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We discuss a model to describe distributions of nonequilibrium uniform stationary states. We 
propose to use as a measure of the deviation from equilibrium the ratio of the 
nonequilibrium heat capacity of the system to its equilibrium value. When going over to the 
equilibrium state the distributions obtained degenerate into the standard Gibbs 
distributions. The thermodynamics based upon the distributions obtained contains a new 
independent thermodynamic variable which leads to a number of differences from the 
equilibrium theory: both the distribution and the entropy contain terms describing 
universal properties of nonequilibrium states which are not connected with the physics of the 
actual system considered. The quantity C, taken normally as the heat capacity at 
constant volume may have singularities as in phase transitions. 

1. INTRODUCTION 

Nonequilibrium stationary states occupy a special 
place in nonequilibrium statistical physics. On the one 
hand, the definition of such states does not cause any dif- 
ficulties, as a rule, and they are defined as stationary solu- 
tions of transport-like equations but, on the other hand, the 
complexity of the eq~ations'.~ makes it usually impossible 
to obtain these states and, even more, to obtain distribu- 
tions over these states. As one exception we may note the 
theory of Zubarev's Nonequilibrium Statistical 
which enables us to describe a distribution of spatially non- 
uniform stationary states. However, in the spatially uni- 
form case these distributions become the usual equilibrium 
Gibbs distributions. 

In this paper we wish to draw attention to nonequilib- 
rium spatially uniform stationary states and their possible 
distributions. The best known example of such states is 
uniform stationary turbulence. 

Before we turn to a description of the model we for- 
mulate our concept of nonequilibrium spatially uniform 
stationary states. We assume uniformity in some macro- 
scopic volume which enables us to ascribe to the whole 
"box" a single characteristic and the time independence 
implies that the average characteristics do not change in 
time. We assume that we can characterize our states by the 
same parameters, such as temperature or pressure, as in 
equilibrium theory. For the present, leaving the problem of 
the determination of these parameters out of our discus- 
sion, we note that as soon as they are given we can speak of 
the corresponding equations of state, the partition func- 
tion, and other potentials which determine the statistical 
properties of our model. 

Since we intend to consider states different from equi- 
librium ones it is natural to expect that the equations of 
state, the partition function, and so on, will also differ from 
the equilibrium ones. In particular, the heat capacity of the 
state must differ from its equilibrium value for the same 
temperature, pressure, and so on. This allows us to esti- 
mate the degree of departure from equilibrium i.e., its dif- 

ference from equilibrium state, by the magnitude of the 
deviation of the nonequilibrium heat CN from its equilib- 
rium value CE when all other parameters are the same. 

We propose to use for the derivation of stationary dis- 
tributions an analog of the Heat Bath which is applied 
when one derives the equilibrium Gibbs distribution. There 
exist many different methods for obtaining the Gibbs dis- 
tribution without necessarily using a Heat ~ a t h ' * ~ * ~ ~ '  but we 
prefer this approach, postponing a comparison of various 
methods to a future date. 

2. BASIC MODEL 

The usual methods for defining nonequilibrium states 
of a system described by a Hamiltonian H consist in con- 
sidering the effect of various external actions on the 
system.14 In that case the actual form of the external 
forces, the dissipative currents, and so on, are given. We 
propose to describe nonequilibrium uniform stationary 
states and the corresponding distributions by using the 
concept of a Nonequilibrium Heat Bath in the same way as 
is done in equilibrium theory. We explain what we have in 
mind. 

By a Nonequilibrium Heat Bath we shall understand a 
large system which is in a nonequilibrium uniform station- 
ary state under the action of external influences. We shall 
here not be interested in the actual form of the external 
forces or currents which act on the Heat Bath. We assume 
that by virtue of the time independence and uniformity we 
can ascribe a constant average energy E to the whole of the 
Heat Bath. We shall characterize the degree of departure 
from equilibrium of the Heat Bath by the ratio of the heat 
capacity CTN of the Heat Bath to its equilibrium heat ca- 
pacity Cm, i.e., by the quantity 

Indeed, as soon as we intend to describe nonequilibrium 
stationary uniform states (the best known example is uni- 
form stationary turbulence) we must at least introduce a 
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parameter which would describe the differences between 
those states and the equilibrium state and between one 
another. Moreover, we are interested in describing internal 
statistical properties characteristic for a given system and 
hence they must not depend on what kind of external ac- 
tions the system is subject to in a given nonequilibrium 
state. Assuming that such states can be characterized by, 
among others, the usual thermodynamic parameters such 
as the temperature, the pressure, and so on, it is natural to 
expect the equation of state or the corresponding partition 
function which describes the distribution of such states to 
differ from the corresponding equilibrium ones. This en- 
ables us to suggest as one of the characteristic parameters 
describing the model the value of the heat capacity of the 
Heat Bath or of the system. We discuss details of such a 
choice in what follows. 

We assume that our system is in contact with a Non- 
equilibrium Heat Bath and is part of it. We thus bring the 
system into a nonequilibrium uniform stationary state 
without considering the structure of the external actions to 
which the system is subject in such a state. 

Our aim will be to find the form of the statistical dis- 
tribution of a system which is in contact with such a Heat 
Bath, i.e., the analogs of the well known Canonical and 
Grand Canonical distributions. 

To obtain the distribution we must propose a physical 
mechanism determining the change in the heat capacity in 
a nonequilibrium state. 

We start from the following: we consider the Heat 
Bath as a large system which has, however, a finite number 
of degrees of freedom. We assume that if H T  is the Hamil- 
tonian of the Heat Bath and H the Hamiltonian of the 
system the dimensionality of the phase space of the Heat 
Bath is Nand the dimensionality of the phase space of the 
system is n, which is much smaller than N. We put here the 
dimensionality of a (p,q)-space, where p and q are conju- 
gate variables, equal to unity. For instance, we understand 
the phase space of a free particle in three-dimensional 
space, which is described by the Hamiltonian 

to be three-dimensional. 
It is well known from equilibrium that the 

equilibrium heat capacity of a system is proportional to the 
number of degrees of freedom which in our terms corre- 
sponds to the dimensionality of the phase space. For in- 
stance, the specific heat of a perfect gas at constant volume 
is 

where n is the dimensionality of the phase space of a single 
particle in three-dimensional space. For a given physical 
system the number of degrees of freedom, or rather the 
average number of degrees of freedom, may depend on the 
temperature, the pressure, and so on. However, for given 
thermodynamic parameters it is just the number (or the 
average number) of degrees of freedom which determines 
the heat capacity of the system. 

We assume that the external nonequilibrium actions do 
not change the physics of the system, i.e., do not change 
the form of the initial Hamiltonian H (a liquid does not 
become a crystal, or a monatomic gas a molecular array). 
We assume that the only statistical effect of the external 
actions on the system can be a change in the average num- 
ber of degrees of freedom-which at once affects the heat 
capacity. 

The dimensionality of the phase space FT of the initial 
Hamiltonian HT of the Heat Bath is by assumption a large, 
but finite quantity N. For each M(N there exists a set of 
subspaces F ( M )  of the phase space F T ,  each of which has 
the dimensionality M. These subspaces correspond to cases 
where different phase variables of the space FT are the 
same. For instance, if FT has the form 

there exist for M = N - 2 phase subspaces 

xl=x2 means pl=p2, ql=q2. 
Since we measure the departure from equilibrium of 

the Heat Bath as the ratio of the heat capacities, by virtue 
of our hypothesis about the cause of the change in the heat 
capacity we find that (1) characterizes the ratio of the 
average dimensionality of the Heat Bath M to its maxi- 
mum dimensionality N. 

We now turn our attention to the evolution of the 
states of the Heat Bath (or of the system) in the phase 
subspaces. The evolution in the total phase space FT is, of 
course, given by the initial Hamiltonian HT.  This means 
that we are able to describe the evolution in any phase 
subspace F using HT,  but it will not be a Hamiltonian 
description in the subspace F. We are, however, interested 
in the possibility of a Hamiltonian description in each of 
the phase subspaces. This means that we must reduce the 
initial Hamiltonian to the phase subspace and renormalize 
it in a well defined manner. As the simplest example of the 
fact that a single reduction is insufficient we consider the 
Hamiltonian 

of two free particles of mass m in one-dimensional space. 
After reduction to the subspace x1 =x2 (q, = q2; p, =p2) it 
takes the form: 

It is clear, however, that the correct Hamiltonian in such a 
subspace must have the form 
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simply because the mass of the moving point is doubled in 
the subspace. If, however, H* describes the motion of a 
single particle of mass m in two-dimensional space, the 
correct form will be 

Thus, one needs to renormalize the initial Hamiltonian 
as well as reduce it. The prescription for the renormaliza- 
tion must, of course, be chosen separately for each physical 
system. 

The main reason why we have paid so much attention 
to this problem is to emphasize a rather unexpected state- 
ment: to describe fully a given physical system, which has 
a phase space dimensionality N much larger than unity, in 
a Hamiltonian form in all possible phase subspaces for all 
M smaller than N we must give, apart from the initial 
Hamiltonian to which one usually restricts oneself, a set of 
Hamiltonians describing the evolution in each of the phase 
subspaces. These Hamiltonians can be obtained by reduc- 
tion of the initial Hamiltonian to the subspace and its sub- 
sequent renormalization. 

To enumerate all possible phase subspaces and the cor- 
responding Hamiltonians in them we define a vector 
a={al,a2, ...). Each of the phase subspaces is formed by 
merging two or more phase coordinates of the initial phase 
space. The vector a enumerates all possible subspaces: of 
the components of the vector a l  indicates the number of 
unpaired coordinates, a2 the number of coordinates formed 
letting two coordinates be the same, a, the number of co- 
ordinates formed by the coincidence o f j  initial coordinates. 
Therefore, if the dimensionality of the full phase space is N, 
the vector a, for which 

describes a phase subspace of dimensionality M. We shall 
denote the Hamiltonian in this phase subspace by H(a), 
while the initial Hamiltonian is H. 

Let now HT be the initial Hamiltonian of the Heat 
Bath and AT the set of Harniltonians HT(a) describing the 
Heat Bath in all phase subspaces F of dimensionality M of 
the phase space FT of dimensionality N: 1 a1 =M<N. Let 
H be the initial Hamiltonian of a system with a phase space 

of dimensionality n much smaller than Nand B the set 
of Hamiltonians H(b), b={bl,b2, ...) describing the sys- 
tem in all phase subspaces Q(b) of the space a. 

We assume, as is done in equilibrium theory,2 that the 
following decomposition is permissible: 

where HR is sometimes called the Hamiltonian of the res- 
ervoir. Moreover we assume that a similar decompositior~ 
is permissible for all Hamiltonians of the set A T ,  i.e., for all 
H d a ) :  

here HR(c) describes the reservoir in the corresponding 
phase subspace and the following equations hold: 

As always in the derivation of statistical distributions we 
assume that we have bk(ak. 

We consider a stationary state of the Heat Bath which 
differs from equilibrium and which is characterized by ( 1); 
by virtue of our assumption about the mechanism for 
changing the heat capacity we put 

Below we discuss the relation between (5) and what can be 
measured experimentally. For the present we fix (5) and 
consider possible consequences of this model. 

Equation (5) means that the Heat Bath is on average 
realized in phase subspaces of dimensionality M =  tN and 
has an energy E by virtue of the time in dependence of the 
state. 

We can now use almost word for word the standard 
procedure for deriving the distribution analogous to the 
Canonical distribution. 

Let R(E,M) be the number of states of the Heat Bath 
in the phase subspace of dimensionality M on the energy 
surface E, and let G(N,M) be the number of different 
phase subspaces of dimensionality M of the phase space of 
dimensionality N. The total number of states of the Heat 
Bath on the energy surface E in all phase subspaces of 
dimensionality M will then be 

We assume that only the average value of the dimension- 
ality is realized. Boltzmann's Principle about the equal 
probability of states on a surface of fixed energy E then 
means in our model that all states (6) are equally probable. 

We explain this important point in some more detail. 
In equilibrium theory one always considers a Heat Bath in 
the complete phase space and Boltzmann's Principle leads 
to equal probabilities for all states of the Heat Bath of 
energy E. A consequence of this is zero probability for the 
states in the subspaces. We want to emphasize that the 
generally accepted statement of the equilibrium theory that 
the probability for states of the system in phase subspaces 
(for singular states) in which one or several particles have 
the same phase coordinates vanishes because of the original 
assumption that the Heat Bath is realized in the complete 
phase space. This means that it is, at least, a priori impos- 
sible to state that the probability for the realization of the 
Heat Bath itself in phase subspaces is equal to zero. 

We note also that Eq. (6) enumerates all equally prob- 
able states of the Heat Bath of energy E in all phase sub- 
spaces of dimensionality M and this means that the de- 
scription of the evolution of the Heat Bath in different 
phase subspaces is accomplished by different Hamilto- 
nians. 

Considering the analog of the Canonical distribution 
we assume that our system is a small part of the Heat Bath 
and that it has a constant number of particles n, i.e., a fixed 
value of the dimensionality of the total phase space. We 
assume that Eqs. (3) and (4) are satisfied and that the 
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system in the phase subspace b is described by a Hamil- 
tonian H(b) with an energy H(b) =&(b)(ET. 

We use the notation ~ ( b )  to emphasize an important 
pointdifferent Hamiltonians H(b) of the system may 
have different energy spectra. 

Assuming the states to be nondegenerate we find, using 
(3), (4), and (6) and standard  consideration^^,^ that the 
probability p ( b , ~ ( b ) )  for realizing the system in a phase 
subspace b of dimensionality I b I =m with an energy ~ ( b )  
has the form 

This leads directly to the expression 

with the standard definition of the reciprocal temperature 

and the appearance of a new parameter A: 

We note that the distribution (7)-(9) reminds us of 
the Grand Canonical (GC) distribution, but it differs sig- 
nificantly from it in meaning: in contrast to the GC distri- 
bution which describes the probability for realizing systems 
with differing numbers of particles, i.e., fundamentally dif- 
ferent systems, (7) describes the probability for the real- 
ization of a given system with a given number of 
particles-a given dimensionality n of the complete phase 
space-over different phase subspaces b with a dimension- 
ality I b 1 =m(n with an energy ~ ( b ) .  Moreover, the ana- 
log of the "chemical activity" A is only partially deter- 
mined by the properties of the system itself-the first term 
on the right-hand side of (9). The main term in (9), 

is combinatorial and clearly characterizes universal prop- 
erties which are inherent to all nonequilibrium stationary 
states. 

It is also completely obvious that we can obtain the 
analog of the GC distribution by taking into account a 
possible exchange of particles between the Heat Bath and 
the system. In our model this corresponds to a variable 
dimensionality of the complete phase space of the system 
and leads to the expression 

The parameter y in ( 11 ) is for the distribution ( 10) al- 
ready completely determined by the combinatorial term 
and must describe universal properties which are indepen- 
dent of the system considered. 

We can write the partition function for (7) in the form 

Here Z(b,B) and A(b,B) are the Canonical partition func- 
tion and the Helmholtz free energy of our system in the 
phase subspace b: 

C(b) is a normalizing factor for the Canonical ensemble of 
a system in the phase subspace b of our system. The symbol 
XE(b) indicates summation over the energy spectrum of the 
Hamiltonian H(b) in the phase subspace b. Altogether we 
get 

The partition function for the distribution ( 10) has the 
form: 

Equations (7)-(9), (12), and (13) and ( lo) ,  ( l l ) ,  
( 13), and ( 14) describe our generalizations of the Canon- 
ical and the Grand Canonical distributions for uniform 
stationary nonequilibrium states. 

We shall consider the expressions obtained in some 
more detail. 

3. TRANSITION TO EQUILIBRIUM DISTRIBUTIONS 

The first thing we must obtain is the transition to the 
equilibrium description. In our model the equilibrium sit- 
uation is defined by ( 1 ) for the value t = 1. This means that 
the Heat Bath is on average realized in its complete phase 
space which implies that the distributions ( 12) and ( 14) 

182 JETP 78 (2), February 1994 



which we have obtained are exactly the same as the equi- 
librium expressions. We show that this result follows from 
the general expressions. 

As an example we consider the limiting transition of 
Eq. (14) to the Grand Canonical distribution. We can 
write it in the form: 

The first term on the right-hand side of ( 15 ) is exactly the 
same as the equilibrium GC partition function and the 
second one tends to zero as t-0. To show this it is neces- 
sary to consider the explicit form of the combinatorial term 
G(N,M). For different physical systems these quantities 
may differ, depending on the structure of the phase space, 
whether pairing is allowed for all phase variables or not, 
and so on. 

In the simplest case of a classical description of struc- 
tureless particles in a phase space FT= {xl ,x2 ,..., xN}, 
xj=pj, q, with dimensionality N, where pairing is allowed 
for all phase variables, the number of phase subspaces of 
dimensionality M is described8 by Stirling numbers of the 
second kind &-the number of ways of partitioning a set 
of N elements into M nonempty subsets. The number of 
ways of partitioning N elements into a given configuration 
a, 

is determined by the multinomial coefficients 

m 

We then have 

where the sum is taken over all configurations 1 a 1 = 2 
ak=M. 

For N-M<M, N - M ~ O ( N " ~ )  the asymptotic form 
of o$ is8 

This enables us to write the main term for In G for 
N-M) 1 in the form 

Hence it follows that as t -  1 

a l n n  N= 
ky+A=- 

a N  
+ (k- 1)ln -- 

2(N-M) 
- + m .  

By virtue of this the first term in (15) is, indeed, the 
same as the GC partition function since we have A+y 
= -@ (the usual definition of the chemical activity) and 
the second term becomes exponentially small compared to 
the first one, since there are always factors for bk, k > 1. 

One can prove completely similarly that (12) goes 
over into the equilibrium Canonical partition function as 
t- 1. 

4. STATIONARY THERMODYNAMICS 

In a single section it is impossible to describe with any 
degree of completeness the changes to which the stationary 
distributions which we have obtained may lead in thermo- 
dynamic problems. We try to indicate merely those fea- 
tures which we feel are the most interesting ones. 

In our view the most important one is the appearance 
of yet another thermodynamic parameter: G, the average 
dimensionality, which must be considered on equal footing 
with the other ones. 

The standard definition of the entropy 

for stationary distributions leads to the appearance of a 
component In G which describes the "disorder" in the set 
of all phase subspaces and thus to a significant extent is a 
universal component of the entropy. The analog of the 
Canonical distribution can be written in the form 

where A(b) and Z(b,/3) are given by (13) and Z b y  (12). 
In this case the entropy can be written in the form 

and to obtain expressions for the parameters A and y: 
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Here SB is the Boltzmann entropy SB(b) of the system in 
the phase space b averaged with the weight ~ ( b ) .  S, is the 
combinatorial component of the entropy which is not 
present in equilibrium theory. It is clear that in the limit of 
an equilibrium state, t -  1, we get S,+O. 

The pressure, defined in the usual way, 

is the usual pressure P(b) in the phase subspace b averaged 
with the weight ~ ( b ) .  

The appearance of yet another thermodynamic param- 
eter f i , the average dimensionality, leads to an equation of 
state of the form 

The new parameter significantly affects the heat capac- 
ity. New groups of independent variables appear: 

the variables (P,V,T) are not at all independent in equi- 
librium thermodynamics but in our model this is permis- 
sible. The relations (19) mean that one must distinguish 
three forms of the heat capacity: Cv6, C-, and CvP, the 
heat capacity at constant volume and pressure: 

P= wnst, 6 = wnst 

Measuring the heat capacity keeping only the volume con- 
stant leads, for instance, to the quantity 

The main point is, as one should note at once, that Cv from 
(20) characterizes not only the state, like, for instance, 
Cv*, but also the process: f i  = f i  ( T )  under the condition 
V=const, or P=P(T) under the condition V=const. 
Thus, if a process occurs with a rather fast change in f i  for 
a small change in T near a critical value T, this may lead 
to a singularity in the quantity Cv in the point T,. For 
instance, for 

we get for Cv in the vicinity of T, a singularity of the form 

Here we do not consider in detail the possible conse- 
quences of this, but it is impossible not to note that an 
abrupt change in the average dimensionality for a small 

change in the temperature in (20) may cause a singularity 
of the quantity Crvery similar to what is observed in 
phase transitions. 

To characterize the degree of departure of stationary 
states from equilibrium proposed by us it is natural to 
choose Cvrfr or CPE. 

5. EXAMPLES 

For simplicity we consider a one-dimensional perfect 
gas. 

1. We take the analog of the canonical distribution (7),  
( 12), and ( 13) for a one-dimensional model of three ideal 
particles described by the Hamiltonian: 

There exist three phase subspaces of dimensionality two 
and one of dimensionality 1 with the Hamiltonians H2 and 
H I  in them: 

The Boltzmann partition functions in the corresponding 
subspaces are equal to 

where L is the linear size of the region. 
The total partition function corresponding to (12) is 

equal to 

There are two cases possible: 

From the partition function we obtain the average di- 
mensionality, 

and also the average energy 

2. We consider the analog of the Grand Canonical 
distribution ( lo), ( 1 1 ), and ( 14) for a one-dimensional 
model of ideal particles described by the Hamiltonian: 
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The Hamiltonian describing the dynamics in the phase 
subspace b is 

and it can be seen from ( 14) that the corresponding par- 
tition function Z(b) is 

The total partition function of the kind ( 14) has the form 

The average dimensionality is equal to 

The average number of particles is equal to 

The average energy U of the whole system is 

The average energy u per particle is 

- 
m 

2) t-10, A+m, y+O: =+O, u+O. 
n 

Indeed, as t+O, i.e., for M=tN, M) 1, we have8 &= 
M ~ / M !  and 

N 
AZz + oo, y=ln M+O as M- 1. 

For the present we confine ourselves to these very simple 
examples. 

6. DISCUSSION 

We mentioned in the Introduction that many papers 
(see, e.g., Ref. 1 and the references given there) have been 
devoted to a study of various aspects of nonequilibrium 
stationary states (stability, fluctuations, thermodynamics). 
It is necessary to clarify the place of the stationary states 
proposed in our paper amongst those known already in the 
literature. 

The stationary states proposed in our paper differ 
somewhat from those described in the literature.' The dif- 
ferences are not connected with the fact that the stationary 
states in our paper are at once in a form similar to the 
Gibbs distribution. This can be done in a similar form also 
for the stationary states obtained as the time-independent 
solutions of kinetic equations. In our view, a more impor- 
tant difference is the statistical functional behavior of the 
stationary distributions which is given, for instance, by 
Eqs. (7)-(9). 

In the usual discussion (e.g., in Ref. 1) the kinetic 
equations describe the change in the density function in a 
fixed phase space under the action of given external actions 
and currents. The stationary state is therefore obtained also 
in the fixed subspace defined by the original model of the 
kinetic equation. 

In contrast to those Eqs. (7)-(9) describe stationary 
distributions in a set of different phase subspaces b of the 
complete phase space of the system considered and in each 
of these phase subspaces, rather than in a well defined 
phase space. This means that in order to obtain the anal- 
ogous stationary states, starting from kinetic equations, we 
need consider the density function and its equations in 
each of the phase subspaces and, moreover, we need a 
condition describing the evolution of the density function 
in the set of the phase subspaces themselves. This descrip- 
tion corresponds most closely to what on p. 380 of Ref. 1 
is called "dynamically uncoupled variables". 

In our view stationary distributions such as Eqs. (7)- 
(9) may be of interest for a number of reasons. 

Firstly, a "purely" equilibrium distribution is the lim- 
iting case t- 1 of a family of stationary distributions and 
therefore the results obtained for (7)-(9) for arbitrary t 
may be the same, as t + 1, as the equilibrium ones ( t = 1 ) , 
but in a number of cases they may be different, i.e., there 
may be a dependence on the order in which the transition 
to the limit is taken; it would be interesting to clarify the 
cause of such a dependence. 

Secondly, it is known that if Her is some effective 
Hamiltonian describing a state in the form of a "Gibbs 
distribution," in the vicinity of this state a density function 
p, different from a stationary distribution, is described by 
the Liouville equation generated by the Hamiltonian HeE 
and by virtue of Liouville's theorem p is conserved, which 
leads to a constant entropy when p evolves. This means 
that even a density function which is close to a stationary 
distribution does not converge to it, strictly speaking. An 
interesting feature of the distributions (7)-(9) is that the 
evolution equation for the density function p in the vicinity 
of (7)-(9) must necessarily be described using the evolu- 
tion of the states along each of the phase subspaces b which 
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is determined by the Harniltonian H(b;p,q) and, moreover, 
it is necessary to take into account the possible evolution of 
the vector b itself. Since the evolution of b in no way can be 
determined by the Hamiltonians H(b;p,q) there are no 
grounds whatever for requiring the conservation of the 
density function as in Liouville's theorem and it is possible 
without distorting the Hamiltonian nature of the evolution 
along the phase subspaces to use purely thermodynamic 
and thus dissipative relations to determine the evolution of 
the vector b. This may allow us to obtain an equation for 
the density function describing the convergence to a sta- 
tionary distribution, increasing the entropy in the evolu- 
tion, and so on, combining a Hamiltonian description 
along the phase subspaces with thermodynamic laws such 
as the law for the increase of the entropy to describe the 
evolution of the vector b. 
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