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Tunneling spectroscopy in a magnetic field has been used for the first time to experimentally 
investigate the spectrum of size-quantized electron states in a surface quantum well in 
gapless p-HgCdTe semiconductors. It  has been shown that spin splitting of the tunneling 
conductivity oscillations is not observed upon tunneling into two-dimensional electron 
states and that the dependence of their effective mass on the quasimomentum parallel to the 
surface is not described in the simple "quasiclassical" model. The spectrum of size- 
quantized states in a semiconductor described by the Kane Hamiltonian in a surface quantum 
well with a model rectangular potential has been calculated to qualitatively interpret the 
experimental results. It has been shown that the main features of the calculated spectrum, viz., 
the existence of a single nonspin-degenerate localized state when the potential well is 
shallow and the closeness of the effective mass of two-dimensional electrons to the effective 
mass of electrons in the bulk of the semiconductor, fit the experimental results. 

1. INTRODUCTION 

Systems with a two-dimensional (2D) electron gas in 
both broadband and narrow-gap semiconductors with a 
positive gap have been earnestly investigated during the 
last 10-15 years. Experimental investigations of the disper- 
sion law, effective mass, and g factor have been performed 
on structures of various types: surface quantum wells and 
quantum wells based on heterostructures and &doped 
layers.' In most studies the energy spectrum was theoreti- 
cally described in a quasiclassical approximation, which 
provides good agreement with experiment (see Refs. 2-5 
and the references therein). 

Two-dimensional electron states in the surfaces quan- 
tum wells of gapless semiconductors have been investigated 
to a considerably lesser extent. This is due primarily to the 
fact that the traditional experimental methods are virtually 
inapplicable to the investigation of such systems. For ex- 
ample, it is in fact impossible to extract information about 
2D states from galvanomagnetic measurements due to the 
strong shunting effect of the bulk of a semiconductor. The 
high optical density of the bulk of a semiconductor renders 
investigations of the absorption and magnetoabsorption of 
light useless. 

Experimental results have been obtained only with the 
aid of the voltage-capacitance spectroscopy of metal- 
insulator-semiconductor (MIS) structures in a quantizing 
magnetic fie~d.~" Just as in the case of narrow-gap semi- 
conductors, Radantsev et al. were able to explain all of 
their observations (the subband starting voltages, the ef- 
fective masses, etc.) in the framework of a simple quasi- 
classical approximation. This in itself is surprising, since 
the conduction band in these gapless semiconductors is the 
quadruply degenerate I?, band, rather than the doubly de- 
generate r6 band, as in semiconductors with an open for- 
bidden gap. This circumstance may be significant in shap- 

ing the energy spectrum of a spatially restricted 
semiconductor. Thus, it was predicted in Refs. 6 8  that an 
additional branch of 2D electron states, which does not 
exist in the quasiclassical treatment and which might be 
manifested experimentally, should exist on a gapless- 
semiconductor-insulator boundary even in the absence of 
an attractive surface potential. 

This communication presents the results of investiga- 
tions of the spectrum of 2D states in the surface quantum 
well of a gapless HgCdTe semiconductor obtained by tun- 
neling spectroscopy. This method is based on studying the 
features of the current-voltage characteristics of tunnel 
structures. In principle, the dependence of the tunneling 
current on the applied voltage j ( V )  in MIS structures 
contains information about the energy spectrum of the cur- 
rent carriers in both electrodes and in the insulator. How- 
ever, the most dependable and reliable information about 
the energy spectrum of the current carriers in a semicon- 
ductor can be obtained by investigating plots of j  ( V) and 
determining o = d j / d V  in a magnetic field, since the dis- 
tance between the Landau levels in the semiconductor can 
be determined directly as a function of the magnetic field 
over a broad range of energies in this c a ~ e . ~ " ~  

The first detailed investigations of tunneling conduc- 
tivity oscillations in a magnetic field were performed in 
Ref. 9 on n-InAs-oxide-Pb structures. There is always con- 
siderable warping of the bands on the surface of n-InAs 
with the resultant formation of size-quantized electron 
states. It was shown that superposition of the tunneling 
conductivity oscillations associated with quantization of 
the spectra of the bulk and 2D states is observed in a 
magnetic field normal to the surface of a tunnel junction 
(HI1 n, where n is a normal to the plane of the junction). 
When HI n, 2D states are not quantized by the magnetic 
field, and the tunneling conductivity oscillations are asso- 
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ciated only with quantization of the spectrum of the carri- 
ers in the bulk of the semiconductor. Experimental inves- 
tigations of the spectrum of the bulk carriers in gapless 
HgTe, Hgcd~e,I0  H ~ M ~ T ~ , "  and Hgse12 semiconductors 
have also been performed by tunneling spectroscopy. 

The results of the experimental investigations of spec- 
trum of 2D electrons in gapless p-HgCdTe semiconductors 
by tunneling spectroscopy in a quantizing magnetic field 
will be presented in Sec. 2. In Sec. 3 they will be compared 
with the results of the usually employed "quasiclassical" 
approximation. A calculation of the spectrum of 2D elec- 
trons in the surface quantum well in gapless semiconductor 
in the framework of the two-band Kane model, which ac- 
curately takes into account the interaction of the closely 
situated r8 and r6 bands, will be presented in Sec. 4. The 
results of this calculation will be compared with experi- 
ment in Sec. 5. 

2. EXPERIMENTAL RESULTS 

The differential conductivity and its derivative with 
respect to the voltage were investigated as a function of the 
magnetic field and the voltage on a 
p-Hg, -,Cd,Te-insulator-metal structure in magnetic fields 
up to 6 T at T = 2 4  K. Tunnel junctions were prepared 
on highly doped samples of p-Hg, -,Cd,Te (0.08 < x 
< 0.14) with a concentration of uncompensated acceptors 
N,- Nd= ( 1-6) . 1018 ~ m - ~ .  After mechanical grinding 
and polishing, the samples were etched in a 10% solution 
of bromine in butanol and then washed in butanol. Two or 
three layers of a Langmuir-Blodgett film of heptylcy- 
anoacrylic acid (C7-CAA) were transferred to the freshly 
etched surface as a tunneling-transparent barrier. The 
method for transferring monolayers to the surface of a 

FIG. 1. Dependence of d2j/dv2 on H at 
V= 80 mV in two orientations of the magnetic 
field for a tunnel junction prepared on 
pHgCdTe with E - -60 meV and 

8- N,- N d = 6 .  10" cm- at T=4.2 K. Energy 
diagrams of a tunnel junction in the absence of 
a magnetic field (on the left) and in a mag- 
netic field perpendicular to the surface of the 
semiconductor is presented in the inserts. 

sample was described in Ref. 13. Then a metallic bilayer 
electrode (A1 + Pb) was spray-deposited through a mask. 

Typical plots of the dependence of d2j/dv2 on the 
magnetic field in the HI n and HI1 n orientations are pre- 
sented in Fig. 1. As we have already noted, the tunneling 
conductivity oscillations observed for HI n are associated 
only with quantization of the spectrum of bulk carriers. At 
a fixed bias they are periodic with respect to the reciprocal 
of the magnetic field, and the period is identical on all 
tunnel structures prepared on the same sample. 

The situation is more diverse in the HI1 n orientation. 
Three cases were observed for the tunnel junctions inves- 
tigated (even for junctions prepared on the same sample): 
1)  the amplitudes of the oscillations A and their periods 
with respect to the reciprocal of the magnetic field A( 1/H) 
for Hll n and HI n differ, i.e., All (1/H) <(A, ( l / H ) ,  
and Al l  >Al (as in Fig. 1); 2) the periods of the oscilla- 
tions are nearly identical within the range of accuracy, but 
the amplitudes differ significantly, i.e., All > A ,  ; 3) the 
periods of the oscillations are equal and the amplitudes are 
close. 

The investigations show that these three cases can be 
distinguished by the different values of the surface poten- 
tial attracting the electrons. In the first case it is so great 
that size-quantized states form in it. In the third case there 
is no attracting potential, and tunneling into bulk states 
occurs in both orientations of the magnetic field. (We ex- 
amined this case and the special features of the tunneling of 
electrons into different spin states in Ref. 14.) In the sec- 
ond case, as will be shown below, the tunneling current 
oscillations are coupled when HI1 n, despite the closeness 
of the periods, just as in the first case with tunneling into 
2D states. 

We shall first examine the experimental results corre- 
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eV, meV E ,  meV tions for HI n and HI( n differs, and if their positions are 

I- j extrapolated to H=O, they converge to different values of 

FIG. 2. Position of the maxima of the tunneling conductivity oscillations 
for a junction from the first group (the same tunnel junction as in Fig. 1) 
in two orientations of the magnetic field: HI n ( a ) ,  HI1 n ( 0 ). 

sponding to the first case. Plotting the positions of the 
oscillations in V versus H coordinates, we obtain a network 
of levels that reflects the displacement of the Landau levels 
in a magnetic field. The dependence for one of the samples 
investigated in both orientations of the magnetic field is 
presented in Fig. 2. It is seen that behavior of the oscilla- 

e V. 
According to the discussion in Refs. 9 and 10, when 

HI n, tunneling conductivity oscillations are caused by 
tunneling into states of bulk Landau levels of the semicon- 
ductor with energies E=EF+eV (EF is the Fermi energy 
of the semiconductor). Therefore, at a fixed bias the oscil- 
lations are periodic with respect to the inverse magnetic 
field, and in an isotropic semiconductor their period is de- 
termined by the value of the quasimomentum (k) of the 
bulk carriers at the energy E=E,+eV (see the inserts in 
Fig. 1): 

Thus, the dispersion law of the electrons in the semi- 
conductor can be reconstructed by measuring the period of 
the oscillations with respect to the reciprocal of the mag- 
netic field at different applied voltages. The plot of E(k)  
obtained from such measurements (Fig. 3) is described 
well in the Kane model with the parameters P= 8.2. 
eV-cm, E,=-60 meV, and A=E(r8) -E( r ,= l  eV 
(the details of the analysis of oscillations in this orientation 
of the magnetic field were presented in Refs. 10 and 12). 

In the HI1 n orientation the tunneling conductivity os- 
cillations have a significwtly higher amplitude than in the 
HI n orientation (by a factor of 2-10 for different tunnel- 
ing constants, depending on the bias voltage and the mag- 
netic field strength), and are caused by tunneling into 
Landau levels of two-dimensional states localized at the 
surface. This follows from the typical angular dependence 
(Fig. 4) of the position of the oscillations: 

e v  ,meV - 
200 - 

- 150 FIG. 3. Dependence of k2 on the voltage 
150 - applied to the same tunnel junction as in 

Fig. 2: HI n ( a ) ,  HI1 n (0 ) .  The solid 
curve is the dispersion law calculated in the - Kane model, the dashed line was con- - 100 structed from experimental points, and the - 
dash-dot lines are the dispersion laws of - 
the 2D electrons calculated in the "quas- 
iclassical" model at fixed values of eq,: 380 - 

- 50 meV (lower curve) and 340 meV (upper 
curve). The dependence of the surface po- 
tential on the applied voltage calculated in 
the "quasiclassical" model is shown in the 

- insert. 
40 60 80 100 120 - 0 

e v ,  M ~ B  
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FIG. 4. Angular dependence of the position of the 
tunneling conductivity maxima at V= 120 mV for 
the same junction as in Figs. 2 and 3. 

(H' is the position of the ith tunneling conductivity extre- 
mum, and 8 is the angle between H and n). Such a depen- 
dence is observed at 8<60", since the amplitude of the 
oscillations associated with tunneling into 2D states de- 
creases with increasing 8, and only the oscillations caused 
by tunneling into bulk states are observed at 8 >  60". 

When H J J  n, the oscillations are also periodic with re- 
spect to the reciprocal of the magnetic field, and at applied 
voltages smaller than a certain value V1 (Fig. 3) the period 
of the tunneling conductivity oscillations is smaller in the 
HI( n orientation than in the HI n orientation. At V >  Vl 
the amplitudes of the oscillations in the two orientations of 
the magnetic field become similar, and the periods with 
respect to the reciprocal of the magnetic field are equal to 
within the experimental errors. When V is increased fur- 
ther, the angular dependence of the position of the oscilla- 
tions vanishes. 

Unexpected results were obtained on the tunnel junc- 
tions from the second group, in which the periods of the 
oscillations with respect to the reciprocal of the magnetic 
field are equal to within the experimental errors over the 
entire range of applied voltages, while their amplitudes dif- 
fer significantly, i.e., All  > A ,  (the sample in Fig. 5). The 
equality of the periods of the oscillations indicates that the 
quasimomentum of the states determining the oscillations 
of the tunneling current are identical; therefore, it would 
appear that the oscillations in both orientations of the mag- 
netic field are caused by tunneling into Landau levels of 
bulk states. However, these tunnel junctions exhibit the 
typical angular dependence of the position of the oscilla- 
tions H'(0) =4 /cos 0 near HI( n, but they display dips 
in the oscillations in intermediate orientations, which are 
manifested by a drastic decrease in their amplitude to the 
point of essentially complete disappearance over a certain 
range of magnetic field strengths (Fig. 5, 0 ~ 4 0 " ~  H z  1.5-2 
T). Such behavior of the oscillations is indisputable evi- 

dence that they are the result of the superposition of oscil- 
lations of two types, one of which has an angular depen- 
dence, i.e., is associated with tunneling into 2D states. 

Another distinctive feature of the tunneling conductiv- 
ity oscillations in the samples from the first and second 
groups, in which they are associated with tunneling into 
2D states when HI( n, is the lack of spin splitting of the 
oscillation maxima (Figs. 1 and 5).') This differs radically 
from the results obtained on samples from the third group, 
in which the tunneling conductivity oscillations are associ- 
ated with tunneling into bulk states in all orientations of 
the magnetic field. In these junctions spin splitting is ob- 
served when H(I n, and the amplitude of the high-field 
component decreases monotonically as the field is rotated 
to H I  n (Fig. 6). As was shown in Ref. 14, the lack of spin 
splitting of the maxima when H I  n is due to the signifi- 
cantly smaller probability of tunneling into one of the 
"spin" states (the states of the a series). 

The lack of spin splitting upon tunneling into two- 
dimensional states may be attributed to several factors: 2D 
states localized at the boundary of a gapless semiconductor 
are not "spin-degenerate" ("one-spin"  state^);^) the mag- 
nitude of the spin splitting is small in comparison to the 
smearing of the levels; the probabilities of tunneling into 
different "spin" states differ significantly. Which of these 
factors is decisive will become clear from a subsequent 
discussion (Sec. 5). Thus, the tunnel junctions from the 
first and second groups investigated have 2D electron 
states in the gapless semiconductor at the boundary with 
the insulator, and the tunneling into them is responsible for 
the tunneling conductivity oscillations when HI( n. One 
special feature of the tunneling into these states is the lack 
of spin splitting of the oscillations. 
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3. ANALYSIS OF THE RESULTS IN THE FRAMEWORK 
OF THE "QUASICLASSICAL" MODEL 

Let us analyze our experimental results in the frame- 
work of the familiar "quasiclassical" model, which is used 
to analyze the energy spectrum of 2D states in gapless 
semiconductors with a largely nonparabolic dispersion 
law.'5916 We take a coordinate system with x axis perpen- 
dicular to the boundary of the semiconductor and y axis 

FIG. 6. Oscillations of d2j/dvz at V= 110 mV and various angles be- 
tween H and n for a junction from the third group, in which the oscilla- 
tions are caused by tunneling into Landau levels of bulk states when HI n 
and Hll n. The junction was prepared on p-HgCdTe with Eg= -20 meV 
and No-Nd=4x 10" cm-'. T=4.2 K. 

FIG. 5. Oscillations of d2j /dv2 at V= 80 mV 
and various angles between H and n for a junc- 
tion from the second group, in which the pe- 
riods of the oscillations with respect to the re- 
ciprocal of the magnetic field for HI n and 
Hll n are nearly equal. The junction was pre- 
pared on p-HgCdTe with E,= -60 meV an 
No-Nd=6.  10'' cm-'. T=4.2 K. The num- 
bers on the curves are angles in degrees. 

parallel to the two-dimensional wave vector in the plane of 
the surface. It is assumed in the quasiclassical description 
that if the dispersion law of the carriers in the bulk of the 
semiconductor k2= f (E) is known (we shall consider an 
isotropic dispersion law) and if we separate the motions 
along and across the surface, i.e., if we write 

we can find the dispersion law of the 2D states E(k,) from 
the quasiclassical quantization condition 

where xo and 0 are the classical turning points, S = 1 for an 
infinite square well, and S=3/4 for a surface quantum 
well. 

Let us analyze the experimental results obtained in the 
context of this model. In gapless HgCdTe the dispersion 
law has the form 

The variation of the potential at the surface is given by the 
solution of the Poisson equation 

where p is the charge density and x is the dielectric con- 
stant. At low temperatures in a highly doped p-typed semi- 
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conductor with a low concentration of 2D electrons 
[n,4 ( N,- N~)"~],  p =e(Na-Nd), and solution (4) has 
the form 

Plugging (3) into (2) and taking into account that in (3) 
E should be replaced by E+eq(x) in the space-charge 
region, we obtain an equation whose solution gives the 
dispersion law E(k,) of 2D electrons at a fixed value of q, . 
A plot of E(k,,) calculated in this manner for 2D electrons 
in one of the samples at several values of q, is presented in 
Fig. 3. The strong deviation of the calculated dispersion 
law of the 2D electrons from experiment should not be 
considered surprising, since the experimental plot of 
eV(k,,) in the HI( n orientation is actually not the disper- 
sion law of the 2D carriers. This is due to the fact that the 
voltage applied to a tunnel junction alters not only the 
distance between the Fermi levels of the metal and the 
semiconductor and thus the energies of the states of the 
semiconductor, which determine the differential conductiv- 
ity (see the inserts in Fig. 1 ), but also the surface potential 
qs. Of course, we can use q, as a fitting parameter to 
describe the experimental dependence of e V (  k,) (Fig. 3 ) . 
This provides a nearly linear dependence of q, on eV (see 
the insert in Fig. 3). As we see, the condition Aq,z V must 
be satisfied to describe the experimental results in the con- 
text of the model under consideration, i.e., practically all of 
the applied voltage must fall in the space-charge region in 
the semiconductor, rather than on the barrier. This seems 
unlikely, since the total resistance of the tunnel junctions 

FIG. 7. Dependence of the effective mass of elec- 
trons of kZ: @, C f o r  bulk states obtained from 
the network of levels (Fig. 2) and the temperature 
dependence of the oscillation amplitude, respec- 
tively; 0-for 2D states in the same tunnel junc- 
tion as in Figs. 2-4; +for 2D states in a tunnel 
junction from the second group; solid curves- 
calculation for bulk states in the Kane model; 
dashed curves-quasiclassical calculation for 2D 
states. The concentration of uncompensated ac- 
ceptors in the sample was 6. 10" ~ m - ~ .  Insert: 
points-experimental results for a sample with 
E,= - 100 meV and Nu-Nd= 1.4 .10'~  ~ m - ~ ,  
which were kindly supplied by Radantsev et aL;4,S 
solid curve-effective mass for bulk states; dashed 
curve-quasiclassical calculation for 2D states. 

investigated (the resistance of the barrier and the resis- 
tance of the semiconductor connected in series) was 1CL 
1000 R (for different junctions), and it is difficult to imag- 
ine that the resistance of the space-charge region in a 
highly dopedp-type gapless semiconductor has such a high 
value. 

Another parameter of the energy spectrum that can be 
measured by tunneling spectroscopy and can be calculated 
in the context of the quasiclassical model is the effective 
mass and its dependence on the quasimomentum. 

The cyclotron mass for bulk carriers (me) can be de- 
termined experimentally both from the network describing 
the positions of the oscillation maxima in eV versus H 
coordinates (Fig. 2) and from the temperature dependence 
of the amplitude of the  oscillation^,^^'^ which give identical 
values to within the errors. The cyclotron mass for 2D 
states (m,) cannot be determined from the network, since 
the applied voltage alters the surface potential q, and, 
therefore, 

However, it can be determined, as in the other case, from 
the temperature dependence of the amplitude of the oscil- 
lations. As can be seen from Fig. 7, the experimental values 
of the cyclotron mass for 2D states is significantly smaller 
than the theoretical value at all values of the quasimomen- 
tum, but they coincide to within the accuracy of the mea- 
surements with the effective mass for bulk states. At first 
glance these results contradict all the preceding findings, 
from which it was concluded that the quasiclassical ap- 
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proximation describes all the experimental How- 
-ever, it should be recalled that all the investigations were 
performed either on lightly doped samples or at high con- 
centrations of electrons (i.e., at large values of k,), while 
the calculations show that the difference between the 
masses of bulk and two-dimensional carriers is greatest 
when k, is small and the doping level is high. In addition, 
in those studies the experimental values of m, and its de- 
pendence on the concentration of 2D carriers n, (i.e., on 
g , since nS=g/2.rr) where compared with the calculated 
values and dependence, but not with the bulk-carrier effec- 
tive mass m, at the same value of the quasimomentum. 
Such a comparison (see the insert in Fig. 7) reveals that 
the experimental values of m, are close not only to the 
calculated values of m, , but also to me. Thus, experiments 
performed either on lightly doped samples or at large val- 
ues of k, do not, in fact, make it possible to verify one of 
the main consequences of quasiclassical calculations of the 
spectrum of size-quantized states in a nonparabolic gapless 
semiconductor, viz., that the effective mass of 2D electrons 
should be greater than the effective mass for bulk states 
with the same value of the quasimomentum. 

In our opinion, the disparity between the results of the 
simple theoretical model described above and experiment 
is attributable primarily to the need to correctly take into 
account the structure of the Hamiltonian and the multi- 
component wave function of electrons in a gapless semi- 
conductor. Such calculations of the spectrum of 2D carri- 
ers in symmetric heterostructures consisting of a gapless 
semiconductor and a semiconductor with E,>O and 
HgTe-CdTe superlattices have been performed in many 
studies (see, for example, Refs. 7, 19,20). We do not know 
of any calculations of the spectrum in the surface quantum 
well in gapless semiconductor. The uniqueness of such a 
structure becomes clear already from the results of Ref. 6, 
in which the energy spectrum of a partially restricted gap- 
less semiconductor was investigated in the parabolic ap- 
proximation. It was shown that 2D states should exist near 
the boundary even in the absence of an attractive electro- 
static potential. These states are specific to gapless semi- 
conductors of the HgTe type and become apparent only 
when the matrix structure of the Hamiltonian is taken into 
account. The dispersion law of such states is parabolic. 
When k,,=O, their energy coincides with the bottom of the 
conduction band, and their effective mass is greater than 
the mass of electrons in the bulk and takes on the value 
mS=4m/3 in the limit m/mh-+O (where mh is the effec- 
tive mass of a hole). However, as can be seen from Fig. 7, 
the 2D states that we observed have an effective mass 
m,zme at all values of the quasimomentum, making it 
impossible to interpret them as the interface states pre- 
dicted in Ref. 6. This may be due to the special features of 
the model used in Ref. 6, viz., the zero boundary condi- 
tions and the parabolic approximation. 

In the next section we examine the special features of 
the spectrum of 2D electrons in the surface quantum well 
of a gapless semiconductor with consideration of the non- 

parbolicity, i.e., accurately allowing for the interaction of 
the r, and r6 bands. 

4. CALCULATION OF THE ENERGY SPECTRUM 
OF ELECTRONS IN THE SURFACE QUANTUM WELL 
IN A GAPLESS SEMICONDUCTOR 

The energy spectrum of the current carriers in hetero- 
structures, such as single quantum wells and superlattices 
based on semiconductors described by a matrix Hamil- 
tonian, including the Kane Hamiltonian, has been treated 
in various approximations. The Kane model, in which the 
terms containing the free-electron mass (m,) and the in- 
teraction with distant bands are neglected, i.e., in which it 
is assumed that the mass of heavy holes (mh) is infinite, as 
may be done in describing the spectrum of light particles, 
was used in the calculations in Refs. 7 and 8. Another 
widely employed approximation, in which the interaction 
with distant bands is taken into account, but the terms 
with mo are neglected, was described in detail in Refs. 21 
and 22. The fewest approximations were made in Ref. 19, 
where Ram-Mohan, Yoo, and Aggarval accurately took 
into account the interaction of the r 8 ,  T, , and r7 bands 
along with the interaction with distant bands with an ac- 
curacy to terms proportional to k2, as well as the finite 
nature of the free-electron mass. The last factor greatly 
complicates the calculations and creates the appearance of 
higher accuracy. Inclusion of a term with mo in these prob- 
lems is counterproductive from a physical standpoint, since 
it necessitates taking into account components of the wave 
function that are damped rapidly with increasing distance 
from the boundary, with a damping coefficient of the order 
of cm, which is smaller than the lattice constant, i.e., 
the calculation unavoidably departs from the framework of 
the kfi approach. 

The spectrum of either symmetric heterostructures or 
boundary states at a single heterojunction was analyzed in 
all these studies. The experimental results presented above 
were obtained on somewhat different structures, viz., MIS 
structures. First, they are asymmetric structures. Second, 
when they are treated, a model of the semiconductor- 
insulator boundary must be selected, and, third, the behav- 
ior of the potential in the space-charge region must be 
specified. 

The selection of the model of the semiconductor- 
insulator boundary is somewhat arbitrary, since our 
knowledge of a real semiconductor boundary and the elec- 
tronic structure of an insulator is almost always very lim- 
ited. If it is assumed that the main role in the boundary is 
not played by either electrons or holes from the semicon- 
ductor, the most acceptable model of a boundary would be 
the model proposed in Ref. 23, in which it was assumed 
that an insulator has the same energy structure as a semi- 
conductor with the same momentum matrix element P and 
that the energies of the edges of the r6 and T, bonds 
undergo jumps at the boundary ( D, and D, , respectively), 
which are much larger than all the characteristic energies 
of the problem (Fig. 8).  
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FIG. 8. Energy diagram of a gapless-semiconductor-insulator boundary 
in the presence of a smooth attractive potential (a) and a model rectan- 
gular potential (b). 

The behavior of the potential in the space-charge re- 
gion can be determined, as described above, from the Pois- 

son equation, which is easily solved if the charge of the 2D 
electrons can be neglected. When the concentration of 2D 
electrons is high, their charge must be taken into account, 
i.e., the Schrodinger and Poisson equations must be solved 
simultaneously. The solution of the multiple-band Schro- 
dinger equation for the structure shown in Fig. 8a is a 
complicated mathematical problem; therefore, for a quali- 
tative analysis of the features of the electron spectrum in 
the surface quantum well of a gapless semiconductor we 
shall examine a model potential, i.e., a square well of depth 
U=q/2 and width d= L (Fig. 8b). The use of such a 
model potential instead of potential (5)  in a quasiclassical 
calculation of the spectrum of 2D electrons gives similar 
results. 

As in Ref. 7, we neglect the contribution of the I?, 
spin-orbit split-off band, since the magnitude of the spin- 
orbit splitting in HgCdTe is of the order of 1 eV, which is 
much greater than the characteristic energies of the prob- 
lem, and we assume that the heavy-hole mass is infinite. If, 
as above, the x axis is parallel to the direction of quanti- 
zation (perpendicular to the plane of the structure) and 
they axis is parallel to the two-dimensional wave vector in 
the plane of the surface of the semiconductor, the matrix of 
the Hamiltonian breaks up into two matrices correspond- 
ing to two "spin" states: 

( 6 )  

where ix= - i a/ax, 6, = - i a/a,, E ( r 6 )  and E ( r 8 )  are 
the energies of the r6 and rg bands when k=O, respec- 
tively. 

If E ( r 6 )  and E ( r 8 )  do not depend on the coordinates, 
the general solution of the Schrodinger equation 
HiYi=EjYj (i= 1,2) has the form7 

The components of the wave vector kx and k, are related to 
the energy by the expression 

and Y2 is distinguished from \V1 by the replacement of k, 
by -k,. 

The spectrum of 2D carriers in the structure depicted 
in Fig. 8b can be found by matching the wave functions of 
type (7)  found for each of the regions at the boundaries. 
The matching conditions are easily obtained by intergrat- 
ing the Schrodinger equation across each boundary. With 
the Hamiltonian that we have chosen, they reduce to con- 
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FIG. 9. Calculated dispersion laws for bulk states (curve I)  and 
two-dimensional states (remaining curves). Curve 2-eU= 20 
meV; curve 3-eU=40 meV; curve &eU= 80 meV; curve 
5-eU= 120 meV. The dotted curve is the dispersion law of the 
boundary states, i.e., eU=O. The solid curves correspond to the 
states with the wave function P, , and the dashed curves to the 
states with P, . d= cm. 

tinuity of the wave-function component ui and the combi- x-1- oo and x-+ co in regions I and 111, respectively. Re- 
nation flui+ wi at the boundary.' quiring fulfillment of the boundary conditions gives the 

To find the spectrum of states localized at the bound- secular equation 
ary, we must leave only the solutions which decay at 

where 

Here the energy E is measured from the bottom of the 
conduction band in the bulk of the semiconductor (region 
111); k, is the component of the quasimomentum in region 
11; K, and KIII are the decay decrements [ K ~ , ~ ~ ~ =  (ikx)I,III] in 
regions I and 111, respectively. 

Equation (9) gives the dispersion law of the localized 
states corresponding to the wave function Y, . The spec- 
trum of states corresponding to Y2 can be obtained by 
replacing k, by -k, in (9). This equation was solved nu- 
merically for E,= - 100 meV, P= 8 . lop8 eV . cm, Dc= 1 
eV, and D,=2 eV. 

Further insight into the main features of the spectrum 
of 2D electrons in such a structure can be gained by ex- 
amining the dispersion law of electrons E(ky) when the 
well has different depths and a fixed value of d (Fig. 9). It 
can be seen that in the absence of a well, i.e., when U=O, 
there should be a branch of boundary states (dotted line) 
whose energy at k,=O coincides with the bottom of the 
conduction band in the bulk solid. The special features of 
the behavior of this branch were discussed in detail in Ref. 
24; the very same boundary states were investigated in the 
parabolic approximation in Ref. 6. As we mentioned 

above, in this approximation the dispersion law of the 
boundary states in the limit m/mh+O is also parabolic and 
is described by an effective mass ms=4mJ3. It can be seen 
from Fig. 10 that consideration of the nonparabolicity 
causes the effective mass of the 2D states to be greater than 
the effective mass in the bulk only at small k, , so that the 
dispersion laws of the boundary and bulk electrons remain 
similar at all ky (Fig. 9). As the depth of the well increases, 
the effective mass at small ky increases, but at large k, the 
effective mass of the 2D states continues to remain close to 
the mass of the bulk states (Fig. 10). The nonmonotonic 
character of the plots of ms(ky) at small k,, at which the 
energy of the states is close to the degeneracy point in the 
bulk can be attributed to the form of the model potential, 
i.e., the abrupt step at the boundary between regions I1 and 
111. These qualitative features are relatively insensitive to 
the values of D, and D, and the ratio between them (as 
long as D, , D,) Eg and D, > D,). One characteristic fea- 
ture of 2D states in an asymmetric structure is the consid- 
erable difference between the energies of the states with 
wave functions 'PI and Y, , which correspond to different 
"spins" (Figs. 9 and 1 1 ) . When the well is absent or its 
depth is small, only the "spin" state corresponding to Y1 
exists (Fig. 11). As the depth of the well is increased, the 
other "spin" state appears at a certain value of eU, which 
depends on ky ( e U z  35 meV when k,= lo6 cm-I), and at 
large values of eU both states already exist at k,=O (Fig. 
9). When the depth of the well is increased further, these 
states change places. This should correspond to reversal of 
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FIG. 10. Dependence of the effective mass on I? for bulk states 
(curve I), for 2D states when eU=20 meV (curve 2) ,  for 2D 
states when eU=40 meV and d=  cm (curve 31, and for 
eU=O meV (curve 4). The solid curves correspond to the states 
with the wave function Y, , the dashed curve corresponds to the 
states with Y2, and the dotted curve corresponds to the bound- 
ary states. 

the sign of the g factor, and at large values of eU their 3. The calculation was performed without consider- 
energies become close to the quasiclassical values (Fig. ation of the interaction with the r7 spin-orbit split-off 
11). band, which is significant in a quantitative treatment of the 

experimental results. 
Therefore, in comparing such an idealized calculation 

5. COMPARISON WITH EXPERIMENTAL RESULTS with experimental data, it would be more judicious to com- 
pare relative parameters of the spectra of the two- Before proceeding to an analysis of the experimental 

results in the context of the present model, we wish to dimensional and bulk states (for example, the ratio mdm, 

make several comments: at a single value of k,), and no special significance should 

1. ~h~ theoretical calculation was performed for a be attached to quantitative agreement between absolute 

model (rectangular) potential, rather than the real poten- values. 

tial in the surface region of a semiconductor. The surface potential needed to form 2D states with an 

2. The model of the insulator contains two additional experimentally observed binding energy Ei , which is de- 
parameters D, and D, , which contribute to specifying the fined as the difference between the energies of the bulk and 
quantitative characteristics of the 2D electrons (but not two-dimensional states at a given k, (Fig. 3), can be eval- 
the qualitative features of their spectrum). uated in the context of the model considered in the pre- 

FIG. 11. Dependence of the binding energy Ei at k,= lo6 cm- ' 
on the depth of the well when d= cm. The solid curves 
correspond to the states with the wave function Y, , the dashed 
curve corresponds to the states with Y2, and the thick solid 
curve corresponds to the quasiclassical calculation. 
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ceding section. For a tunnel junction from the first group, 
whose results are presented in Fig. 3, this gives eU-,70 
meV when V-30 mV and eUZ40 meV when V ~ 1 4 0  
mV. Thus, the depth of the potential well needed to ensure 
a given Ei is significantly smaller than the depth in the 
quasiclassical model, and the change in its value upon ap- 
plication of a voltage amounts to only 1/4 of the voltage 
applied to the tunnel junction. 

The experimental results obtained on tunnel junctions 
from the second group, in which an angular dependence of 
the position of the oscillation maxima typical of 2D states 
is observed, despite the equality between the periods of the 
oscillations in both orientations of the magnetic field to 
within the experimental errors, can also be understood in 
the context of the model considered. In these junctions 
there is essentially no potential attracting the electrons, 
and the tunneling conductivity oscillations observed when 
HI1 n are attributed to tunneling into boundary 2D states. 
As can be seen from Fig. 9, the binding energies for these 
states should amount to only 1-3 meV over the entire 
range of k, . The other most significant inconsistency be- 
tween the quasiclassical model and experiment is the dis- 
parity between the values of the effective mass of the 2D 
states. The quantum-mechanical calculation described 
above, which takes into account the multicomponent na- 
ture of the wave function and the nonparabolicity of the 
spectrum, shows that the effective mass of the 2D carriers 
is, in fact, close to the mass in the bulk of the semiconduc- 
tor in the experimentally accessible range k,> lo6 cm-' 
(Fig. 12). 

Now the lack of spin splitting upon tunneling into two- 
dimensional states (Figs. 1 and 5) can be understood. As 
can be seen from Figs. 9 and 11, when the depth of the well 
is small, there is only one "spin" state localized in it. As 
calculations with parameters corresponding to the junc- 
tions from the first and second groups show, just such a 
situation is realized when V >  20-60 mV. When the well is 

FIG. 12. Ratio of the effective mass of 2D electrons to the 
effective mass in the bulk solid with the same k,. Points- 
experimental data for junctions from the first ( 0) and second 
(0) groups; solid curve-quasiclassical calculation; dash-dot 
and dashed curves-results of calculations for 2D states with 
junctions from the first and second groups, respectively. 

deeper, spin splitting should be observed, and we hope that 
further investigations of tunneling will make it possible to 
study it experimentally and to compare the experimental 
results with calculations in detail. There may be an impres- 
sion that 2D electron states always form on the boundary 
of a gapless semiconductor, and then our claim in Ref. 14 
that we observed tunneling into bulk states in both orien- 
tations of the magnetic field no longer seems reasonable. 
Actually, calculations employing the model described 
above show that even a small electron-repelling potential 
(2-5 mV) results in the disappearance of boundary 2D 
states. 

I .o 

6. CONCLUSIONS 

- . - -  - - . _ _  _ _  - - - - -Th- - - -P-"  -3- - -  $ 
1 1 1 1 1 1 1 ~ ~ ~ ~ 1 ~ ' " ~  

The use of tunneling spectroscopy in a quantizing mag- 
netic field thus makes it possible to investigate two- 
dimensional electron states localized at the boundary of a 
gapless semiconductor. It has been shown that size quan- 
tization of electrons occurs in a substantially different man- 
ner in a gapless semiconductor than in semiconductors in 
which the conduction band is the r6 band. The overall 
picture may be described in the following manner. Elec- 
trons in a gapless semiconductor are effectively attracted to 
the boundary even in the absence of an electrostatic poten- 
tial. This attraction depends on the "spin" and k, , so that 
in one of the two "spin" states it is sufficient for the for- 
mation of a 2D state localized at the boundary. In a gapless 
semiconductor with a small value of 1 E,) ,  the spectrum of 
such boundary states [E(k,) and m,(k,)] is very similar to 
the spectrum of bulk states except in a small range of k, 
near zero. 

When there is an electron-attracting potential on a 
gapless-semiconductor-insulator boundary, the binding en- 
ergy of the 2D states increases at k,> l/d, but the effective 
mass remains close to the bulk value at these values of k, . 
When the potential is increased, the total attraction be- 

0 2 4 6 8 10 

k2. lol2 cm-* 
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comes sufficient for localization of the other "spin" state, 
and as the electrostatic attraction is increased further, the 
parameters of the 2D states approach those calculated in 
the quasiclassical model. 

A small repulsive potential near the surface of a gap- 
less semiconductor is sufficient for the disappearance of 
boundary 2D states. 
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"~etailed investigations of the angular dependence reveal that the addi- 
tional maxima which were observed for several samples at high applied 
voltages in strong magnetic fields (for example, the maximum at H=4  
T in Fig. 5) and might have been attributed to spin splitting are caused 
by tunneling into Landau levels of bulk states. 

""0ne-spinw states can exist in gapless semiconductors. For example, the 
additional branch of boundary states predicted in Ref. 6 is one-spin. 
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