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The stationary function of the momentum and the mean square of the displacement of a 
quantum Brownian particle are calculated using the theory of quantum Markov processes and, 
alternatively, the fluctuation dissipation theorem. The results are presented graphically. 
Comparison shows that the theory of quantum Markov processes is not applicable to the 
selected example of a system interacting with a heat bath. 

1. INTRODUCTION 

In a number of studies,'" a theory of quantum Markov 
processes has been developed based on the quantum master 
equation .. 

p= Lp. (1.1) 

Here p is the system density of states in Schrodinger's 
representation and i is an operator acting in operator 
space. As is known, the ordinary nonquantum theory of 
Markov processes is perfectly adequate to describe the be- 
havior of physical systems interacting with a heat bath. It 
is not at all obvious that the quantum version of this theory 
based on Eq. ( 1.1 ) gives a correct description of quantum 
systems interacting with a heat bath. Reference 7 expresses 
some doubt about this. One would expect that the appli- 
cation of theory of quantum Markov processes will lead to 
results inconsistent with the fluctuation dissipation theo- 
rem, or equivalently with the quantum Nyquist formula. 
The inapplicability of theory of quantum Markov processes 
to systems in interaction with a heat bath is rather a gen- 
eral rule than an exception. The reason for this is that the 
theory of quantum Markov processes yields correlation 
functions similar to those for the classical case, whereas the 
fluctuation dissipation theorem leads to more complex 
forms. 

In the present paper we address the question of the 
applicability the theory of quantum Markov processes to a 
quantum Brownian particle described by the linear equa- 
tion 

where r is the radius vector operator of the particle and F, 
the force on the particle. The medium is assumed to be 
isotropic. Reference 6 suggests the following equation to 
describe such a particle: 

and ~ = ~ ~ / 2 m  is the Hamiltonian of the particle. It is 
shown in that paper that the above equation is a generali- 
zation of the familiar Fokker-Planck equation for a non- 
quantum particle, that is, in the limit fi-0 we obtain the 
equation for a nonquantum particle. 

In the following, an equation of a more general nature 
than ( 1.3)-( 1.4) will be employed. From that, equations 
for the relevant mean values and correlation functions are 
derived. 

The stationary correlation function and the derivative 
of the mean square of displacement, as obtained by this 
method and from the quantum Nyquist formula, are pre- 
sented graphically for various values of the dimensionless 
parameter y=fiy/kT. In the quantum region, when this 
parameter is comparable to unity, one observes an appre- 
ciable discrepancy between the results of the two theories, 
which does not speak in favor of the theory of quantum 
Markov processes. 

2. QUANTUM MARKOV THEORY OF BROWNIAN MOTION 

The mean value of any operator B of a chosen system 
(a Brownian particle in the present case) at time t is 

(B),=Tr[Bp(t)I.  (2.1) 

Differentiating both sides of this relation with respect to 
time and using ( 1.1 ) we obtain 

d ( ~ ) , / d t = ~ r { ~ [ i p ( t ) ] ) .  

On the right, the operator may be transferred to B giving 

d ( B ) , / d t = ~ r { [ i ~ B ] p ( t ) )  

or, in view of (2. I ) ,  

d ( ~ )  j d t =  ( L T ~ ) , .  (2.2) 

 YO 
ifib= [ H + A , ~  1 +, (2cpc+ - [C+C,,] + 1, ( 1.3) Here the transposed operator iT is defined by the equation 

where 
valid for any M and p. Equation (2.2) will be used below. 

1 
yo(k~m)- ' [p , r I+ ,  yo=kTym, It is quite natural that (B), is exactly the mean of the 

operator B(t) in Heisenberg's representation. Let us 

ifi present here a proof of the corresponding equality 
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The Schrodinger density matrix p(t) of the chosen system 
relates to the matrix density ptot(t) of the total system (the 
chosen system plus the heat bath) by the relation 

where TrT is the trace over the heat bath (in our case, 
medium) variables. Recall that the trace over the variables 
of the chosen system is denoted by Tr. The mean value of 
any observable can be written in two ways: in Heisenberg's 
representation we have 

whereas in the Schrodinger picture 

If B is an operator of the chosen system, then the right- 
hand side of the last equation may be written as 
Tr{BITr,ptot(t)]) or, in view of (2.4), as Tr{Bp(t)). 
Therefore (2.5) gives (2.3). The index t on the average 
(. ..) is henceforth dropped. 

The behavior of the Brownian particle will be de- 
scribed by the equation 

of a more general form than ( 1.3). Here 

where uj = ul + iu2, and u j  = ul j+ i~~~ are complex num- 
bers; z, ul ., u2,, vlj, and vzj are real numbers; and 
I =  (ym) 'Iiis introduced to render uj , u, dimensionless. It 
is easy to verify that Eq. (2.6) ensures the conservation, in 
time, of the normalization, hermiticity, and nonnegative 
definiteness of the density matrix. Operators (2.7) are cho- 
sen such as to yield a solution in the class of Gaussian 
matrices p(t). 

Knowing the operator i, i.e., the form of the right- 
hand side of (2.6), it is easily found that 

The expression in the curly brackets may also be written as 

In Eq. (2.2) we first put B=ra and then B=pa. Using 
(2.8) in the case ~ = ~ ~ / 2 m  we have 

In accordance with (1.2) it is assumed that the coefficient 
of liquid friction is ym, that is, 

Comparing these equations with (2.9) we find that 

Z= 1/2, C (ulju2j-u2julj) =1/4. (2.11) 
i 

Next, by specifying B in (2.2) as 3 ,  p2, and [r,p]+ succes- 
sively, we obtain 

Here we have used expressions (2.1 1 ) and introduced 2r- 
dimensional vectors 

In addition to U and V, we can also introduce a vector 
U'=(-U~~,U~~,...,-U~~U~~) which, as can be readily ver- 
ified, is orthogonal to U and is of the same magnitude, 
( U' ( = ( U ( . Then the second equation of (2.1 1 ) can be 
written as 

Let us consider the case when the momentum p(t) 
represents a stationary quantum process. Applying the 
quantum regression theorem (see, e.g., Refs. 1 and 5), and 
using the first equation of (2.10), one easily finds 

which enables one to obtain the stationary correlation 
function 

(pa(t+r)pB(t))=5(p2)~t exp(-ylrI )Sap (2.16) 

Here (p2),, is the stationary dispersion. Also, from Eq. 
(2.13) in the stationary case we find 

because the quantity (p2) = (p2),, is then a constant. 
It is not difficult to find the solution to equations 

(2.12) and (2.14) if one knows the initial values (?), and 
([r,p]+),. We will proceed in a somewhat different way, 
however: introduce Ar ( t )  =r( t )  - r(O), the displacement 
of the Brownian particle in a time t, and consider its mean 
square value. We have 

Applying again the quantum regression theorem discussed 
above, with the aid of the second of Eqs. (2.10) we find 

Using this and (2.12), we have from (2.18) 
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Similarly, from (2.14) we can deduce 

(2.20) 

Needless to say, Eqs. (2.19) and (2.20) must be solved for 
the trivial boundary conditions 

For a stationary p(t) process, when (p2) = (p2),, the 
solution to Eq. (2.20) is trivial: 

[using (2.17)]. Hence (2.19) takes the form 

From this, 

(2.22) 

We see that for large times t) y-', the motion is virtually 
pure diffusive, i.e., 

where 

D=fim-' I u - v ~ ~  
is the diffusion coefficient. Therefore the first term on the 
right-hand side of (2.22) may be viewed as being deter- 
mined by the quantity D. As for the second term on the 
right-hand side of (2.21), for this we have derived in the 
Appendix the inequality 

where Do=fi-'mD and 1ul2= (p2), ~ ( 3 f i ~ m ) .  It is as- 
sumed that (U12~0>1/16. 

In the special case (1.3), ( 1.4) we have 

where Dcl=kT/(my) is the classical diffusion coefficient. 
In this case (2.24) and (A5) hold with the equality sign. 

Note that the result (2.22) seems somewhat strange 
because the limit 

1 6fi 
lim ( hr(t)12)=lim- ( v ( ~ = c o  
t-0 9 1  t-0 mt 

turns out to differ from the mean of the absolute velocity 
squared 

(v2>,, = (p2)dm2. 

Moreover, the limit (2.26) cannot be made finite because 
one cannot equate I V I to zero in view of (2.15). If on the 
other hand we put (p2),,= CO,  then, by (2.24), we have 
( V ( 2=  oo and hence ( ( Ar ( 2, = co , which is absurd. 

In concluding this section we consider the case of non- 
stationary momentum fluctuations by assuming, namely, 
that at time t=O the temperature jumps from TI  to T2 
while remaining constant both before and after this. Then 
the calculation of the derivative (2.21) requires Eq. 
(2.20), but to determine (p2(t)) one needs to solve the 
nontrivial equation (2.13). For the values given in (2.25), 
it has the form 

for t > 0. Solving the last equation for the initial condition 
(p2(0)) = 3kTlm, and (2.20) for the above-mentioned 
zero initial condition, (2.19) yields 

In the following, the above results are compared with those 
from a non-Markovian theory. 

3. BROWNIAN MOTION CALCULATION USING THE 
QUANTUM NYQUIST FORMULA 

A different behavior of a quantum Brownian particle 
results from the fluctuation dissipation theorem, or equiv- 
alently from the quantum Nyquist formula. Introducing 
the velocity vector v = i  reduces (1.2) to 

with f the external force. It is expedient at this point to go 
over to spectra. The impedance ZaB(o) is defined by the 
relation 

Using the above equations we find 

The quantum Nyquist formula is (see, e.g., Ref. 7) 

provided ZaB(w) =ZBa(w) as is the case here. The formula 
determines the spectral density of a random force F(t) of 
mean zero. Substituting (3.1) into (3.2) we obtain 

fio 
[ s a B ( ~ )  ] F = ~ Y ~  coth(m)6aB' 

Taking account of the random force F and assuming that 
the external force f is zero we obtain instead of (1.2) the 
equation p + yp = F, or in spectral form, 
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Here p=mv is the particle momentum. Using this along 
with (3.3) we obtain the momentum spectral density 

The inverse Fourier transform 

determines the stationary correlation function of the mo- 
mentum. Using (3.4) and performing the integral by 
means of residue theory, 

where we have introduced the notation o=kT/fi= y/y. 
The momentum correlation function tends to infinity 

as 1 r )  +0, that is, the mean square of the momentum is 
infinite in the quantum case. This relates to the fact that 
the integral of (3.4) is logarithmically divergent for infinite 
limits of integration. This infinity can be related to the 
temperature-independent "background" part g(r) by 
writing the correlation function as a sum 

where K(') is the nonsingular part and K(') describes the 
"background" (or "vacuum" ) momentum fluctuations. 
The latter part is separated out by taking the limit T+O. 
Calculation shows that 

The right-hand side of this expression the exponential in- 
tegral (see, e.g., Ref. 8). 

The behavior of the correlation function (3.5) is more 
complex than that of the function (2.16), which has a 
classical form independent of the "quantization" parame- 
ter y=fiy/kT. In Fig. 1 are shown the functions 
Kp(r)/(kTm) (curves 1 )  and K j l ) ( r ) / ( k ~ m )  (curves 2) 
plotted against the dimensionless time x = yr for two val- 
ues of y (y = 0.5: dashed lines; y = 1 : solid lines). 

Now let us consider the particle displacement 

Using this equation we find 

FIG. 1. Momentum correlation functions KJT) (I)  and $')(T) (2) 
calculated for quantization parameter values of y=0.5 (dashed lines) and 
y= 1 (solid lines) using the fluctuation dissipation theorem. 

Here we have put t" = t- t' and used the stationarity of the 
momentum fluctuations. Substituting 
[K,(r)Ip= K(r)S,, we obtain 

Using (3.5), we have after integration that 

d(  1 Ar(t) 1 2, 6kT exp ( - 27rnut) 
dt 

In Fig. 2 the resulting dependence-or more accurately the 
function (6Dd) -Id( 1 Ar(t) 1 2)/dt-is depicted by solid 
lines for several values of the parameter y=./fi/kT. The 
dashed lines show the same dependence corresponding- 
for the same y's-to Eq. (2.21) with the parameters 
(2.25): the dependence, in other words, obtained from the 
quantum Markov theory. The dash-dot line corresponds to 
the classical limit. 

In the temperature jump case discussed at the end of 
the preceding section, we shall assume that the nonstation- 
ary force correlation function is defined by a simple inter- 
polation formula: 

[&&)(tl-t2)IF for t l+t2<0 

-1,) 1, for t1 +t2>0: 
(3.6) 

Here [K$(r)lF is the correlation function of stationary 
force fluctuations at constant temperature Ti, defined by a 
formula of the type (3.5). From p+ yp= F we have 
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mG. 2. Derivatives of the mean of the squared displacement, FIG. 3. The derivative of the mean of the squared displacement calcu- 
d( I Ar(r) 1 2)/dr, calculated for different values of the quantization param- lated in two ways for various values of the "quantization" parameter in 
eter using the fluctuation dissipation theorem (solid lines) and the quan- the temperature jump case: y=0.5 (curves I ) ;  y= 1 (curves 2); y = 3  
turn master equation (dashed lines): y=0.5 (curves 1); y= 1 (curves 2); (curves 3).  
y = 2  (curves 3).  

J - m  

Therefore 

+yet; +t;)lK@(t;t;>F. 

Substituting (3.7) one finds the nonstationary momentum 
correlation function giving the derivative 

Calculation leads to the result 

APPENDIX. DERIVATION OF THE AUXILIARY INEQUALITY 

Denoting Do=ti-'m D and using (2.23) we have 

Do= I U - V / ~ .  ( A l l  

Introduce orthogonal unit vectors n = U/ I U I and 
n' = U'/ I U I and define a vector 

Vl =V- (Vn)n- (Vn')nl 

orthogonal to them. It is obvious that, in view of this or- 
thogonality, the absolute square of the vectors 

V= (Vn)n+ (Vn1)n'+VL 

and 

V-U=(Vn- IU()n+ (Vn1)n'+Vl 

can be written as 

The dependence thus obtained is represented in Fig. 3. 
The curves 1, 2, and 3 correspond to the values y=0.5, 1, 
and 3, respectively. The dashed lines show the behavior of 
the function (2.27) as calculated by Markov theory for the 
same values of the parameters. 

One can see a considerable difference between the re- 
sults of the two theories as shown in the figures. There exist 
no regions of simultaneous applicability of the two theories 
(except, of course, for the nonquantum limit fiy(kT). 
This is indicative of the invalidity of Markov theory in the 
essentially quantum case. 

IvI2= ( W 2 +  (vn'I2+ IV1 1 2 ,  
Do=(Vn- IUI ) 2 + ( ~ n ' ) 2 +  IV1 l 2  (A21 

[using (A1 )I. Solving the second of these equations for Vn 
we find 

Vn= IUI & [ D ~ - ( v ~ ' ) ~ -  (v, 12]1/2. (A3) 

Substitution of (A3) into the first of Eqs. (A2) gives 

)vI2= I U \ ~ + D ~ * ~ ~ U I  [ D ~ - ( v ~ ' ) ~ -  (Vl 12]1/2. 
(A4) 

Now suppose 

D ~ > ( v ~ ) ~ =  ( w ) ~ / I u ~ ~ .  

Since 

' 2 1/2 [ D ~ - ( v ~ ' ) ~ -  (v1 ( 2 1 ' " < [ ~ o - ( ~ n  I , 
we obtain from (A4) the inequalities 

2 1/2 IVl2>D0+ I u ~ ~ - ~ [ D o ~ u ~ ~ - ( u ' v )  1 , 
2 1/2 

(A51 
1 v l 2 < ~ o +  ( u ~ ~ + ~ [ D ~ ( u ~ ~ - ( u ' v )  ] . 
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In view of (2.15), we can write here 1/16 instead of 
(u'v)*. 
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Translated by E. Strelchenko 

This article was translated in Russia and is reproduced here the way it 
was submitted by the translator, except for stylistic changes by the Tran- 
sition Editor. 
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