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We find the structure of the vacuum in the two-dimensional Yang-Mills theory of a 
topological mass corresponding to the Abrikosov lattice. In contrast to superconductivity, the 
solution is determined in the class of stationary (rather than static) functions for the 
charged components of the field and describes spatially periodic electric and magnetic fields. 
Such a structure is energetically preferable to a homogeneous magnetic field and can 
emerge spontaneously. Both the magnetic flux quantization in the fundamental cell of the 
lattice and the Hall effect are inherent in it. We also show that the conductivity tensor 
depends on the value of the topological mass and the magnetic field strength. 

1. Studies of non-Abelian gauge theories have shown 
that the spectrum of gluons in an external magnetic field 
contains a tachyon which leads to instability in 
the perturbation-theory vacuum. This raises the question 
of finding a stable vacuum state. In relation to gauge the- 
ories with spontaneous symmetry breaking this problem 
was solved in Refs. 3, 4, and 5: it was demonstrated that 
the evolution of the instability leads to the appearance of a 
periodic structure formed by vortex strings, of the type of 
the Abrikosov lattice in type I1 s~~erconductors.~ 

The vacuum state of two-dimensional SU(6) gluody- 
namics with a Chern-Simons mass in an external constant 
and homogeneous chromomagnetic field was studied in 
Ref. 7. There it was found that in this case the gluon 
spectrum contains a tachyon mode too, but that the pres- 
ence of a Chern-Simons mass m results in a threshold in 
the appearance of this mode, similar to the way that the 
W-boson mass leads to this threshold in electroweak 
the01-y.~ 

Our goal here is to investigate the possibility of gener- 
ating a periodic vacuum structure in two-dimensional 
SU(2) gluodynamics with a Chern-Simons mass. We find 
that such a structure does indeed emerge and is due exclu- 
sively to the presence of a Chern-Simons mass, in contrast 
to the electroweak theory, where it emerges owing to the 
evolution of the instability caused by the presence of a 
tachyon mode. For m=O the structure does not occur. A 
peculiar feature of the periodic configuration in the two- 
dimensional space in an external magnetic field is that 
static and stationary solutions are physically of equal sta- 
tus. The reason is the absence of a longitudinal component 
in the momentum. The vacuum structure manifests itself 
even in magnetic fields H lower than the threshold of the 
tachyon mode and has an energy lower than that of the 
homogeneous field. The gluon fields W form a lattice of the 
triangular type. We calculate the normalization conditions 
and the currents I, of the gluon fields, as well as the energy 
and the electric and magnetic fields generated in the sys- 
tem. We also study the magnetic flux quantization in the 
fundamental cell of the lattice. All these quantities are ex- 
pressed in terms of the square of the gluon condensate, 

- 
I WI2. The conductivity tensor is antisymmetric, 
uij=~iju, and, in view of the topological quantization of 
mass m (see Ref. 9), assumes a number of discrete values. 
We find that there is a field strength H=H,  at which the 
energy of the resulting configuration vanishes; in fields 
weaker than Hc the energy becomes negative. Hence the 
periodic structure may occur even in the absence of an 
external field. Thus, this model constitutes a nontrivial ex- 
ample of spontaneous Lorentz-invariance breaking emerg- 
ing at the classical level. As noted earlier, this is due to the 
presence of the mass m. 

2. Let us consider the Lagrangian of a two-dimensional 
SU (2) gluodynamics with the Chern-Simons term: 

Here A; is the potential of the Yang-Mills field; 
$,=a& - ad; + g ~ ~ p ;  qb = aoba,, + geabc~; gis 
the coupling constant; m is the Chern-Simons mass; 
p =0,1,2; and a = 1,2,3. In what follows it is convenient to 
shift to a "charge" (oblique) basis by introducing the no- 
tation 

In terms of the fields W t  and A, the Lagrangian assumes 
the form 

Y = - P ; ~ W ~ P W - ~ + P ; ~ W ~ P W - ~ - ~ ~ W ~ W ~ F ~ ~  

where F , = ~ ~ v r a ~ , ,  and the kinetic momentum 
P,= ia,+g(A,+A,) takes into account the external field 
A, and the field generated in the system gl,. We choose 
the external-field potential in the form 2 , = S , 2 ~ ~ I .  The 
equations of motion that follow from the Lagrangian (2) 
are: 
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-mt?pv(a~v-igw; W,+ ). (5) 

Below we follow the method developed in the classical 
paper of ~br ikosov,~ describing the properties of type I1 
superconductors in an external magnetic field whose 
strength is close to critical. 

Let us consider the linearized version of Eq. (3): 

- 
where Fp= i& +g&, and pPv= 82,- ad,, . Applying 
the operator Pp to this operator and allowing for the com- 
mutation relation [4 ,Fv] =igFpv , we arrive at the follow- 
ing corollary of the linearized equation of motion: 

w; =o. (7) 

It is easy to see that there are no static solutions in Eq. (6) 
with allowance made for condition (7). The reason is that, 
as shown below, not only a magnetic field but also an 
electric field develops in the system. Let us broaden the 
class of solutions considered and seek the solution to Eq. 
(6) in the form 

Going over to the Fourier transforms 

we can write Eq. (6) as 

The solution of this system has the form 

where C is a constant; w satisfies the equation 

02-mw+gH=0. (12) 

The vector 

is the eigenvector of the spin operator with the eigenvalue 
+ 1. Note that the eauation obtained satisfies the condition 
FpW-p=0.  tion on (12) yields o*=m/2 
* J ~ H .  Hence, stationary solutions exist in fields 
H lower than Ho= m2/4g. 

3. To find the vacuum structure in fields H somewhat 
lower than Ho, we follow Abrikosov's reasoning6 by al- 
lowing for degeneracy in k and introduce the linear com- 
bination of the wave functions ( 1 1 ) with different mo- 
menta: 

where the C,, are constants. To obtain a lattice structure, 
we subject the C,, to the following periodicity condition: 

where v is a fixed integer. Then 

As is known (see Ref. 6), the properties of the solutions 
are almost entirely independent of the specific choice of the 
C, and k, which determine the shape of the lattice. In what 
follows we drop the subscript L on WL. The nonlinearity 
of the system lifts the degeneracy in k and allows for nor- 
malizing the function ( 13). 

Let us now calculate the currents (5). To this end we 
write (13) as W(x,y,t) = 1 W(x,y) 1 exp[iO(x,y) -iwt]. 
Substituting this into (5) and allowing for the explicit form 
of the vector bp, we arrive at the following expressions for 
the current components: 

Here the terms proportional to A, I W I are discarded ow- 
ing to their smallness compared with I W1 2. Substituting 
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the current ( 15) into the Maxwel! equations (4), we find 
the relationship between the field F12 generated in the sys- 
tem and the W field: 

Thus, the potential A. contributes to the value of the mag- 
netic field, and this occurs owing to the presence of the 
mass m. If we allow for ( 16), the zeroth component of Eq. 
(4) becomes 

As is known, the presence of a Chern-Simons mass gener- 
ates a constant charge in the plane.9 The term mH on the 
right-hand side of Eq. (17) is precisely this constant 
charge density, on top of which an electromagnetic field 
develops in the system. The term contributes nothing to 
the electric-field component lying in the plane and has no 
effect on the formation of the vacuum structure; it can be 
dropped in what follows. Then the solution for A. is 

Ao(r) = -- o r - r  I r 1 ,  (18) 
P 

where Ko(x) is the modified Bessel function of the second 
kind, and r and r' are radius vectors in the (x,y) plane. A 
simpler expression for Ao, which makes it possible to ob- 
tain res.lt% in explicit form, is obtained in the approxima- 
tion Mo/Ao(m2. As a result we have 

Thus, as noted earlier, the presence of the Chern-Simons 
mass Aleads to the appearance of an electric field 
E ~ = F ~ = ~ & , .  In final form the expressions for the mag- 
netic and electric fields generated in the system are 

4. We return to the solution (13) and normalize W 
with allowance for the nonlinearity of the system. Let us 
examine the expression for the energy of the system of 
fields: 

where 2' is the Lagrangian (2). Suppose that the fields W 
and A minimize the configuration's energy. Replacing W 
with ( 1 + E )  W, E( 1, seting the energy variation equal to 
zero, we get 

where the terms proportional to E~ have been discarded. 
Here the AP field is represented in the for m AP=Af' 
+ A;) where A:') results from the W field and the 
deviation o f  H from Ho. Integrating by parts, employing 
Eq. (6) the mulas ( 15) the current components, allowing 
the fact that W-P satisfies the condition & W-P=O, we 
reduce the expression (24) the energy to the for m 

Bearing in mind that F12(1)=H-HO + g(1- 2w/ 
m) 1 W 1 2, we arrive at the following normalization condi- 
tion : 

where by I W 1 and I W 1 we have denoted the quantities 
averaged over the volume V occupied by the field. The 
normalization condition written in this way plays an im- 
portant role since it is independent of the form of the func- 
tion W, that is, independent of the nature of the structure 
emerging in the vacuum. Note that at m =O it follows from - 
Eq. (24) with allowance for (12) that I W I  4 = ~ ,  that is, 
no gluon condensate is present. The normalization condi- 
tion obtained differs substantially from those that emerge 
in the superconductivity theory6 and the electroweak 
the01-y.~ For one thing, the value of the gluon condensate 
I W1 does not vanish at H=O if we select w=o+ The 
calculation of the energy density conducted below shows 
that the resulting solution W is the one corresponding to 
w=wf, the one having the minimum energy. Hence, in 
what follows we give the results for w+. As noted earlier, 
the lattice is selected by fixing the momentum k and the 
number Y, which makes it possible to calculate explicitly 
the value of the ratio 

As is well known (see Ref. lo), the values v=2 and 
/3= 1.16 correspond to a triangular lattice and the values 
Y= 1 and p= 1.18 to a square lattice. This data is sufficient 
for calculating the macroscopic characteristics of the sys- 
tem. 

The magnetic induction B is the average value of the 
microscopic field. Allowing for (20), we can write 
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Using the normalization condition and the definition of /3 
yields 

We can easily see that, depending on the choice of solution 
of the equation for w, Eq. (12), the gluon condensate ei- 
ther screens the external magnetic field (at w=o+)  or 
antiscreens it (at w=oP).  The energy density of the con- 
figuration obtained is calculated by employing Eqs. (21 ) 
and (3)-(5): 

with E= U/V.  Combining the normalization condition 
(24) and the definition (25) of j?, we reduce the above 
expression to 

To determine which lattice is realized we must know E as a 
function of /3 with a fixed B. However, Eqs. (27) and (29) 
do not make it possible to express the energy density in 
terms of B explicitly. Numerical calculation shows that the 
energy drops as P decreases. Hence it is the triangular 
lattice described in Ref. 10 that occurs. 

Let us examine E as a function of the external field H. 
Numerical calculations show that for any H satisfying the 
conditions O<H<Ho the energy of the configuration in- 
creases monotonically, and its value is always lower than 
the energy of the homogeneous magnetic field. Specifically, 
&=;~:(1--1/4~) at H=Ho and ~ = - 3 5 ~ $ 8 ~  at H=O. 
There exists a critical field value Hc at which the system's 
energy density vanishes; at w=w+ this value is 
Hcz0.912Ho. Thus, even without an external field there is 
a periodic structure, and this is due to the Chern-Simons 
mass. 

5. Let us examine the magnetic flux quantization in the 
fundamental cell of the lattice. Using the representation 
JV'(x,y,t) =br" 1 W(x,y) 1 exp[iO (x,y) - iwt] and allowing 
for the explicit form of vector br", we write the expression 
for the spatial components of the current Ik as 

where we have introduced the notation Tim = gg1m6: 
- 2gim6f, and ~~k is the totally antisymmetric tensor. We 
use this expression to express the potential A' as 

Ai=!di@+ ( ~ ~ + m ~ ~ ~ a d ~ )  ( 2 2 ~ : ~  W+'W-~)- ' .  
g 

(31) 

Integrating along the contour on which Ik+mekid,Ao=O, 
we obtain 

1 2.rr 
@= $,.A-r=- $,(VO) dr=- n, 

g g 
(32) 

where n= & 1,*2, .... This suggests that the flux quantum 
@o is 2?r/g. Applying this reasoning to the fundamental cell 
of the lattice and taking into account the translational in- 
variance of the cell, we arrive at the following result: 

$r (~k+m~kia ,Ao)  ( 2 2 ~ k  w + ' w - ~ )  - Idxi= 0. 
(33) 

The integration is carried out along the cell boundary. We 
have also allowed for the fact that, as Eqs. (15) and (19) 
imply, the streamlines coincide with lines on which I W1 
is constant. Thus, the magnetic flux quantum is equal to 
Qo, just as in the electroweak t h e ~ r y . ~  

6. The relation connecting the electric field strength 
and the current vector is specified in the standard manner: 
Ii= oijEj, where uij is the conductivity tensor. Comparing 
this with Eqs. (15) and (20), we obtain the explicit form 
of aij : 

Clearly, I is perpendicular to E, and the conductivity u, 
due to Eq. (12), is a function of the external fields, as in 
the case of the Hall effect. Formula (34) acquires the sim- 
plest form in the limit of H+O, that is, o=$m. As is 

known, the gauge invariance of the Yang-Mills theory 
with the Chern-Simons term is not broken if m assumes 
discrete values9 

g" 
m=-n, n an integer. 

437 (35) 

Thus, we arrive at the condition topological quantization 
of conductivity: 

Comparison of this result with the expression for the Hall 
conductivity uH = ($/2n-)nH (see Ref. 8) yields 

Of course, the analogy with conductivity quantization is 
superficial and the numbers n and n~ in Eqs. (35) and 
(37) have different physical meanings. The number n in 
Eq. (35) is a macroscopic parameter that determines the 
size of the topological mass, which, therefore, is a number 
specific to the model. On the other hand, nH in the Hall 
effect determines the number of conductivity quanta for a 
given state, 

7. Before we discuss the results a remark is in order. 
The properties of the ground state in non-Abelian gauge 
theories is one of the fundamental questions of quantum 
field theory. savvidyH discovered the phenomenon of 
spontaneous magnetization of the vacuum of gluodynamics 
in three-dimensional space. Moreover, in Refs. 1 and 2 it 
was demonstrated that this vacuum state is unstable be- 
cause the gluon spectrum contains a tachyon mode. At- 
tempts to find a stable vacuum state due to the tachyon 
evolution have led to the construction in the electroweak 
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theory of a periodic vacuum structure in the form of the 
Abrikosov The lattice was found to develop in 
an external field H somewhat more strongly than the 
unstable-mode threshold. The lattice is not the ground 
state of the model in weak fields, where there is no tachyon. 
Spontaneous magnetization of the vacuum of two- 
dimensional SU(2) gluodynamics with a Chern-Simons 
mass was studied in Ref. 7. There it was discovered that 
the gluon spectrum also has a tachyon mode, with the 
value of mass m determining the threshold for this mode. 

Here we have shown that the presence of a Chern- 
Simons mass makes possible the generation of a periodic 
vacuum structure. We found that the ground state of two- 
dimensional SU(2) gluodynamics constitutes a triangular 
lattice formed by gluon fields with a period of order 
m-'. It appears that the tachyon instability threshold Ho is 
not reached, and the structure can develop even in the 
absence of an external magnetic field. The decisive factor 
causing a lattice structure to develop spontaneously in a 
nonlinear system of fields is the presence of a topological 
mass. A periodic configuration has an energy that lies be- 
low the Savvidy level. Hence, a spontaneously magnetized 
vacuum state is not realized in the given model. Partition- 
ing the plane into cells with a characteristic size of the 
order of m-' leads to a situation in which the tachyon 
mode, in view of the absence of a longitudinal momentum 
component developing in the entire space, plays no impor- 
tant role, in contrast to the case in the electroweak theory. 
The solution obtained, we believe, constitutes the first non- 
trivial example of a solution of field-theory equations that 
has the meaning of a vacuum breaking Lorentz invariance. 

Another feature of our model is the generation in the 
system of a periodic electric field. Note that the potential 
A, is time-independent, so that the field strength E is de- 
termined solely by the gradient zeroth component of the 
potential. Thus, we have actually found a new type of lat- 
tice formed by electric and magnetic fields. This constitutes 
the main difference from the case of a lattice in a type I1 
superconductor, where there is only a magnetic field. As 
noted in the Introduction, in a two-dimensional world 
there can be no momentum component "along the field," 
and static and stationary field configurations are therefore 
physically equivalent. In this case, in view of the fact that 
the presence of a Chern-Simons mass leads to mixing of 
the electric and magnetic components of the tensor F,,, a 
purely magnetic structure cannot develop in the system. It 
is primarily for this reason that the solutions forming the 
lattice are nonstatic. 

Our result agrees with that obtained by ~ e h , ' ~  who 
found an exact solution for the classical Yang-Mills equa- 
tions with a Chern-Simons mass in the form of a solitary 
vortex of electric and magnetic fields. Of these stationary 
solutions of the equations of motion only one is realized, 
the solution that has the minimum energy in the vicinity of 
Ho. The gluon condensate partially screens the external 
field. The condensate amplitude and, as a consequence, the 
observed physical quantities are time-independent. As Eq. 
(34) implies, the diagonal components of the conductivity 
tensor vanish, so that the system is nondissipative. 

The condition h a d A  <m2 used in calculating A. can 
be interpreted as the zeroth approximation to the nonlocal 
interaction ( 18). The comparison of the results of Refs. 3 
and 5 done in Ref. 5 suggests that allowing for nonlocal 
corrections has no effect on the behavior of the system and 
changes the final result only slightly (by approximately 
10%). Formation in the two-dimensional model of a Hall 
effect is caused by a topological mass and, hence, closely 
linked to the gauge invariance of the theory. 

The two-dimensional quantum field theory is a possible 
candidate for describing layer systems. Hence, our results 
can find application in solid-state physics if it is found that 
collective effects in two-dimensional electron systems can 
be described by the non-Abelian model studied in this pa- 
per. 
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Translated by Eugene Yankovsky 

This article was translated in Russia. It is reproduced here the way it was 
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