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Unexpected behavior of the conductivity in a magnetic field was observed near the 
percolation metal-insulator transition. The behavior is at variance with the traditional 
predictions of the theory of quantum corrections. This transition is related to localization of 
electrons in the large-scale fluctuation potential of impurities, which in turn is 
determined by the high degree of compensation. In weak magnetic fields the compensation 
influences primarily the magnetic-field dependence of the conductivity and leads to 
the appearance of unusual negative magnetoresistance, which has two minima. In addition to 
negative magnetoresistance, arising due to weak localization, there is negative 
magnetoresistance associated with an additional mechanism. In particular, redistribution of 
electrons between two spin subbands split by a magnetic field is possible. In systems 
with a short electron-momentum relaxation time and long spin-relaxation time this raises the 
Fermi level and hence decreases the resistance. The phase diagram of the electronic 
system of compensated semiconductors in a magnetic field is discussed as an application of 
this work. 

1. INTRODUCTION 

At low temperatures the magnetic-field and tempera- 
ture dependence of the conductivity of metallic crystals are 
determined by quantum interference effects. The first ef- 
fect, which was first predicted by Abrahams et al.,' is due 
to the interference of electron waves propagating clockwise 
and anticlockwise (weak localization) along self- 
intersecting trajectories. The second effect, which was stud- 
ied by Al'tshuler and ~ronov,'  is associated with renor- 
malization of the electron+lectron interaction by the 
scattering of electrons by defects of the crystal lattice (e-e 
interaction). The theory of quantum effects in the conduc- 
tivity of metals is well developed and predicts the following 
relations for the temperature-dependent corrections to the 
conductivity (see the review in Refs. 3 and 4): 

with L, = d m ,  and 

with LT = d m ,  where weak localization (1) and 
e-e interaction (2) play the main role. Mere D is the elec- 
tron diffusion coefficient and T, is the phase error time for 
the electron wave function. Quantum effects in the conduc- 
tivity are associated with the nonideal behavior or disor- 
dering of the crystal. They arise due to the small-scale 
potential fluctuations with characteristic sizes less than or 
of order the wavelength of an electron with the Fermi 
energy. Indeed, small-scale fluctuations of the potential 

lead to electron scattering, which is why self-intersecting 
trajectories and renormalization of the e-e interaction 
arises. 

In disordered crystals macroscopic nonuniformities 
can be present in addition to the small-scale fluctuation 
potential. Large-scale fluctuations are manifested in the 
form of classical effects, and as the degree of disorder in- 
creases, they lead to a metal-insulator tran~ition.~ It is 
convenient to investigate the effects associated with perco- 
lation in highly compensated semiconductors. In this case 
the large-scale fluctuation potential forms as a result of 
density fluctuations of a large number of charged impuri- 
ties. A percolation metal-insulator transition occurs when 
the percolation level E, lies above the Fermi level E F .  It has 
been observed experimentally both as E~ increases with in- 
creasing degree of compensation6 and under the action of a 
magnetic field, which reduces E F .  

7 

Since compensation and the large-scale fluctuation po- 
tential which it engenders change qualitatively the type of 
metal-insulator transition (percolation transition and not 
Anderson localization), it can be expected that compensa- 
tion and large-scale fluctuations influence quantum effects 
in conductivity. In the general case, in the presence of 
potential fluctuations of any scale, the conductivity of the 
crystal is determined by the superposition of quantum and 
classical The role of large-scale fluctuations does 
not reduce to mechanical superposition. In particular, 
Aronov et aI. 'O observed in experiments on granular sys- 
tems a qualitative change in the way quantum effects show 
up in the conductivity near a percolation transition. Near a 
percolation metal-insulator transition in compensated 
semiconductors Aronzon et a1. "*'2 observed a curve of the 
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TABLE I. 

I 

I Form of I DD DD DD 

I 

magnetoresistance K) ( TC0.7 K) ( T4.4 K) I curve MD MD MD MD - 

1 

Note. DD-double-dip negative magnetoresistance; MD-negative magnetoresistance of the usual 
form with one minimum. 

negative magnetoresistance with unusual form, namely, the 
curve has two minima. Note here that the negative mag- 
netoresistance effect is well known as one of the most strik- 
ing manifestations of quantum effects in conductivity. 
However, in all cases the corresponding theory p rdc t s  

'i 
only one minimum in the magnetoresistance curve. 

Thus our aim in the present work was to study quan- 
tum effects in the conductivity of strongly compensated 
semiconductors and to clarify the nature of the anomalous 
double-dip negative magnetoresistance. 

In this work a comprehensive experimental investiga- 
tion was made of the galvanomagnetic properties of a num- 
ber of samples of InSb with different degrees of compensa- 
tion. It is shown that the first minimum of the double-dip 
negative magnetoresistance is caused by weak localization. 
Possible reasons for the second minimum in the magne- 
toresistance curve are discussed. It is apparently associated 
with an increase of the Fermi level due to redistribution of 
electrons in spin subbands split by the magnetic field. It 
was found that the numerical parameters characterizing 
the conductivity of material with a high degree of compen- 
sation are different from the parameters predicted by the 
theory of quantum corrections to the conductivity. It is 
shown that the observed difference is associated with the 
influence of the percolation transition. 

2. MEASUREMENT PROCEDURE AND SAMPLES 

tively. The characteristic dimensions of the sample are 0.05 
XO.l X 0.5 cm3. The parameters of the experimental sam- 
ples are given in Table I. Note that, with the exception of 
sample No. 7, all samples were cut out of the same crystal 
which was doped uniformly with donors to ND=7. 10'' 
cm-3 and in which the degree of acceptor doping varied 
continuously along the axis of growth. This enabled us to 
determine the degree K=NA/ND of impurity compensa- 
tion in the samples. In addition, we estimated the Brooks- 
Herring compensation KBH under the assumption that the 
carrier mobility is determined by scattering by ionized im- 
purities. This estimate gives too large a value for Ni and K 
for strongly doped compensated samples, since it ignores 
the effect of the large-scale fluctuation potential of the im- 
purities. It does make sense, however, since it conveys cor- 
rectly the tendency for K to vary in the series of the ex- 
perimental samples. 

Data from previous measurements13 performed on the 
same samples showed that in these crystals a percolation 
metal-insulator transition occurs under the action of a 
magnetic field. This transition occurs when the Fermi level 
EF lies below the percolation threshold E,. In the case at 
hand the transition occurs because the Fermi energy de- 
creases as EF-X B-2 with increasing magnetic field at the 
quantum limit, i.e., when all electrons are in a single lower 
Landau level. The transition field BT is given by the 
relation7 

The measurements were performed on a series of +ic (1-K) 
single-crystalline samples of n-InSb with camer concentra- BT= Bp-- aBn - 
tion n=ND-NA= (0.3-3) . 1015 cmV3 and different de- 

e (1+K)' 

grees of impurity compensation K=0.23-0.95. Here ND where aB is the Bohr radius. In accordance with the rela- 
and NA are the donor and acceptor concentrations, respec- tion presented, the field BT in the experimental samples 
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decreases with increasing compensation and reaches for 
the most highly compensated sample (No. 14) the mini- 
mum possible value B= B,, where B, is the field at which 
the quantum limit is established. (In weaker fields the 
Fermi level is virtually independent of the magnetic field 
and from the standpoint of the metal-insulator transition 
under discussion the case B < B, is equivalent to zero mag- 
netic field.) Hence it can be concluded that even in zero 
magnetic field the sample No. 14 is very close to the per- 
colation limit. At the same time, in the sample No. 7 with 
the lowest degree of compensation there is no percolation 
transition and the metal-insulator transition is the stan- 
dard localization of electrons due to compression of the 
electron wave function in a magnetic field.14 

Thus the collection of samples, presented in Table I, 
with different degrees of proximity to the percolation 
metal-insulator transition is entirely sufficient for solving 
the problem posed. As the degree of compensation in- 
creases, in addition to the approach to the percolation 
limit, the parameter kFl characterizing the proximity to the 
Anderson transition (kF is the Fermi momentum and I is 
the electron mean free path length) also decreases. The 
quantity kFI calculated from the effective values of the pa- 
rameters for the experimental samples lies in the interval 

FIG. 1.  Transverse resistance as a function of 
magnetic field for InSb samples NO. 14 (a), NO. 2 
(b), No. 5 (c), and No. 7 (dl, at different tern- 
peratures. 

0.03-30. In such a macroscopically nonuniform medium, 
however, the effective values are not an adequate charac- 
teristic and, as will be shown below, the quantity kFl, 
found from the local values of the parameters equals 1-30 
for the same samples. 

In the present paper we present the results of measure- 
ments of the components p,, p,, and p, of the resistivity 
tensor (BJJ z) at temperatures of 50 mK-20 K and in 
magnetic fields up to 1 T. The measurements were per- 
formed using low-frequency ( < 300 Hz) ac current with 
the help of a selective voltmeter as well as with synchro- 
nous detection. Three different cryogenic systems were 
used in order to reach low temperatures: an 4 ~ e  cryostat, 
a system with evacuation of 3 ~ e ,  and a dilution cryostat. 

3. EXPERIMENTAL RESULTS 

The results of magnetoresistance measurements for 
several samples with different degrees of compensation of 
the impurities are presented in Fig. 1. At low temperatures 
the magnetoresistance curve has an anomalous form: It has 
two minima-double-dip negative magnetoresistance. This 
effect is manifested in the same way in both longitudinal 
magnetoresistance p,( B) and transverse magnetoresis- 
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tance p,( B) . At the same time no peculiarities were found 
in the field dependences p,,( B) in weak magnetic fields. 

The double-dip negative magnetoresistance is most 
strongly manifested in sample No. 14 with the highest de- 
gree of compensation of impurities. In this sample this 
effect is noticeable even at T z  1.3 K. Analysis of the ex- 
perimental results shows that the effect increases with K. 
As K decreases, the region where the effect is observed 
shifts in the direction of lower temperatures (see Table I). 
In sample No. 2 (K=0.8) double-dip negative magnetore- 
sistance is observed at temperatures T ~ 0 . 4  K. In sample 
No. 5, having a lower degree of compensation, the effect is 
not observed, even at a temperature of 0.04 K; only a very 
small distortion of the magnetoresistance curve with a sin- 
gle minimum is noticeable. 

Since the percolation transition point is approached 
with increasing K, it can be inferred that the effect under 
discussion is associated with the proximity of the electronic 
system to the metal-insulator transition. At the same time, 
the parameter kFl decreases with increasing degree of com- 
pensation. The magnitude of the quantum corrections to 
conductivity changes simultaneously with k d  in accor- 
dance with the relation h a s  l/G12. In particular, in the 
uncompensated sample No. 7, in which the electron den- 
sity is approximately the same as in sample No. 5, the 
magnitude of the negative magnetoresistance is found to be 
significantly lower and falls within the limits of error of the 
measurements. 

In order to analyze the nature of the double-dip nega- 
tive magnetoresistance and quantum effects in conductivity 
it is first necessary to clarify the character of the conduc- 
tivity in the experimental crystals: Are we dealing with a 
metal or insulator? As we have already pointed, data from 
preceding measurements indicate that in zero magnetic 
field the conductivity of all experimental samples is metal- 
lic, and a metal-insulator transition occurs with increasing 
magnetic field. 

The question of the character of the conductivity can 
be answered directly by analyzing the temperature depen- 
dence, with whose help the conductivity uo at zero temper- 
ature can be determined. If a. > 0, the substance is a metal 
and in the opposite case the substance is an insulator. The 
temperature dependence of the conductivity likewise gives 
an answer to the question of the nature of the quantum 
effects. In the absence of a magnetic field the temperature 
dependence of the conductivity is given by the relation 

predicted for a metal by the theory of quantum corrections 
due to renormalization of the electron-electron interaction. 
The temperature dependence a( T )  of sample No. 2 is dis- 
played in Fig. 2. Extrapolating u to zero temperature gives 
metallic conductivity uo > 0. The conductivity satisfies 
uo>O in zero magnetic field (B=O) and likewise in the 
range of magnetic fields where the double-dip negative 
magnetoresistance is observed, in other words, under these 
conditions the material is a metal. The relatively large 
change in the conductivity with decreasing temperature 
proves that the quantum corrections play a significant role, 

FIG. 2. Temperature dependence of the conductivity of InSb sample No. 
2 in the absence of a magnetic field. 

and they are determined by the e-e interaction. Analogous 
results are obtained for all samples with Kz0.6-0.9, which 
are also metallic (ao> 0) in weak fields. When the mag- 
netic field is increased, however, uo decreases and a metal- 
insulator transition occurs. Electrons are localized in wells 
of the fluctuation potential of the charged impurities. At 
low temperatures sample No. 14, which has the highest 
degree of compensation Kz0.95, is close to the insulator 
state, even in the absence of a magnetic field, though it 
remains a metal under these conditions, ~ ~ ~ 0 . 0 0 3  
(Q - cm) -'. 

The coefficient a, determined from the slope of the 
experimental curve a( T"~), for weakly compensated sam- 
ples agrees with the estimate obtained on the basis of the 
theory of quantum corrections (see Table I). The com- 
puted values a& were determined from the relations for the 
quantum corrections arising in the conductivity due to the 
interelectronic interaction in the diffusion ~hannel :~  

where F= ( l/x)ln( 1 +x),  X =  (2kFr,l2, and r, is the 
Thomas-Fermi screening radius. As the degree of compen- 
sation of the impurities increases, the agreement between 
the experimental and computed values of this coefficient 
breaks down, a,,#ad, but the qualitative form of the 
temperature dependence aa: J?; remains the same. 

We now examine in greater detail the magnetic-field- 
dependent part of the conductivity Aa(B). In order to 
make it easier to compare with the theory it is convenient 
to represent the experimental data in the form of curves 
Aa(B). Such curves are displayed in Figs. 3 and 4 for 
samples No. 2 and No. 14, respectively. The second in the 
magnetoresistance curve (and correspondingly the maxi- 
mum in the conductivity curve) is manifested only in com- 
pensated crystals at low temperatures. When this mini- 
mum is absent the curve h a (  B) has the typical form for 
the conductivity owing to quantum corrections, and the 
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FIG. 3. Transverse u, (a) and longitudinal a, (b) compo- 
nents of the conductivity versus the magnetic field for sample 
No. 2 at different temperatures. 

corresponding theory describes the curve Ao( B) well. An 
analogous assertion is likewise valid for the curves Au( B) 
in which two maxima are observed, but only for the part of 
this curve that refers to weak fields, namely, fields less than 
the field in which the conductivity is minimum, B < B ~ ,  . 
Here the field Bmi, is the field in which a minimum of 
Ao( B) is observed. For sample No. 2 at low temperatures 
B ~ , z 0 . 0 5  T. 

The agreement between the observed field dependence 
A o (  B) and the theoretical field dependence in the region 
B< B,, is confirmed by the following analysis. According 
to the theory of weak localization the field dependence 
Ao( B) is described by the relation4 

where 

f ( ~ ) = x ~ ' ~ / 4 8  for x ( I = o . ~ o ~ - L ~ / D ~ ~ ,  for ~ $ 1 ,  

and LH=iic/eB, and according to the theory of renormal- 
ization of the electron-electron interaction we have 

where pg is the Bohr magnetron and g* is the effective 
electron g-factor. In accordance with Eqs. (5) and (6) we 
observe the following field dependences h a (  B), which re- 
place one another as the magnetic field increases. 

1) In magnetic fields which are weak for weak local- 
ization and electron-electron interaction ( fi+,/~$ < 1 ) a 
quadratic field dependence is observed: Ao cc 9 (see Fig. 
5). 

2) In fields which are strong for weak localization 
(fi+,/L;> 1 ) but weak for electron4ectron interaction 
(g*pBB < r k T )  the conductivity increases as the square 
root of the field: Aoa 0, as one can see from Figs. 3 and 
4. 

3) In fields which are strong for weak localization and 
which satisfy the condition g*p&> .rrkT, the conductivity 
decreases with increasing field as Au= - 0. This asser- 
tion is likewise illustrated in Figs. 3 and 4, whence one can 

a,, l ~ - ~ ( f l . c r n ) - '  Aa,, I O - ~ ( S ~ .  cm)-l 

12 
10 

8 

8 6 

4 
4 FIG. 4. Transverse o, (a) and longitudinal a, (b)  conduc- 

tivity versus the magnetic field for sample No. 14 at diierent 

2 temperatures. 

0 
0 
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FIG. 5. Corrections to the longitudinal conductivity versus the magnetic 
field for sample No. 2 in the region of weak magnetic fields. 

see that after the maximum the field dependence 
Ao( 0) is nearly linear. 

The field in which ~ D T + , / L ; = ~  holds and the qua- 
dratic dependence Aacc $ is replaced by a square-root 
dependence makes it possible to estimate the average in- 
elastic scattering time T,, if it is assumed that T ~ = T , .  The 
quantity T,, and also its temperature dependence, which is 
displayed in Fig. 6, for sample No. 2  agrees with the results 
of Ref. 15 and the theoretical estimate obtained assuming 
that the electron energy relaxes on the deformation poten- 
tial of acoustic phonons. 

The contribution of interaction effects to the magne- 
toresistance becomes significant in fields gpBB)kT. Cor- 
respondingly, in the field such that gpBBin=kT holds a 
minimum of p(  B) [maximum of the conductivity h a (  B)] 
should be observed. The temperature dependence of Bin , 
presented in Fig. 7, makes it possible to determine g*. The 
obtained value g*=53 agrees very well with the well- 
known value g* = 5 1 reported in Ref. 16. 

The value of B ~ ,  will increase with the temperature 
until the classical and not the quantum mechanism of pos- 

FIG. 6. Temperature dependence of the lifetime of the phase of the 
electron wave function of sample No. 2. 

FIG. 7. Temperature dependence of the magnetic field in which a mini- 
mum of the magnetoresistance (maximum of conductivity) is observed 
for sample No. 2: p,-circles; p,-squares. 

itive magnetoresistance, associated with the curvature of 
the electron trajectory in a magnetic field, dominate. In- 
deed, for T >  (3-4) K the position of the maximum on the 
curve Au( B) is virtually temperature independent, and the 
value of Bmin ~ 0 . 2 - 0 . 3  T agrees with the estimate of the 
field in which the classical effect becomes significant.') 

The compensation dependence of ha (  B) is likewise 
understandable. As the degree of compensation increases, 
the absolute magnitude of the conductivity decreases and 
the relative magnitude of the negative magnetoresistance 
increases. 

As we have already mentioned, the character of the 
field dependence h a (  B) = b fi corresponds to the predic- 
tions of the theory of quantum corrections to the conduc- 
tivity, but the coefficient b varies from sample to sample 
(see Table I) ,  while the theory gives a constant value 
b d z  3  (R . cm . T"~) -'. The values of be,, shown in Table 
I were obtained from the slope of the curves AU(B'/~). 
Experiment gives a significantly lower value of b for Sam- 
ples with a high degree of compensation of the impurities. 
As the compensation decreases, the coefficient b increases 
and approaches the theoretical value b,,=1.5 
(R . cm . T"~)  -' for the relatively weakly compensated 
sample No. 5. 

Thus we can assert that the first minimum is associated 
with quantum interference effects, but in strongly compen- 
sated nonuniform material near the metal-insulated tran- 
sition a quantitative discrepancy is observed between the 
observed values of the coefficients a and b and the values 
given by the theory of quantum  correction^.^ 

4. DISCUSSION 

What are the reasons for the disagreement between the 
theoretical and experimentally observed values of a and b? 
In particular, for sample No. 14 we have 
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The value of the parameter kFl for strongly compen- 
sated samples is likewise significantly less than expected. If 
it is assumed that the quantity 1 found from the expressions 
for a, and axy according to standard formulas is indeed 
the average mean free path length and kF is the Fermi 
momentum, then kFI=0.03 and the sample would be a 
typical Anderson insulator. At the same time, as already 
mentioned above, this sample manifests metallic conduc- 
tivity, even though it is close to the metal-insulator tran- 
sition point. 

Strongly compensated InSb near the percolation tran- 
sition is a very nonuniform medium with conductivity 
along percolation channels. We infer that the observed 
contradiction is associated with the fact that the local val- 
ues of the conductivity and electron density in the perco- 
lation channel are different from the effective values calcu- 
lated under the assumption that the medium is uniform. 
Since the percolation channels occupy only a part of the 
volume of the sample, the local electron density in a chan- 
nel is a higher and hence the real local value of the Fermi 
momentum kFzn1/3 is larger than the value found from 
the average electron density over the volume of the sample. 

The carrier mobility in the temperature range consid- 
ered is determined by scattering by ionized impurities. 
Since all samples, with the exception of sample No. 7, were 
cut from the same uniformly donor-doped crystal and the 
degree of compensation is high, the total concentration of 
scattering centers in the series of samples investigated is 
approximately the same and equals - 2ND.  In accordance 
with the Brooks-Herring formula, this means that the lo- 
cal values of the carrier mobility should also be close in all 
samples. Thus in strongly compensated samples the local 
mobility should be close to that in sample No. 5. The fact 
that the local carrier mobility pl, is approximately the 
same in all samples is confirmed by experiment. As follows 
from the classical theory of conductivity in a magnetic 
field, the field dependence ox,,(B) has a maximum at 
up= 1 or, which is the same thing, pB= 1 ( p  is the elec- 
tron mobility). Indeed, in all experimental samples the 
maximum of the conductivity is observed for the same 
value of the magnetic field, corresponding to the value of 
the mobility found for the weakly compensated sample No. 
5, pl,zp (No. 5). The geometric factor, associated with 
the percolation character of the conductivity, reduces the 
effective value of the mobility. For the form factor reduc- 
ing the mobility in sample No. 14 we have pl,/p= 15. 

As we have already pointed out, sample No. 14 is near 
the percolation transition. At this point the volume of a 
percolation cluster is 1/3 of the volume of the sample, 
whence it follows that the local electron density nl, in the 
percolation channels for sample No. 14 is three times 
higher than the average value over the sample. Using the 
ratio ,ul,/p= 15 we obtain a local value of the parameter 
(kFl)loc close to 1: 

where (kFl)eff is the effective value of the parameter kFI, 
found from the average values of the electron density and 
mobility over the sample. It is this value that should be 
expected for sample No. 14, where aozO. 

The relations predicted in the theory of quantum cor- 
rections should hold for local values of the conductivity. 
Any deviation of the effective values of the parameters p 
and n from the local values likewise results in underesti- 
mation of the effective value of the diffusion coefficient 
D= ~ > / 3 :  D,,/D z 30. Therefore, the estimated coeffi- 

-~o/T"'a ~z~~ presented in Table I is too cient acd - 
high by a factor of ( Dl,/Deff) 'I2= 5 compared to the local 
value al,. Moreover, it is also necessary to take into ac- 
count the fact that the average conductivity od over the 
sample is much lower than the local value 

in the percolation channel because both the conductivity 
(pl,/p z 15 ) and carrier density ( nl,/n z 3 ) are underes- 
timated. Then the local value of the coefficient aexp, calcu- 
lated from the experimental data, should be 45 times 
higher than the value presented in Table I: a=0.02.45 
~ 0 . 9 ,  which agrees with the theoretical estimate ~ ~ ~ ~ 0 . 3 .  

Now that we know that the local conductivity in the 
percolation channels is different from the average conduc- 
tivity over the volume of the sample, we can also under- 
stand why in compensated samples the value of the coeffi- 
cient b in the magnetic-field dependence of the 
conductivity differs from the theoretical value. The value 
of b calculated for the local conductivity blw = 45bexp z 1.4 
is close to the computed value bcd= 3.0. 

Aronov et aI. lo studied the effect of the percolation 
transition on the character of the manifestation of quantum 
effects in the conductivity. They focused their attention on 
the case 6 > L,, LT. Here 6 is the correlation length. Un- 
der these conditions the spatial dispersion of the diffusion 
coefficient leads to a qualitative change in the field and 
temperature dependence of a. Our data refer to the case 
{< L, (sample No. 14 has 6 z  3 cm and L,= 
cm). The results obtained indicate that even in this case 
percolation influences the quantum effects and leads to dif- 
ferent numerical values of the coefficients a and b. 

We now discuss the nature of the double-dip negative 
magnetoresistance. We note first that such a magnetic-field 
dependence of the resistance was also observed 
previously17"8 in compensated InP crystals. It should be 
noted that the experimental data and the experimental con- 
ditions in Refs. 17 and 18 are very close to those presented 
here. First, in all cases two minima are observed on the 
magnetoresistance curve. Second, the effect always occurs 
in compensated materials near the metal-insulator transi- 
tion. Third, the effect is always observed in the region 
W,T < 1, and only at quite low temperatures. 

222 JETP 78 (2), February 1994 Aronzon et a/. 222 



In Refs. 17 and 18 the observed effect was attributed to 
Shubnikov-de Haas oscillations. However, we feel that this 
explanation is unsatisfactory for the following reasons: 

1. The effect is observed for oC74 1, i.e., outside the 
region of existence of the Shubnikov-de Haas effect. At- 
tempting to save the situation, Finlayson has suggested18 
(for UC7r0. 1) that when the average electron free-flight 
time differs by a large amount from the lifetime of the 
electron in a cyclotron orbit, it is possible to observe oscil- 
lations for we? < 1. Without analyzing this point of view, 
we nonetheless refrain from discussing this question, since 
there are much more serious grounds for not considering 
the observed features of the magnetoresistance to be 
Shubnikov-de Haas oscillations. These considerations are 
presented in Secs. 2 and 3. 

2. The field at which a maximum of a (minimum of p )  
is observed depends strongly on the temperature (see Fig. 
7), and this is not characteristic of the Shubnikov-de Haas 
effect. 

3. As the degree of compensation increases, U,T de- 
creases, and the insulator state is approached the effect 
intensifies (see Table I) ,  in contrast to what should happen 
for Shubnikov-de Haas oscillations. Indeed, oscillations, 
clearly observed in sample No. 7 (see Fig. Id) disappear 
with increasing compensation. 

The double-dip negative magnetoresistance was also 
observed by Raikh et a1. l9 in two-dimensional structures in 
the hopping-conduction regime. In our case this effect is 
associated with three-dimensional and not two- 
dimensional conduction. First, the effect is identically man- 
ifested in a magnetic field both parallel and perpendicular 
to the current (see Fig. 2). Second, the three-dimensional 
character of the effect is confirmed by the experimental 
results on absorption of ultrasound at 1W1000 MHz. The 
magnetic-field dependence of the ultrasonic absorption co- 
efficient in these crystals is determined by the conductivity 
of the free carriers, and as shown in Fig. 8 its form is 
similar to that of the curve for the case of double-dip neg- 
ative magnetoresistance. 

In Ref. 19 the minimum of resistance (maximum of 
conductivity) in weak fields is explained by the over- 
whelming effect of the magnetic field on the interference 
amplitudes of electrons propagating along different paths 
between prescribed initial and final states. For the hopping- 
conduction regime this mechanism is analogous to weak 
localization in a metal and was predicted in Ref. 20. 

In Ref. 21, in order to explain the second maximum of 
the conductivity, Raikh proposed a mechanism that takes 
into account the change in the density of states in the 
impurity energy band in a magnetic field. The magnetic 
field decreases the overlapping of the wave functions of 
electrons on neighboring donors. This narrows the impu- 
rity energy band in a magnetic field and decreases the den- 
sity of states in the band. Conservation of total electron 
number leads to the conclusion that as the field increases, 
the Fermi level moves toward the center of the impurity 
energy band. 

Raikh's model was developed for an insulator and can- 
not explain the origin of the second maximum of conduc- 

FIG. 8. Magnetic-field dependence of the ultrasonic absorption coefficient 
for sample No. 2 at different temperatures: T=0.46 K (filled circles), 0.8 
K (open circles), 1.2 K (open squares), and 4.2 K (filled squares). 

tivity in our experiment, since on the metallic side of the 
transition we observe conduction not along the impurity 
energy band but rather in the conduction band. The impu- 
rity energy band in InSb with ND)2 1014 cm-3 is not 
separated from the conduction band. Analysis of the re- 
sults of the investigation of hopping conductivity in sample 
No. 14 in fields B> BT shows that in this sample such a 
transition occurs only in fields 1.5 T. It can be inferred 
that some restructuring of the combined band under the 
action of the magnetic field can also occur in the metallic 
state, and for this reason Raikh's mechanism as a reason 
for the double-dip negative resistance apparently cannot be 
completely excluded in our case. 

The second maximum of conductivity (minimum of 
magnetoresistance) could be associated with the effect 
studied by Shapira and Kautz in Ref. 22 and Fukuyama 
and Yosida in Ref. 23. This effect is caused by redistribu- 
tion of electrons between two spin subbands, split in a 
magnetic field. In systems with short electron-momentum 
relaxation time T and long spin-relaxation time T, this in- 
creases the Fermi energy in a magnetic field and decreases 
the resistance. For not too strong magnetic fields this ef- 
fect can exceed the diamagnetic decrease of the Fermi 
level. Such a model was previously considered in order to 
explain negative magnetoresistance in semimagnetic 
semicond~ctors.~~ 

Indeed, let w , ~ 4  1 and w T ) 1. Then the classical pos- 
e 3' 

itive magnetoresistance effect is very weak and the change 
in the electron density of states due to the formation of 
Landau levels in a magnetic field does not occur. At the 
same time the two spin subbands will be split by an amount 
gpBB. The electron density is determined by summing over 
the two spin subbands: 
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where 6 is the relative displacement of the Fermi level. 
From the condition that the electron density is constant we 
obtain 

The Fermi level decreases relative to its position in zero 
magnetic field, but the Fermi energy, measured from the 
bottom of the lower spin subband, increases. Since the mo- 
bility depends on the energy, this leads to an increase of the 
conductivity. For p a E ~ ,  then 

The main mechanism of electron scattering at low temper- 
atures is interaction of the electrons with charged impuri- 
ties. For this mechanism p cc c3l2. Hence we obtain for the 
negative magnetoresistance due to the Shapira-Kautz 
mechanism22 

Using the experimental results and local values of E,, we 
obtain the computed values (Aa/0)~=4.5  . 
1.5 - and 0.5 . for samples Nos. 14, 2, and 5, 
respectively. These values agree with the experimental val- 
ues (Aa/a),,,=5 e and 3 e for samples Nos. 14 
and 2. Some distortion of the magnetoresistance curve at 
T=0.04 K in a field ~ 0 . 6  T is also noticeable for sample 
No. 5. 

According to the relation (8), the magnitude of the 
change in the conductivity Aa at the second maximum 
should not depend strongly on temperature for gpBB(kT, 
since the quantity a itself for the metallic state is virtually 
independent of the temperature. These arguments agree 
with the data displayed in Fig. 3, whence one can see that 
the increment to the conductivity at the second maximum 
at temperatures TG0.4 K is virtually temperature indepen- 
dent. The second maximum in the magnetoconductivity 
curve should vanish at temperatures exceeding the spin- 
splitting energy, i.e., for kT)gpBB/2. The corresponding 
estimate of the temperature at which the effect vanishes 
gives the value 3 K, which is not so far from the experi- 
mental value z 1 K. 

The model presented explains the compensation de- 
pendence of the effect. As K increases, the electron density 
and the Fermi energy decrease. As one can see from Eq. 
(8),  a decrease of the electron density results in an increase 
of ha. The effect becomes stronger as the metal-insulator 
transition is approached. In our case the compensation de- 
pendence of the effect is not associated with the change in 

Insulator 

FIG. 9. Proposed phase diagram of the state of the electronic system in a 
magnetic field. The dashed line is the Shapira phase diagram in the ab- 
sence of any effects associated with renormalization of the e-e interaction 
and negative magnetoresistance in the Shapira-Kautz 

the ratio of the spin relaxation time 7% and the momentum 
relaxation time 7, since the local mobility is virtually the 
same in the samples Nos. 5-14. 

The effect apparently will remain in the insulator re- 
gion until 7 is too short. In this case, it will be determined 

so. 
by the splitting of the impurity energy band and the in- 
crease of the Fermi energy in it. As the electron energy 
increases, the hopping conductivity increases, as happens 
in Raikh's model. 

These considerations prove that the description of the 
experimental data is consistent with the Shapira-Kautz 

However, this is not enough to finalize the model. 
The amplitude of the second magnetoconductivity peak 
which we observed increases sharply as the degree of com- 
pensation of the samples increases and the metal-insulator 
transition is approached. This suggests that this effect 
could be related to the recently discovered and as yet un- 
explained giant negative magnetoresistance in the region of 
hopping conductivity. 25 

If a metal is defined as a substance in which the con- 
ductivity at T=O is different from zero and an insulator is 
a substance in which a= 0 holds at T = 0, then the increase 
in conductivity in a magnetic field could be responsible for 
the insulator-metal transition predicted by Khmel'nitskii 
and  arki in.^^ This possibility leads to a phase diagram, 
shown by the dashed line in Fig. 9 and first constructed by 
~ h a ~ i r a , ~ '  for the electronic system of matter in a magnetic 
field. Shapira considered only one mechanism for negative 
magnetoresistance, namely, weak localization. The exist- 
ence of a second independent mechanism, observed in a 
different range of magnetic fields, could lead to a distortion 
of the phase diagram. 

The existence of two mechanisms of negative magne- 
toresistance in different ranges of magnetic fields could be 
the reason why the residual conductivity no(B) also has 
two maxima. This should lead to the phase diagram shown 
by the solid line in Fig. 9. To what extent does this phase 
diagram correspond to reality? In order to answer this 
question it is necessary to clarify the form of the curve 
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uo(B). But the determination of ao(B) depends on the 
validity of the extrapolation of o ( T )  to zero temperature. 
The difficulty lies in the fact that as T + 0 the region where 
the e-e interaction is significant and the metal-insulator 
transition is observed shifts to zero magnetic field. This 
shift can cause the maximum of the function uo(B) to 
vanish in the region of weak localization. Thus the ques- 
tion of the reality of the double-hump phase diagram re- 
duces to the question of the existence of the region of weak 
localization as T+O in crystals where the e-e interaction 
effect does not vanish, and it is equally connected to the 
standard Shapira phase diagram.27 

5. CONCLUSIONS 

The experimental results presented in this paper indi- 
cate that in compensated semiconductors, even away from 
the percolation transition, i.e., for ( < L,, quantum effects 
in conductivity are influenced by the percolation transition. 
A percolation cluster, formed by the large-scale fluctuation 
potential, decreases the effective volume of the sample ac- 
cessible to electrons. Ultimately, the values of the numer- 
ical coefficients in the magnetic-field and the temperature 
dependences of the conductivity change. At the same time, 
in contrast to the case {> L,, the character of the mani- 
festation of quantum corrections to the conductivity re- 
mains qualitatively the same. 

The most important result of our investigation is the 
discovery of a new quantum effect in compensated mate- 
rial. This effect is manifested in the fact that the magnetic- 
field dependence of the resistivity p( B) has two minima 
while the traditional theory predicts only one minimum. 
The first minimum (occurring in a weak field) is associated 
with the effect of weak localization. The second minimum 
is apparently due to an increase of the Fermi level as a 
result of the splitting of two spin subbands in a magnetic 
field. In weak magnetic fields, for ~ ~ $ 7 ,  this effect may 
turn out to be stronger than the usual diamagnetic decrease 
of the Fermi energy in a magnetic field and could be an 
additional mechanism of negative magnetoresistance. 
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 his happens when the classical magnetoresistance becomes greater 
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W,T> 1 (w, is the cyclotron frequency and T is the electron-momentum 
relaxation time). 
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