) should 
now be set equal to zero: 

Here N= (M- 1)/2 is the number of active layers with 
axis in the yz-plane. For e=2kr, we get (compare with 
(1 I )  for 6=  -S1=RT) 

5. SYMMETRIZATION OF TYPE-II BIPHOTONS 

Let us consider two anisotropic layers, linear (m = 1 ) 
and nonlinear (m =2), with axes in the yz-plane. We as- 
sume that the interaction yxy=eoe takes place. According 
to (8) and (9), 

I+)= lo)+ Idfi~(fi)a:(n)a;(-n) lo), (20) 

where 

In the linear approximation for the dispersion, we have 

where e=S1(O) and 
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The Fourier transform of the function f ( a )  deter- 
mines the probability amplitude for detecting photons at 
the times t, and t,+r (when the distances from the detec- 
tors to the exit plane z= 0 are equal). According to (2 1 ) 
and (22), 

1 (7- T;; T2/2) 
f ( r )  = J df2eiarf (n)/2a=- ePiEII 

7-2 
9 

where II(x) is a square-wave function (the Fourier trans- 
form of the function sinc(f2) ): n ( x )  = 1 for - 1/2 < x < 1/ 
2, and n ( x )  =O otherwise. Consequently, for T I =  - T2/2, 
the distribution function becomes even: f (7) a II (7/T2), 
i.e. x-photons are detected earlier or later than y-photons 
with equal probabilities. This symmetry is essential when 
observing polarization interference effects and ultrashort 
delays.6 

6. PREPARATION OF BIPHOTONS WITH ARBITRARY 
POLARIZATION 

In classical optics, it is usual to specify the polarization 
state, i.e., the transverse structure of a plane monochro- 
matic wave, by means of three numbers, for instance, the 
Stokes parameters. However, such a description does not 
completely determine the results of experiments in which 
not only the intensity is recorded, but also its fluctuations 
and correlations or still higher-order moments as 
Thus, in the general case, the transverse structure of a 
plane wave is given by more than three parameters. 

For instance, in the case of a plane wave with a certain 
number of photons N, the photons may be distributed over 
two orthogonal modes in N +  1 ways, so the field state is 
given by N+ 1 complex numbers (cO,cl, ..., cN) constituting 
the polarization vector in a (2N+2)-dimensional space1'. 
If we are not interested in the overall phase of the state, 
then 2N independent real numbers remain in view of the 
normalization condition B 1 ci 1 = 1. These numbers give a 
point on the sphere s~~ in a (2N+ 1 )-dimensional space. 

For N= 1, the space of states can be mapped onto the 
PoincarC sphere as in the classical case. For N = 2, we have 
four polarization parameters and an 9 sphere as the pro- 
jective space. The polarization transformers are character- 
ized by two parameters, so they do not provide a way to go 
between two arbitrary points on 9. The missing degrees of 
freedom (in the case when a two-photon state is prepared 
using parametric scattering) can be supplied by using two 
or three nonlinear layers with different types of interaction. 

Let us consider a sequence of three layers with inter- 
actions yxx = eoo, yxy = eoe, xyy = eoo. The optical axes be- 
long to the planes yz, yz, and xz, respectively. According to 
(8) ,  we have a state 

where the primed operators are related to modes with fre- 
quency - R and the functions Fm(f2) are determined from 
Eqs. (9). 

By adjusting the parameters, we can obtain arbitrary 
relations between the polarization components c, a F,, 
i.e., prepare a biphoton with arbitrary polarization at a 
given pair of frequencies o*+R and a*-f2. The fre- 
quency dependence of F ,  after Fourier transformation de- 
termines the polarization-time properties of the biphotons. 
For wave packets emitted from different layers to overlap 
in time, narrow-band frequency filters which "stretch" the 
packets can be used (see Ref. 6, where this method was 
used to observe interference in the case of type-I1 interac- 
tion). 

This method for preparing biphotons with predeter- 
mined polarization properties may be called sequential. 
Note that only two crystals can be used when transforming 
a two-component beam with ordinary polarization trans- 
formers. In this case, the c, components are mutually 
transformed using SU(2) matrices of dimensionality 3 X 3, 
the analogs of the Jones mat rice^.^"^ 

We can use also a parallel method with two or three 
crystals located close to each other and giving spatially 
separated beams. When these beams are combined using 
semitransparent mirrors, a single beam with predetermined 
polarization properties is obtained. 

7. CONCLUSION 

Our analysis was restricted to the first order of pertur- 
bation theory, i.e., spontaneous scattering. If pumping is 
sufficiently intense, the probabilities of emitting four, six, 
etc., photons at one time become noticeable. In this case, 
the parameter r becomes of order or greater than 1 (para- 
metric superfluorescence or squeezed-vacuum generation). 
The use of layered media to control the spectrum-time and 
the polarization structure of radiation is possible in this 
case as well. 

The implementation of this method will involve a num- 
ber of technological and other problems. To obtain a 
second-order coherence time less than 10-l4 s, one needs 
to produce a superlattice of oriented single-crystal layers 
with a period of order 0.1 mm and a number of layers of 
order 1&100. The linear dispersion approximation and the 
neglect of reflections from layer interfaces can prove to be 
invalid in this case. 

Note that we can use multiple beam transmission 
through a single thin plate consisting of one or two layers, 
instead of a superlattice. Polydomain single crystals may 
also be of interest (see Ref. 11 in which experiments on 
observing angular-frequency spectrum of parametric scat- 
tering in such crystals are described). 
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