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Measurements of the energy loss spectra of fast (30 keV) electrons in indium have been 
made. A strong plasma resonance at an energy of 11.22 eV dominates the spectra obtained. The 
breadth of this resonance at half height (corrected for the instrumental function) is 0.30 
eV, which is the record low value for all materials except K and possibly Na. Low-intensity 
threshold singularities are also observed in the spectra, the positions of which correlate 
well with the binding energy of the and 4d3/2 core electrons, so that we can suggest that 
they correspond to these core levels. These features are well reproduced by theoretical 
calculations taking into account the polarization of the 4d levels of indium, although the 
intensity of the threshold features in the calculated spectrum is appreciably greater 
than the corresponding experimental magnitude. A theoretical calculation of the dielectric 
function and the loss function in In was carried out within the pseudopotential 
framework using a local Heine-Abarenkov model potential, the parameters of which were 
varied. It is shown that the pseudopotential approach correctly describes the width 
of the plasma resonance in indium, but cannot explain the plasmon energy shift compared 
with the magnitude of hp equal to 12.62 eV. This shift should probably be associated 
with the influence of the polarization of the 4d core level electrons, although the polarizability 
of these levels is extremely small, which is indicated by the low intensity of the threshold 
features corresponding to such a polarization. 

1. INTRODUCTION 

Electron energy loss spectroscopy (ELS) is designed 
for the study of the electronic structure of solids and pro- 
vides information about plasma oscillations and interband 
transitions, about the binding energy of electrons within 
the ion cores and their polarizability, and also about the 
general nature of the dependence of the macroscopic di- 
electric function E,(Q,W) of the medium on wave vector 
and frequency. All this information is extracted from the 
double differential scattering cross section for fast electrons 
when they traverse a thin film, and is determined by the 
expression 

where h and iiq are the energy and momentum lost by the 
electron in the scattering process, e is the electronic charge, 
a~ is the Bohr radius and R is the active volume of the 
specimen, equal to its thickness multiplied by the cross- 
sectional area of the electron beam. 

The so-calledf-sum rule applies to the first moment in 
frequency of the function Im E; ' (q,w) 

where up is the classical plasma oscillation frequency 

determined by the density n of valence electrons and their 
mass m. It is easy to see from Eqs. (1) and (2) that the 
greatest contribution to the cross section comes from in- 
elastic processes in which electrons lose an energy of the 
order of fiw,. 

This circumstance is very clearly manifest in experi- 
mental spectra for simple metals in the form of an intense 
and rather narrow peak, positioned at an energy E,, cor- 
responding approximately to hp. This peak corresponds 
to the creation of a well-defined elementary excitation in 
the electron subsystem, called a plasmon. The energy of the 
plasmon is found from the dispersion relation 

which determines the frequency Ep(q)/fi dependent on q, 
of which the real part of the dielectric function ~ ~ ( q , ' u )  
becomes zero. 

A much greater width and, consequently, also a less 
intense plasma resonance is observed in semiconductors 
than in simple metals. Such a resonance has a complicated 
structure in transition metals and is a superposition of two 
or more peaks. Finally, in oxides and in other dielectrics 
the energy loss spectra are usually very spread-out peaks, 
the positions and widths of which are comparable to fio,. 

There is a small combined contribution to part of the 
remaining features in the spectra (interband transitions 
etc.) and in the majority of cases their intensity is relatively 
small, which hinders detailed study. Therefore, in most 
work on ELS the main effort has been directed toward 
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studying plasma oscillations. However, the gradual im- 
provement in experimental equipment and methods has 
made it possible to turn to studies of other excitations as 
well, appearing less clearly in the spectra. 

In particular, the study of effects associated with the 
excitation of the ion cores is one of the interesting devel- 
opments. The corresponding resonances usually appear as 
an absorption edge with characteristic fine structure deter- 
mined by the density distribution of states above the Fermi 
level. Such absorption edges are observed in the energy 
range from several tenths of electron volts to several kilo- 
electron volts and their positions are determined by the 
binding energy of the ion cores. 

In some materials the binding energies of the upper 
core levels are fairly close to the plasma oscillation ener- 
gies. In that case strong polarizability arises both in con- 
duction band electrons and for electrons of these core lev- 
els at frequencies near the plasma resonance. Interesting 
effects can then be observred, associated with interactions 
of these two types of electrons and also with polarization of 
the ion cores themselves (see, for example, Refs. 1, 2). 

One of the substances in which this situation is realized 
is metallic indium, in which the bound Wl2 and 4d312 
outer core states closest to the valence band lie at (16.74 
and 17.64 e ~ ) ~  ( 16.40 and 17.26 ev14 below the Fermi 
level respectively, which differs only insignificantly from 
the classical energy of plasma oscillations in indium equal 
to tiw,=12.62 eV. Indium is a simple metal with a 
tetragonal face-centered lattice (a =4.585 A c=4.941 A). 
The atomic ground state configuration of indium is 
[~ r ]4d '~5?5~ ' .  

ELS studies in indium have been carried out by a 
whole series of In spectra measured by them an 
intense plasma peak is dominant, the position and width 
(at half-height) of which varies among the different au- 
thors from 11.4 to 12.3 eV and from 0.39 to 0.7 eV, re- 
spectively. There are also weak lines in the spectra associ- 
ated with surface plasma oscillations and multiple 
excitations of bulk plasmons, and also by partial oxidation 
of the metal films studied. Other features were not gener- 
ally observed. 

However, in unpublished work (a spectrum from it is 
shown in Ref. 10) an additional peak was observed in the 
ELS for indium, corresponding roughly with the excitation 
energies of the 4d core levels in the material. The existence 
of such a peak was described by ~ tu rm"  and later by 
Sturm et al." as a collective resonance of the system of 
polarized ion cores. The calculation of the loss function 
was carried out within the random phase approximation 
framework, taking account of the mutual interaction be- 
tween charge fluctuations of the conduction electrons and 
ion cores. Using the simple expression for a Lorentz oscil- 
lator to describe the polarization of the 4d electrons,I0 the 
corresponding resonance (below we call it a polarization 
resonance) in the calculated spectrum was about three 
times as intense as the analogous feature observed experi- 
mentally and was described by a curve similar to a Lorentz 
distribution. However, the inclusion of an exact expression 
for the polarizability of ion cores in metals1' led to an 

FIG. 1. Electron energy loss spectrum of In in the energy range from-5 
to 26.5 eV measured at zero scattering angle. 

appreciable reduction in the relative amplitude of the po- 
larization resonance (more than by a factor of two) and to 
a change in its shape from a "Lorentzian distribution" to 
an "absorption edge" (threshold singularity). In this way 
the results of theoretical calculation and the experimental 
results disagree as to both amplitude and shape of the po- 
larization resonance. In this situation we considered it ad- 
visable to return once more to a detailed experimental and 
theoretical study of ELS in metallic indium. The results of 
this investigation are presented in the present work. 

2. EXPERIMENTAL RESULTS 

The ELS measurements were made with the apparatus 
described earlier by Zharnikov et a1. l2 The energy resolu- 
tion and momentum transfer reached 0.15 eV and 0.05 
A-' (5X lop4 rad), respectively, with the initial beam 
energy 30 keV. Thin film indium specimens were deposited 
by thermal deposition in a vacuum of torr onto col- 
lodion support films cooled with liquid nitrogen. The 
thickness of the specimens was 300-450 A. 

A typical ELS spectrum for metallic indium measured 
at zero scattering angle is shown in Fig. 1. The narrow 
peak at 11.2 eV dominates, evidently corresponding to ex- 
citation of a bulk plasmon in the indium conduction band 
electron system; a double excitation process is responsible 
for the resonance at 22.5 eV, while the weak feature in the 
vicinity of 6 eV is probably associated with a surface plas- 
mon. The latter is confirmed by spectra taken at a nonzero 
scattering angle (Fig. 2). In these spectra the relatively 
intense feature near 6 eV decreases with increasing scatter- 
ing angle appreciably faster than the analogous feature for 
a bulk plasmon, as it should for surface excitation. The 
surface plasmon energy for a metallic indium film with a 
clean surface, in vacuo, should be EdV"2~7.9 eV. How- 
ever, in our case one of the surfaces of the film is in firm 
contact with the collodion substrate while the second may 
be covered with some indium oxide layer which leads to a 
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FIG. 2. Electron energy loss spectrum of In in the energy range from-5 
to 26.5 eV measured at nonzero scattering angles (q=0.15 A). 

reduction in the surface plasmon energy. The effect of these 
dielectric films appears in the form of a broad hump lying 
in the energy region between the single and double plas- 
mon peaks. No intense resonance is observed in the spectra 
shown in Fig. 1 in the region of the excitation of the 4d 
core levels. 

In order to study this section of the spectrum in more 
detail additional ELS measurements were made in the en- 
ergy range 15.5-19.5 eV. The corresponding spectrum is 
shown in Fig. 3, where the arrows also show the binding 
energies of the Wl2 and 4d312 core levels, according to 
Poole et a14 As can be seen from Fig. 3, the points of 
inflection are quite clearly observed in the experimental 
spectrum at these energies at which increased energy losses 
occur. It can be concluded from such agreement that these 
points reflect thresholds for interband transitions with ex- 
citation of 44, and M3l2 electron core levels in unfilled 

FIG. 3. Electron energy loss spectrum of In in the energy range from 15.5 
to 19.5 eV measured at zero scattering angle. 

states above the Fermi surface. The intensity of these 
threshold features is extremely small and they are practi- 
cally invisible in the spectrum of Fig. 1, taken in the same 
energy range with lower statistics. A possible explanation 
of the low intensity of the observed transition is that near 
the Fermi level s-type states predominate, transitions from 
which to d-levels are forbidden by the I quantum number 
selection rules (changes Al= 0, * 1 ) . 

Comparison of Figs. 1 and 3 with the experimental 
spectrum given by ~turm'' suggests that the broad low- 
intensity peak near 17 eV we also observed was taken as 
the feature associated with the excitation of 4d core level 
electrons. The exact shape of this peak and the appearance 
of finer features on it were not considered there. 

Since polarization of the 4d levels in indium should 
have an effect on the position and width of the plasma 
resonance, it is interesting to analyze the experimental re- 
sults from this point of view. From the results of analysis of 
nine spectra taken on different specimens, the position of 
this resonance corresponds to an energy Ep= 11.22 0.02 
eV and its width at half height AElI2 (correcting for the 
instrumental function) is 0.30 * 0.02 eV. 

Comparison of the values of Ep and hp shows that the 
energy of a bulk plasmon in the conduction electron system 
of indium is lower than the energy of plasma oscillations 
for a homogeneous electron gas of the same density. How- 
ever, at the same time the value of Ep we found is in good 
agreement with the results of previous  measurement^."^ 
The plasma resonance itself is extremely narrow: the value 
of AE1/, for indium is smaller than the analogous value for 
all materials studied earlier except potassium (0.2-0.3 
ev13) and possibly sodium (0.2544 evI3). The higher 
values of the halfwidth of the plasma peak in indium ob- 
served earlier may be attributed to specimens of insuffi- 
ciently high quality and low energy resolution of the ap- 
paratus. 

3. THEORETICAL ANALYSIS OF RESULTS 

A theoretical description of plasma excitation in in- 
dium cannot, unfortunately be given within the frame- 
work of a relatively simple model of a homogeneous elec- 
tron gas, since such an approach leads to the conclusion 
that in the energy loss spectrum for zero momentum trans- 
fer q a 6-function singularity should be observed at wp 
(12.62 eV). The existence of this singularity, i.e., the ab- 
sence of damping for the plasmon, is associated with the 
fact that in the homogeneous electron gas model the energy 
and momentum conservation laws for the decay of a plas- 
mon into an electron-hole pair are only satisfied over a 
certain range of values of w and q, the so-called Landau 
continuum. Since the point ( w  = up, q =0 )  does not fall in 
this continuum, the decay of a plasmon into an electron- 
hole pair is forbidden and, consequently, damping is ab- 
sent. However, such a decay becomes possible if the crystal 
lattice takes part in the process. It takes up part of the 
momentum and enables the conservation laws to be satis- 
fied. In other words, for any w and q a reciprocal lattice 
vector G can be selected such that the point w,  q+G falls 
in the Landau continuum. 
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Taking account of the crystalline structure of a mate- 
rial requires calling on the formalism of the dielectric ma- 
trix 

describing the shielding properties of the electron sub- 
system of a real crystal. This matrix is defined in the vector 
space, of macroscopically large dimensionality, of the re- 
ciprocal lattice {G). Here and later k is a wave vector lying 
within the boundaries of the first Brillouin zone. 

The calculation of its dielectric matrix for a known 
electron band structure of a metal, although it runs to a 
sizable numerical problem, is not associated with funda- 
mental difficulties (at least within the approach of the most 
widely used random phase approximation). The first ex- 
pressions for the dielectric matrix in this approximation 
were obtained by ~ d l e r ' ~  and by wiser15 

In this expression A and A' indicate the single-particle 
Bloch states corresponding to energies EA and EAl and the 
Fermi occupation functions nA and nAt, Sk+C,k+G, is the 
Dirac delta function, while v(q) =47re2/$ is the Fourier 
component of the Coulomb interaction. 

To recover the form of the energy loss spectrum, it is 
necessary to invert the dielectric matrix, since the loss 
function L(q,w) for a real crystal describing such a spec- 
trum is determined by the relation 

where q = k + G and the corresponding diagonal element of 
the inverse matrix with respect to Eq. (5) also occurs. The 
problem of such an inversion has not so far been solved for 
the general case. 

However, in simple metals where the pseudopotential 
of the electron-ion interaction V(r) is weak and an ana- 
lytic inversion of the dielectric matrix can be camed out 
within perturbation theory, a relatively simple expression 
can be obtained for the loss function of a real crystal with 
an accuracy up to second order in V(r). The correspond- 
ing theory was developed by wiser.15 In the limiting case 
q + 0, the expression takes the form 

where ~ , ( q , u )  and E ~ ( ~ , w )  are the real and imaginary 
parts of the so-called macroscopic dielectric function 
E ~ ( Q , w ) ,  which for small q gives the equation 

where E(G,w) is the dielectric function of a homogeneous 
electron gas of the same density. 

The Fourier component of the lattice potential is de- 
noted by VL(G). This quantity can be represented in the 
following way 

where No is the total number of atoms, V(G) is the form 
factor of the electron-ion interaction pseudopotential, and 

is the structure factor. The radius vector of the sth atom 
and the total number of atoms in the elementary cell are 
denoted by p, and v respectively. 

We camed out calculations of the macroscopic dielec- 
tric function (Eq. 9) and the loss function (Eq. 8) for 
indium in the region close to the plasma resonance. For 
this we used a local Heine-Abarenkov model potential 

and the random phase approximation for the dielectric 
function of a homogeneous electron gas. The magnitude of 
S(G) was made equal to unity by using an appropriate 
choice of radius vectors. The quantity Z in Eq. ( 12) was 
taken as 3, and the values of the parameters u and R, were 
taken from ~turm," where they were determined by fitting 
the Fermi surface of indium. u was then assumed equal to 
zero (Ashcroft empty core model) and two possible 
choices were obtained for R,: Rc=0.575 A and Rc=0.715 
A. 

The function ~~(q,w)-and thus L(q,w)--can be di- 
rectly seen from Eq. (9) to be independent of the absolute 
magnitude of the wave vector in the limit q + 0, but because 
of the presence of the scalar product qG under the sum- 
mation sign, there is a dependence on the direction of q 
relative to some assigned axis (for non-cubic lattice sym- 
metries). Taking into account that polycrystalline indium 
specimens were studied in our experiments, the appropri- 
ate averaging of the function L(q,w) calculated by Eq. (8) 
must be carried out over all possible directions of the vec- 
tor q. For this the following integral must be evaluated 

Here the macroscopic dielectric susceptibility is expressed 
in terms of ~ ~ ( 6 )  as a function of 8, the angle between 
some preferred axis and the vector q. For systems possess- 
ing a symmetry axis, this function takes the form 
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where a, b, c, and c2 are the complex frequency functions, 
the values of which have also been calculated. 

A summation over 125 coordination spheres went into 
the calculation procedure directly, which included 1474 
nonzero reciprocal lattice vectors for 200 frequency values 
in the region of the plasma resonance, according to the 
following formula, which can be obtained from Eq. (9) 

Here aqc is the angle between the vectors q and G, the 
coordinates of which are defined in a rectangular coordi- 
nate system; the z axis coincided with the lattice c axis. 
Then q= (q sin 8/14, q sin W2, q cos 6 ) ,  where 6 is the 
angle between the z axis and the vector q (the azimuthal 
angle 4 is taken to be 45" in view of the lattice symmetry). 
The quantity WG is given by 

sin ( GR,) 
W G = ( 1 + u ) ~ ~ ~ ( G R , ) - u  

GR, 

(see Eq. (12)). 
The summation in Eq. (15) for each value of fre- 

quency was carried out for two values of the angle 8 ,0  and 
77/2, SO that the coefficients cl and c2 in Eq. (14) could 
then be calculated. Using these values, it is easy to carry 
out the integration in Eq. (13), which leads to the expres- 
sion 

which can then be used for a numerical calculation. A 
similar procedure for evaluating the loss function in poly- 
crystalline specimens was used by Gorobchenko et al.' as 
applied to Cd and Zn. 

The curve obtained for the loss function for a polycrys- 
talline indium specimen has the form of a resonance peak, 
the shape of which is close to Lorentzian, and the position 
and full width at half maximum the two sets of parameters 
of the model potential of Eq. ( 12), indicated above, are 

A comparison of the experimental data and the results 
of the theoretical calculation (Eq. 16) shows that for these 
two choices of parameters there is an appreciable discrep- 
ancy between the calculated and observed plasmon energy. 

FIG. 4. EJR,) and AE,,,(R,) for In calculated using a Heine- 
Abarenkov local model potential, in the empty core model (u=O). 

At the same time, the theoretical value of AElI2 for the first 
set agrees significantly better with the corresponding ex- 
perimental value. 

If we stay with the Ashcroft empty core model ( u  =O), 
the E,(R,) and hElI2(Re) dependences are as shown in 
Fig. 4, and in this case the experimentally determined 
width of the plasma resonance hE112=0.30 *0.02 eV can 
be obtained from the calculations for Rc=0.674&0.006 A. 
The theoretical position of the plasma resonance is then 
equal to Ep= 12.035*0.005 eV, which considerably ex- 
ceeds the corresponding experimental value. The latter also 
occurs for the minimum value Ep 12.029 eV, which is ob- 
tained for Rc=0.690 (AEll2=0.389 eV). 

The next step was an attempt to choose both parame- 
ters of the pseudopotential (Eq. 12) to satisfy the values of 
the width and the position of the plasma peak simulta- 

FIG. 5. The EJu) dependence for In calculated for various values of the 
parameter R, (the numbers next to the curves are values of R, in A). 
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FIG. 6 .  The E,,,(u) dependence for In, calculated for various valueso of 
the parameter R ,  (the numbers next to the curves are values of R, in A) .  

neously. Then, in order for the pseudopotential to still be 
considered small, the maximum value of the absolute value 
of the parameter u should be of the order of unity. In the 
calculations, u varied from4.4 to 1, while the parameter 
R, varied from 0.500 A to 0.715 A. The curves obtained for 
Ep(u) and AElI2(u) for ten different values of the param- 
eter R, in this interval are shown in Figs. 5 and 6 respec- 
tively. Analysis of these curves leads to the conclusion that 
simultaneous satisfaction of the two conditions-the posi- 
tion and width of the plasma resonance-is probably im- 
possible, even when using clearly nonphysical values of the 
parameters of the pseudopotential (Eq. 12). The positions 
of the resonance corresponding to those found experimen- 
tally thus correspond to values of the peak width greater 
than the experimental value, and vice versa. 

Taking account of the real crystal structure (within 
the pseudopotential approach) is thus not completely suf- 
ficient for a correct description of the plasma resonance 
found in this metal. This is confirmed by the fact that it is 
essential to include other mechanisms in the consideration, 
which have an effect on the parameters of this resonance. 
The most important of these is the polarization of the 4d 

ion core levels. The existence of this polarization or, in 
other words, the interaction between plasma oscillations of 
the conduction electrons and the polarized 4d ion cores 
must lead to both a lowering of the energy of these oscil- 
lations and a reduction in their lifetime (broadening of the 
corresponding peak) due to an additional damping mech- 
anism. It should, however, be noted that the experimental 
value of AE,/, is well reproduced within the pseudopoten- 
tial approach for a whole range of parameters u and R, 
and, in particular by using one of the pairs of parameters 
obtained by ~turm." In any particular case, the minimum 
values of AElI2 are obtained for various parameters R, 
exceeding 0.17 eV, and mainly occupy the interval 0.2-0.3 
(see Fig. 6 and Table I). 

It can thus be concluded that inclusion of the crystal 
structure of indium in the discussion is sufficient in actual 
practice to reproduce the experimental plasma peak width. 
The main decay channel of a plasmon in indium can be 
explained in the same way, namely through the creation of 
electron-hole pairs in the conduction band when umklapp 
processes take part. 

Regarding the plasmon energy, there is an appreciable 
discrepancy between the calculated and experimental val- 
ues. As is seen from Fig. 5, the small values of this quantity 
compared with the results of measurements can, in princi- 
ple, be obtained for relatively large values of the parameter 
u. However, as can be seen in Fig. 6, these values corre- 
spond to values of AElI2 that are clearly nonphysical, and 
too high, since the inclusion of other factors (apart from 
crystal structure) can only lead to a broadening of the 
plasma peak and not to its narrowing. The values of Ep 
corresponding to the experimentally observed values lie in 
the range from 12.1 to 12.5 eV. The additional polarization 
which an electron gas undergoes due to electron-ion inter- 
action thus does not achieve the necessary lowering of the 
energy of plasma oscillations. This lowering can, however, 
be achieved through interaction between these oscillations 
and polarized 4d cores, similar to that realized in metallic 
~admium.',~ However, as shown in the present work, the 
intensity of polarized resonances in indium is very small, 
indicating that the polarizability of the 4d levels is fairly 
weak, so that it is still an open question whether it can be 
responsible for the total value of the observed shift of the 

TABLE I. Minimum values of the width AT;; of the calculated plasma resonance as a function of u 
dependent on the parameter R, and the position of the peak corresponding to these values. 
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plasma resonance in indium (minus the insignificant shift 
due to electron-ion interaction). 

4. CONCLUSION 

It has been established as a result of investigations of 
electron energy loss spectra in metallic indium that the 
metal has a weak polarizability of the 4d3/2 and 4dSl2 ion 
core levels. The core electron excitation in the spectra ob- 
tained correspond to threshold-type features of extremely 
low intensity. The dominant feature in these spectra is a 
bulk plasma resonance with smaller width than similar 
peaks in other elements, except for K and possibly Na. 
This resonance shifts by -- 1.4 eV in the direction of lower 
energies compared with the classical energy of plasma os- 
cillations in indium. The shape of the resonance is well 
reproduced using a theoretical analysis of the dielectric 
function of In in the framework of pseudopotential theory 
using a model Heine-Abarenkov local potential, which 
suggests a decisive role for Umklapp processes in the 
damping of plasma oscillations. At the same time, the cal- 
culated magnitude of the shift in the plasma resonance due 
to additional polarizability which the electron gas acquires 
in the presence of electron-ion interaction, namely -- 0.1- 
0.5 eV, is appreciably less than is observed experimentally. 
The polarization of the 4d core electrons should also make 
its contribution to such a shift. However, taking into ac- 
count the fact that the polarizability of these core levels is 
extremely small, it is difficult to come to a final conclusion 
about the adequacy of this additional shift for obtaining the 
experimental value of the plasma energy in indium. 

Structural features associated with the excitation of 
these core levels are characterized by much lower intensity 
than predicted by the latest theoretical  calculation^.^^ A 
similar situation also arises for metallic ~admium.~," It 
should be noted that the exact shape and intensity of the 
polarized resonance in the calculated spectrum is much 
more sensitive to the choice of the approximation for the 
polarizability of the ion cores than is the shift produced by 
this polarization. In fact, the correct position of the plasma 
resonance is well reproduced, as shown by Sturm et a ~ , "  
where a relatively accurate approximation was used for the 
polarizability of the 4d levels in indium, and also by 
~turm," where this approximation is rather crude. At the 

same time, both the shape and the amplitude of the polar- 
ization resonance in Ref. 10 and 11 are quite different. 

Undoubtedly the calculation by Sturm et al. agrees 
much better with experiment from the point of view of 
describing the polarization resonance. The relatively low 
intensity of the polarization resonance in indium, its 
threshold character and the increase in amplitude of this 
resonance on passing from indium to cadmium are cor- 
rectly reproduced by Sturm et al. '' The disagreement with 
experiment in the amplitude and exact shape of the polar- 
ization resonance could probably be appreciably reduced 
by giving up a number of approximations made by Sturm 
et al.," the most important of which can be ascribed to the 
neglect of spin-orbit coupling and also the finite width of 
the 4d levels. Since the desired goal is to reduce the am- 
plitude of the polarization resonance in the computed spec- 
trum, the overall contribution from the polarizability of 
these levels must be reduced. So far it is not known 
whether a correct representation of the position of the 
plasma peak will be given under these conditions. 
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