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It is shown that a tilted magnetic field penetrates into a superconducting slab in the form of 
bent vortices. The equilibrium shapes of the vortices and of the vortex lattice depend 
on the orientation of the external field, the degree of anisotropy of the crystal, and the slab 
thickness. In very thin films, rectilinear tilted vortices form a hexagonal lattice oriented 
symmetrically with respect to the external field. Near the surface of a thick slab each vortex 
is directed along the normal to the surface, and inside the slab it is tilted toward the 
planar component of the field. Long-range repulsion and short-range attraction of the bent 
vortices in a thick slab give rise to unusual vortex structures. The transformation of 
these structures in superconductors with different degrees of anisotropy is described for a 
tilted external field, and the existence of metastable vortex lattices in strongly anisotropic 
crystals is demonstrated. Within the framework of the proposed theory an explanation is 
given of the results of experiments which visualize the vortex structures in YBa2Cu3OX and 
Bi2Sr2CaCu20x slabs. 

1. INTRODUCTION 

A few years ago a series of papers appeared reporting 
measurements of the torque of layered superconductors in 
a strong magnetic These papers demonstrated 
beautiful agreement between theory1 and and 
confirmed the possibility of using the anisotropic 
Ginzburg-Landau theory4 to describe the new high- 
temperature superconductors (HTSC) . The use of this the- 
ory proved to be especially fruitful in the description of 
magnetization processes in HTSC crystals. Thus, for the 
case in which the external field is aligned with one of the 
anisotropy axes both isolated vortex5 and vortex lattice6" 
structures were predicted, and experiments confirmed both 
the firsts and the second of these  result^.^^'^ The magnetic 
structure of a HTSC varies substantially with the tilt of the 
external field from the symmetry axis. The most striking 
peculiarity of tilted vortices in unbounded HTSC crystals 
is inversion of the longitudinal vortex which re- 
sults in mutual attraction between the vortices and their 
formation into  chain^.'^"^ For small values of the magnetic 
induction B the vortex spacing in the chains is almost con- 
stant and much less than the interchain distance, which 
varies inversely with B. The intervortex attraction lowers 
the eigen-energy of the chain in such a way that two types 
of chains can coexist in strongly anisotropic HTSC'S." For 
a fixed orientation of the external field these chains differ in 
the tilts of the vortices and the periods of the chains. 

Vortex chains were discovered experimentally on the 
surface of single crystals of YBa2Cu30x [YBCO( 123 )] 
(Ref. 13) and Bi2Sr2CaCu20x [BSCC0(2212)] (Ref. 14) 
with the help of the decoration technique in which fine 
ferromagnetic particles are dispersed over the surface of 
the sample to reveal the magnetic flux pattern at the sur- 
face. However, in the given case there is a substantial dif- 

ference between theory and experiment. Thus, in Ref. 10 it 
was shown that dense chains can be observed when the 
angle of the external field 19 tilts less than 5". But in reality 
the chains are observed only at significantly larger tilt an- 
gles. Moreover, in the indicated tilt angle interval only a 
hexagonal vortex lattice is observed, whose existence com- 
pletely contradicts theory.15 The theory predicts the coex- 
istence of vortex chains when the external field tilt angle is 
less than lou2 degrees. In the experiments both chains and 
a hexagonal lattice were observed simultaneously'4 at 
8-60". At smaller tilt angles only a weakly deformed hex- 
agonal structure was visualized. 

In our view, this disagreement is due to a difference in 
the objects of study. The experiments are always carried 
out on laminar samples, but the theory considers un- 
bounded superconductors. An elementary analysis imme- 
diately reveals a fundamental difference in the results ob- 
tained when the finite thickness of the sample is taken into 
account. The interaction of the vortices in vacuum should 
lead to a long-range repulsion, falling off with intervortex 
distance R as 1/R (Ref. 16). This repulsion should order 
the vortices into a sparse hexagonal lattice which can de- 
form with increasing magnetic induction, thanks to the 
anisotropic short-range interaction of the tilted vortices. 
The present paper is dedicated to a detailed study of the 
effect of finite thickness of the HTSC crystal on its mag- 
netic properties. Section 2 contains a statement of the prob- 
lem and a general expression for the field of an isolated 
vortex of arbitrary shape. In Section 3 the Gibbs potential 
is obtained for a superconducting slab in a tilted magnetic 
field. The structure of the vortex field in a thin film is 
described in Section 4. Section 5 contains a description of 
the equilibrium shape of a vortex thread and the vortex 
interaction in a thick slab. Section 6 presents results of a 
numerical calculation of the vortex structures in 
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Here q = ( r iql/q, r iq2/q, 1 ), and the upper and lower 
signs correspond to the field distribution above the slab and 
below it. In expression (4) we have made use of the fol- 
lowing notation: 

FIG. 1 .  Sketch of the investigated slab geometry. The slab occupies the 
region I x,  I < d/2,  the surface layers are hatched. The vortex line is given 
by the vector function l(x,). 

f2(9) =q ~ ( Q Z  i) +QZ S ~ ( Q Z  4). 
Outside the superconductor the field hF(q,~3)  has the 

YBCO ( 123 ) and BSCCO (22 12) slabs. In the Conclusion following components: 
we discuss the most striking features of the elastic proper- 
ties of vortex structures in HTSC slabs. 1 

hf(q,x3)=& d13[-sh(~21x3-bl 

2. MAGNETIC STRUCTURE OF A BENT VORTEX 
f l (4 )  +- ch(Q2ldch(Qzx3) 
fz(4) 

Let us consider the following problem geometry (see 
Fig. 1 ). A superconducting slab of thickness d is centered -- f2(q) 

f l ( 4 )  
s ~ ( Q z I ~ ) s ~ ( Q z x ~ )  exp( -iql); 

in the xlx2 plane. The slab has two external surfaces 
x3= &d/2 and is unbounded in the x, and x2 directions. 
The anisotropy axis c is aligned with the normal n to one of hf(q,x3) =q,A1 +q2A2, 

I 
the surfaces of the slab. An isolated vortex thread cuts 
through the slab from one surface to the other, and the 

h f ( q ~ 3 ) = q d l - q 1 ~ 2 ,  

center of the vortex coincides with some arbitrary line 1 
x = I ( x ~ ) .  A1(q,x3) =--+ J ( ~ . q ) J ( x 3 , l 3 , Q ~ ) e x p ( - i q l )  

To determine the magnetic field h(x) created by the 
vortex over all space, we solved the system of Maxwell 
equations 

divh=O, roth=O (1 

outside the superconductor and London equations 

h+i12 rot f i  rot h=#o d6(x-l(x3)) I 
- 

inside. Here il is the penetration depth of the magnetic field 
in the superconductor, #o is the flux quantum, and jl is the 
dimensionless effective mass tensor. In a single-axis super- 
conductor the principal values of jl are pa=pb and 
~ c = ~ a - ~ .  

The standard Fourier transform method assuming 
continuity of the field at the interfaces leads to the follow- 
ing vortex field distribution: 

Here and below we take ~ , = i l p ~ / ~  as the unit length and 
we normalize the wave vector q by A,', where 
q= (q1,q2,0) is a two-dimensional vector in the plane of 
the slab. 

Outside the superconductor we have 

The magnetic field distribution (3) satisfies the following 
conditions. For arbitrary curvature of the vortex the mag- 
netic flux 4= Jnhdxldx2 through any plane of constant x3 
is equal to #o. Analogous integrals of the planar compo- 
nents of the field are always equal to zero outside the slab, 
and inside it (for 1 x3 1 < d/2) the values of the integrals 
depend on the shape of the vortex thread. In general the 
vortex field is characterized by two decay parameters, A, 
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and i l , = ~ ~ ; ~ ' ~ .  For a rectilinear vortex with llln we have 
A2(q,x3) =0 and the magnetic field depends only on A,. 
The normal component of the vortex current 

depends only on A, and always vanishes at the outer 
boundaries of the slab. Only in the case of a rectilinear 
vortex perpendicular to the surface does j3(x) =0 hold. 

3. THE GlBBS POTENTIAL OF A SUPERCONDUCTING SLAB 

Let us consider a HTSC slab in an external uniform 
magnetic field 

H=nB+H2, 

where the planar component of the field H2 is aligned with 
the x2 axis. The influence of the tilted field H on the vortex 
state of a film reduces to two effects. The normal compo- 
nent nB penetrates into the superconductor in the form of 
Abrikosov vortices with mean vortex concentration 
(nL) = B/40. The tangent component H2 penetrates into 
the superconductor in the form of the Meissner field 

but only to distances of order A,. Acted upon by the field 
HZ the vortices in the slab become bent, and their equilib- 
rium shape l(x3) is determined from the minimum of the 
Gibbs potential 

In the London limit the free energy of the slab 

is expressed in terms of a superposition of the vortex fields 
and the Meissner field: 

h= 2 h(x-1') +h,(x3). 
I 

We neglect the energy of the Meissner field and currents as 
a small constant. Using the integral representations of the 
components of the vortex field (3) we write the free energy 
in the form 

which contains a double sum over all the vortices with 
indices i and j; 29 is the Fourier transform of the interac- 
tion energy of the two vortex segments dli and dlJ: 

In expression (9) we have used the same notation as in the 
definition of the vortex field (3). The results (8) and (9) 
are quite general. In the limit of an isotropic unbounded 
superconductor, they go over to well-known expressions." 
We will consider the particular cases of a thin film 
(dgA,), a thick slab (d)A,), and an HTSC which is un- 
bounded below. Note that as in the case of rectilinear vor- 
tices parallel to the surface," the free energy (8) does not 
contain any terms describing the interaction of the vortices 
with the Meissner field. 

The last integral term in the Gibbs potential (6) has 
the form 

It is well known'' that the magnetic flux #, of a rectilinear 
vortex, parallel to the plane of the slab, differs from the flux 
quantum #o and is equal to 

Consequently, expression (9) can be treated as the energy 
of interaction with the field H2 of the bent vortices, each 
element dl; (but not dli!) of which has the coordinate 1; 
and transfers flux 4, given by ( 1 1 ) . 

4. VORTICES IN A THIN FILM 

1. In thin superconducting films (dgA,) one can as- 
sume that the magnetic vortices are rectilinear and tilted 
with respect to the normal n by some angle. It is conve- 
nient to describe tilted vortices by the vector K whose di- 
rection coincides with the projection of the vortex axis on 
the plane of the film, and whose magnitude is equal to the 
tangent of the tilt angle. The components of the vector 
1(x3), which describes the shape of the vortex line, are 
equal to 

The free energy of the thin film has the form 
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x exp [iq(Kil:' -Ki1;) 1, 

2 
(12) 

1 
+(&I (KJq) 3 

Here we have assumed that the tilts of the vortices can be 
different. 

In the double sum in ( 12) the terms with i= j describe 
the eigen-energy of the vortices 

The energy of the pairwise vortex interaction [i#j in ( 12)] 
depends on the vector R=Ri-R/' connecting the vortices 
in the plane of the film. In the case in which the vortex tilts 
are equal the interaction potential is equal to 

Here the first term inside the braces, proportional to the 
difference of the Struve function Ho(x) and the Neumann 
function Yo(x), dominates. In contrast to the remaining 
terms, it describes the long-range action of the vortices in 
the filmI6 and does not depend on the parameters K and pa. 
The last two terms, containing the modified Bessel function 
Ko(x), are substantially short-range. Their contribution 
becomes noticeable only for R <d, i.e., in large external 
fields whose magnitude satisfies B> 4od-2. For d=0.1 pm 
the limiting value of the magnetic induction is 2000 G. In 
smaller fields these last two terms can be neglected; then all 
dependence on pa disappears from expression ( 14). Thus, 
over a wide interval of fields, the vortex-vortex interaction 
in the film does not depend on the anisotropy parameters. 

2. Here we will describe the equilibrium vortex lattice. 
The vortex-vortex interaction in a film, to within small 
terms of order 2d3R-', is centrally symmetric. This fact 
underlies the existence of a hexagonal equilibrium vortex 
lattice. The stability of such a structure in the case K=O 
was demonstrated earlier. l9 In this case a degeneracy of the 
free energy F with respect to the orientation of the unit cell 
in the plane of the film is observed. In a tilted magnetic 
field this degeneracy is removed and the lattice orients it- 
self symmetrically with respect to the field Hz. In a stable 
lattice one of the elementary translation vectors is perpen- 
dicular to the field Hz and the vector K. 

The equilibrium tilt of the vortices is determined by the 
condition for the minimum of the Gibbs potential 

G=F-""" 477 [1- (a).(:)] 1 i K ~ .  

In the free energy F both the vortex eigen-energy ( 13) and 
the interaction potential ( 14) depend on K. Minimizing E 
with respect to K~ and KZ, we obtain 

Here Hcl (d) =24,-J7rd2 ln(d/() - 1000 G is the first criti- 
cal penetration field of the rectilinear vortices in an isotro- 
pic film.'' Anisotropy decreases this value by a factor of 
( I  +pi'2)/2-0.5. 

From the solution (16) it follows that the vortices 
always lie in the plane formed by the vectors n and H. In 
the case of small magnetic induction B < 4,-,d-4/3 - 1 G, 
the term containing B and taking account of the vortex- 
vortex interaction can be neglected. In this case expression 
(16) describes the tilt of an isolated vortex. The vortex- 
vortex interaction always decreases this tilt. 

3. Note that the tilt of the vortices is small even for 
Hz= 1 +pi/2/2~cl(d).  At larger values of Hz a film with 
rectilinear vortices parallel to its central plane satisfies the 
conditions of thermodynamic equilibrium." The Bean- 
Livingston barrier hinders the penetration of such vortices. 
However, the vortices that do penetrate into the film can 
lower their own energy by bending into a zigzag shape or 
as a result of unbounded lengthening of that portion of the 
vortex that lies in the central plane of the film. Thus, our 
assumption that the vortices are rectilinear in a thin film is 
valid only under the condition 

5. VORTICES IN A THICK SLAB 

1. The interaction energy of two vortex segments (9) 
in the case d ) l  has the form 
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The limiting case of an unbounded superconductor17 fol- 
lows from expression (18) by dropping those terms that 
contain the parameter d. 

The interaction of vortex segments depends substan- 
tially on their arrangement within the slab. If one of these 
segments is located on the surface of the superconductor, 

I 1; I =d/2, then the terms in expression ( 18) proportional 
to dll and dl2 vanish. The remaining terms describe the 
exponentially weak interaction with the segment dl4 lying 
within the superconductor, and the long-range action if 
14 = 1: = & d/2. An analogous result was obtained in Ref. 20 
for rectilinear vortices. In the interior of the slab 
( I 1; l,ll( 1 < d/2 - 1 ) the vortex segments interact with 
each other in the same way as in an unbounded supercon- 
ductor. 

2. We will describe the shape of a vortex by the func- 
tions 

analogous to the vector K introduced in Section 4. 
The eigen-energy of an arbitrary bent vortex has the 

form 

Here El(x) is the exponential integral function and 
? = K T + & .  The first term inside the braces describes the 
eigen-energy of the vortex segment far from the surface of 
the slab and coincides with the vortex energy in an un- 
bounded HTSC.~ The remaining terms are important only 
near the surface, d/2- I I3 ( < 1, where the influence of crys- 
talline anisotropy on the eigen-energy of the vortex seg- 
ment vanishes. 

The equilibrium shape of the vortices ~ ( 1 ~ )  is deter- 
mined by the condition for the vanishing of the variational 
derivative 

where 

The obvious solution is K, (1,) =0, and for ~ ~ ( 1 ~ )  we obtain 
the equilibrium equation 

I ,H Vacuum 

FIG. 2. Equilibrium shape of an isolated vortex near the surface of a 
single crystal of YBCO(123) for different values of the planar field; 
p0=0.343. The value of H2 in units of H,, is given to the right of each 
vortex line. The positions of the vortices at the outer surface were chosen 
arbitrarily. The distance between the ticks on the axes is equal to A,. 

The solution ~ ~ ( 1 ~ )  of this equation possesses the following 
properties. On the surface of the superconductor we have 
K~=O, i.e., K ~ (  fd/2) =O, i.e., the ends of the vortex thread 
are directed precisely along the surface normal of the crys- 
tal. The vortices in superfluid helium also have such an 
orientation21 as do screw dislocations near the surface of a 
solid body.22 Note that edge dislocations, which do not 
possess radial symmetry, are directed at an angle to the 
surface of the crystal. Therefore we make the assumption 
that for an arbitrary orientation of the symmetry axis c 
relative to the normal n the vortices near the surface of the 
crystal are tilted relative to n. 

In the center of the slab we have 

where Hcl =4d4pp;I2 In((-') is the first critical field of 
rectilinear vortex generation in the central plane of the 
slab. 

Far from the surface of the slab the tilt of the vortex 
line is almost constant and is given by expression (22). The 
transition from solution (22) to K ~ (  *d/2) =0 takes place 
at I I3 ( z d / 2  - 1. The shape of the bent vortex is obtained 
by numerical integration of the solution of Eq. (21) and is 
shown in Fig. 2. 

From expression (22) and Fig. 2 it is clear that for 
H2 < Hcl the vortex tilt ~ ~ ( 1 ~ )  is finite. In the field H,, we 
have ~ ~ ( 0 )  = m and the vortex line loses its stability with 
respect to its extent along the x2 axis. In larger planar fields 
the energy of the central segment of the vortex line be- 
comes negative. The vortex lengthens without bound be- 
cause the upper and lower ends move in different direc- 
tions. This process can be limited only by a finite 
concentration of vortices, when repulsion between ap- 
proaching vortices sets in. 
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FIG. 3. Picture of the vortex lattice on the outer surface of the slab. The 
points represent the endpoints of the vortices. The unit cell (rhombus) is 
defined by the lattice parameters C and D. 

3. These features of the vortex-vortex interaction afford 
a description of the magnetization of a thick HTSC slab. 
The vortex structure is completely determined by the two- 
dimensional lattice at the surface of the crystal and the 
shape of a bent vortex ~ ~ ( 1 ~ ) .  The curvature of the vortex 
lines cannot be measured directly in experiments; however, 
it is decisive in the formation of the lattice. 

From the symmetry of the interaction [see expressions 
(8) and (18)] it follows that the equilibrium vortex lattice 
has rhombic symmetry. One of the mirror-symmetry axes 
should coincide with the direction of the field H2. Since the 
area of the unit cell is fixed and is equal to #dB, the lattice 
on the surface of the slab can be described by just one 
parameter. Following Ref. 13, we define D to be the vortex 
spacing along the chains aligned with H2 (see Fig. 3). 

Separated vortices (R interact mainly 
through the vacuum. The long-range repulsion, which does 
not depend on the shape of the vortex lines, marshalls them 
into a regular triangular lattice. The exponentially weak 
anisotropic interaction tends to orient the lattice symmet- 
rically about H2. But the influence of thermal fluctuations 
can be stronger, and for  pi/^$^ a hexagonal lattice ori- 
ented arbitrarily in the plane of the film is observed. 

The influence of anisotropy on the shape of the lattice 
begins to manifest itself as the vortex spacing decreases 
down to R <,u;~", when the vortex currents j3(x) begin 
to interact. In a sparse lattice, B <pi#o, this takes place in 
strong planar fields, in which the equilibrium tilt of the 
vortices reaches the value K~ - (&dB) 'I2. The mutual 
attraction of the vortices in a chain and the repulsion be- 
tween chains causes the distance D to decrease. In contrast 
to the case of unbounded HTSC's, the decrease of D in the 
slab is small, thanks to the strong repulsion of the vortices 
at the surface. As the field H2 grows the tilt of the vortices 
increases and reaches the value K~ - m. For such a tilt 
the vortices in the chains are squeezed close together and 
neighboring vortices begin to repel each other. This leads 
to an increase of the parameter D. 

Note that in an isotropic slab the vortices always repel 

each other and as H2 increases the distance D grows mono- 
tonically. 

At large values of the magnetic induction B> 4, the 
vortices are arrayed into a dense lattice and are aligned 
with the external field H. The anisotropic interaction be- 
tween the central vortices contributes decisively to the for- 
mation of the lattice. As in the case of an unbounded 
~u~erconductor,~ the shape of a dense vortex lattice can be 
described by the analytic expression 

where 8 is the tilt angle of the magnetic field. From this 
expression it is clear that for a constant magnetic induction 
B and increasing H2 the lattice in an anisotropic supercon- 
ductor remains hexagonal all the way to fields 
H,-~;~/~B.  With further increase of the field H2 the dis- 
tance D begins to grow. 

In isotropic slabs the parameter D in dense lattices 
varies as D- (cos 0) -'I2 if B is fixed, and D- (cos 8) - ' 
field H is constant in magnitude and tilted. 

6. VORTEX STRUCTURES IN LAMINAR SAMPLES OF 
YBCO(123) AND BSCCO(2212) 

1. Numerical calculation of the dependence K~ (x3 ) for 
an isolated vortex in slabs of different anisotropy shows 
that the bending of the vortex takes place within a surface 
layer of thickness of the order of p l~ ,~ '~ .  In order to avoid 
having to solve the variational problem to determine 
K ~ ( X ~ ) ,  we substitute a model shape for the actual shape of 
the vortex. We assume that the vortex consists of three 
rectilinear segments. The end segments have length 
and are perpendicular to the surface, while the central seg- 
ment is tilted with respect to Hz; its tilt is constant, 
K ~ ( x ~ )  =K. 

The interaction of two vortices 

the long-range action of the end segments: 

The second term 
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FIG. 4. Vortex spacing D along a chain versus 
the tilt angle 9 of the external field H for con- 

1.6 - stant induction (Hcos O= 12 G). The points 
correspond to the experimental results,I3 the 
curves-to theory: a)  calculated for constant 

1.2 - slab thickness d=4 pm and various values of 
the anisotropy parameter: 1 )  0.25, 2) 0.34, 3) 
0.50, 4) 1.00, b) calculated for the anisotropy 
parameter held constant: pa=0.343, while 
varying the thickness d: 1)  2 pm, 2) 4 pm, 3) 

0 . 4 - i 1 1 i 1 ' '  7 pm, 4) 21 pm, 5) 90 pm. 
30' 60' 90' 

describes the interaction of the central segments of the two 
vortices and coincides with the analogous expression for an 
unbounded crystal.23 

To determine the equilibrium parameters D and K, we 
solved the corresponding equilibrium equations numeri- 
cally. 

2. We calculated the distance D in slabs of 
YBCO(123) for different values of the planar field. In or- 
der to compare the results with experiment13 we chose the 
following parameter values: B= 12 G, Aa=O. 14 pm; the 
thickness of the slab d was varied from 2 pm to several tens 
of microns, and the anisotropy parameter pa took the fol- 
lowing values: 1, 0.5, 0.343, and 0.25. The calculated func- 
tion D(I3) is shown in Fig. 4 together with the experimen- 
tal values. It can be seen that the best agreement is 
obtained at pa=0.343 and small d. 

These results confirm the qualitative treatment out- 
lined in the previous section. 

3. It is well known1' that in unbounded superconduct- 
ors with pa < 1 the intervortex attraction lowers the energy 
density of the vortex chain such that for pa<0.28 two 
types of chains can coexist. For fixed external field direc- 
tion they differ in the vortex tilt K and the vortex spacing D 
along the chains. The coexistence of different types of 
chains is possible only if the external field H is tilted from 
the anisotropy axis by an angle smaller than 0.1". 

With the aim of discovering analogous metastable 
structures in HTSC slabs, we investigated BSCC0(2212), 
which has anisotropy pa=0.07 (Ref. 3). 

The results of this study, shown in Fig. 5, graphically 
demonstrate the existence of hysteresis in the magnetiza- 
tion of a slab of BSCCO (22 12). In the angle interval 1 I3 1 
< 20" three equilibrium structures, differing among them- 

selves in the parameters D and KZ. The stability of the given 
solutions depends on the sign of the two elastic moduli 
which describe the deformation of the vortex tilt toward 
the field H2 (the modulus T,,) and in the perpendicular 
direction (the modulus TI1). An expression for the moduli 
T l l  in terms of the equilibrium dependence K ~ ( H ~ )  is ob- 
tained as follows: 

The equilibrium equations have the form 

The solution of these equations is K ~ = O ,  K ~ = K ~ ( H ~ ) ,  
D= D(H2). The small tilts of the field dH2 cause small 
variations, d~ and dD, in the equilibrium values of the 
parameters, which are determined by the equations 

The elastic tilt moduli, being second variational derivatives 
of the Gibbs potential (24), have the form 

FIG. 5. Dependence of the vortex spacing 
D(9) (Aa=0.07): a)  calculated results for a 
slab of thickness d=4OA, and various values of 
the induction nLA:: 1)  0.01, 2) 0.02, 3)  0.04, 
4) 0.10, 5) 1.00, b) calculated results in slabs 
of varying thickness d for the induction held 
fixed (nLA:=O.O1): 1 )  16A,, 2) 18A,, 3) 
20A,, 4) 40Aa. 
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Here Cc0,,, is the elastic compression modulus of the lat- 
tice at constant magnetic induction. Note that CcOmp, dif- 
fers from the unilateral compression modulus, which in 
our problem becomes infinite. From Eq. (25) it can be seen 
that the stable vortex structures in Fig. 5 are located to the 
right of the ordinate 8=0, i.e., the vortices are tilted to- 
ward the field H,. It follows from Eq. (26) that only the 
solutions with positive slope in the dependence K ~ ( H ~ )  are 
stable. The last term in (26) is always small and changes 
the value of T2, and the stability region of the metastable 
structures only insignificantly. Calculation of K ~ ( H ~ )  
shows that in the hysteresis region the two extreme 
branches of D(H2) (the upper and the lower branch) are 
stable. The central branch is always unstable. 

3. The results possess the following properties. 
One of the metastable vortex structures is a weakly 

deformed hexagonal lattice with D(8) - D(O), the other is 
a structure consisting of vortex chains. The vortex spacing 
along the chain D(8) is much smaller than the interchain 
distance C- # ( 0 ) / ~ ( 8 ) .  

The metastable structures exist at small values 
of the magnetic induction B < 0.0244,~- 3 ~ ~ ~ .  For 
BSCCO(2212) with A,= 0.15 pm this corresponds to 
B <20 G. As the induction increases (see Fig. 5a) the 
hysteresis region shifts toward larger angles 8, while its 
width decreases. There exists a critical value of the induc- 
tion, which depends on the thickness of the slab, at which 
the hysteresis region disappears. The numerical solution 
for B= 1 practically coincides with the analytic solution 
(23). Calculations carried out for B= 10 and 30 confirm 
the conclusion (23) that for large values of the induction 
the shape of the vortex lattice D(O)/D(O) does not depend 
on B. 

The effect depends strongly on the thickness of the slab 
(see Fig. 5b). For a fixed value of the induction the hys- 
teresis region decreases with decreasing slab thickness. 
There exists a critical thickness d-2p;' below which 
metastable structures are not observed. 

Note that in an unbounded single crystal of 
BSCCO(2212) hysteresis has been observed1° only for 
8 < degrees. 

Direct observation of vortex structures on the surface 
of slabs of BSCCO(2212) has shown14 that metastable vor- 
tex structures exist at significantly greater tilt angles of the 
external field, specifically, 8-60". It is possible that this 
difference between theory and experiment is due to over- 
simplification of the shape of the vortices. 

7. CONCLUSION 

In this paper we have investigated the influence of the 
finite dimensions of a HTSC crystal on the equilibrium 
shape of an isolated vortex and on different vortex struc- 
tures. A vortex in a slab has a finite length, which varies 
with the degree of bending of the vortex. Bending of the 
vortex alters the vortex-vortex interaction potential sub- 
stantially. Taking this circumstance into account affords a 
complete description of vortex structures in HTSC slabs, 
and in the case of YBCO(123) crystals it even allows one 
to achieve quantitative agreement between theory and 
experiment. l 3  

In the present paper we have not considered the elastic 
properties of vortex lattices. However, the influence of the 
shape in this case is beyond doubt. In the first place, the 
elastic properties of a lattice with long-range action must 
be described with the help of the elasticity matrix.24 The 
diagonal element that describes nonuniform compressional 
deformation should be proportional to the first power of 
the wave vector of the deformations. This means that on 
the surface of the crystal the lattice is practically incom- 
pressible while inside the crystal, by virtue of the short- 
range action of the vortices, arbitrary deformations of the 
lattice are possible. Second, for a sparse lattice the elastic 
moduli are not exponentially small. Consequently, the in- 
fluence of thermal fluctuations on the stability of such a 
lattice is much less than predicted.25 Tilt deformations are 
of special interest. By virtue of the finite length of the 
vortex and the fixed orientation of its ends (they are 
aligned with n) ,  the tilt deformation spectrum should be 
discrete. In addition to this discrete tilt spectrum there 
should exist a continuous shift spectrum. It is of great 
interest to us to examine the interaction of these two spec- 
tra due to the nondiagonal elastic moduli, predicted in Ref. 
15. 
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