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The foundations of the mutual-coherence theory in gravitational optics are considered. The 
effect of the caustics on the magnitude of the mutual coherence of the images is 
analyzed, in particular of the caustics due to galactic microlenses lying between the quasar 
and the observer. The dependence of the mutual coherence on the wavelength is 
calculated in the case when the caustic corresponds to a fold-type singularity. Model 
calculations of the mutual coherence are performed for concrete values of astrophysical 
parameters. 

1. INTRODUCTION 

From the time of the discovery of the first gravitational 
lens in 1979 astronomers have achieved substantial suc- 
cesses in the study of this phenomenon. A variety of objects 
have been discovered involving effects due to gravitational 
lensing, often in an unexpected manner. There are systems 
with multiple images of quasars (both in the optical and in 
the radio frequencies) of radio rings, arcs, and arclets- 
extended images of distant background galaxies, viewed 
through rich clusters of galaxies. Lastly, there is microlens- 
ing, which is micro-splitting of the quasar images by stars 
in intermediates galaxies. The theoretical studies have also 
made significant progress. The general theory of the grav- 
itational lens is well developed and many of ideas have 
been proposed for the determination of parameters of cos- 
mic systems and the Universe, otherwise hard to obtain, on 
the basis of gravitational lensing effects. Some of the ideas 
proposed in the past have undergone further development 
at the contemporary level. Much has been done in model- 
ing already discovered lens systems. On the other hand, in 
each concrete case the real astrophysical situation, con- 
nected with one or another lens, is so complex and has so 
many undetermined parameters that it is difficult to con- 
struct an unambiguous model for the mass distribution in 
the lens. This leads to considerable uncertainty in the de- 
termination of the searched-for astrophysical parameters. 
The situation is improving with increasing precision of the 
observations, but there is nonetheless a lack of additional 
manifestations of gravitational lensing effects, taken into 
account in the problem. For this reason we find ourselves 
in a situation where the search for such effects, both theo- 
retical and experimental, is rather timely. One such possi- 
ble effect is the mutual interference of images in the lenses. 

This idea is not new and was, apparently, first pro- 
posed by S. Refsdal in 1964.' Its essence is that since mul- 
tiple images of one and the same radiating surface of the 
cosmic object are created in the gravitational lens, the 
fluxes of radiation proceeding from these images should 
interfere with each other in pairs. The whole problem re- 
duces to the quantitative side of the question. In the first 
place, the relative retardation of the signal in each pair of 
images could considerably exceed the coherence length of 

the radiation, so that the effect would altogether disappear. 
In the second place, if the radiating object is extended 
(which in fact is always the case), then from each surface 
element of the object the radiation arrives at the observer 
with its own phase and as a result the summary interfer- 
ence effect is strongly suppressed. The strategy of the in- 
vestigation should be to determine under what circum- 
stances these two negative effects are minimized and the 
mutual interference of the images is maximized. The po- 
tential significance of this effect is seen as follows. In the 
first place, the mutual coherence of the images is one of 
two proposed tests of gravitational lensing. The other test 
consists of the relative retardation of the signal in the im- 
ages. In the case of microlensing the latter test in not ac- 
cessible to present-day means of observation, owing to the 
small angular separation of the images. Therefore the mu- 
tual coherence of the images, should it be observed, may 
turn out to be the sole unambiguous test of this effect (pos- 
sibly along with diffraction2). In the second place, the mu- 
tual interference of the images may turn out to be an ef- 
fective means for the study of the fine structure of the 
lensing objects, in particular, quasars, since the effect de- 
pends rather strongly on the dimensions of the radiating 
components of the object. And finally, in the third place, in 
the modeling of effects of microlensing it is necessary in a 
number of cases to take into account the mutual interfer- 
ence of the images. The first calculation of the effect for a 
macrolens on the scale of a galaxy was performed in Ref. 3, 
in which it was shown that a realistically perceptible mu- 
tual coherence of images can be expected only in the case 
of microlensing by star-size masses and smaller. The first 
calculation of mutual coherence for a single lens-star was 
performed in Ref. 4. It was shown there that although the 
mutual coherence increases in that case by several orders of 
magnitude it is still too small to be realistically seen in 
observations. An analogous conclusion was reached in Ref. 
5. Here the role of the caustic in the process was noted for 
the first time. Lastly, the case when the radiating surface of 
the cosmic object is intersected by the caustic arising in 
microlensing, was considered in Refs. 6 and 7. In that case 
the magnitude of the mutual coherence increases by several 
more orders of magnitude and reaches realistic values. 
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2. LENS EQUATIONS, CRITICAL CURVES, AND CAUSTICS 

The following approximations are usually made in the 
description of gravitational lenses: 1 ) linearized Einstein 
theory of gravitation; 2) geometrical optics approximation; 
3) the approximation of a plane lens and a plane radiating 
object; 4) the approximation of a small angle of refraction; 
5) the description of the photon trajectory by a broken line 
with the break point in the plane of the lens; 6) the ap- 
proximation of quasi-monochromatic radiation. Usually 
the dimensions of the object and the lens are many times 
smaller than the mutual distances in the gravitator object- 
observer system. We shall assume in what follows that all 
these approximations are valid. The question of the validity 
of the geometrical optics approximation as applied to the 
problem of mutual coherence was discussed in Ref. 7. Let 
us introduce into the plane of the object the local system of 
coordinates 6,q-, and into the plane of the lens-the coor- 
dinates x,y. Since all known gravitational lens systems are 
of cosmological dimensions it is necessary to describe them 
within the framework of a definite cosmological model. It 
is natural to assume the Friedmann model. Usually the 
local coordinate systems are not chosen arbitrarily but in 
an interdependent manner: a) The coordinate origin x,y is 
the projection of the coordinate origin 6,q- on the plane of 
the lens. The projection is by means of a ray of light emit- 
ted from the origin 6,q- and falling on the point of obser- 
vation. b) The orientation of the axes of the coordinates 
&,q and x,y coincide. Generally speaking this condition 
should be formulated more rigorously in the language of 
parallel transport of space-like vectors, but here and below 
we shall adhere to a version in which relativism does not 
enter explicitly. Let the radiating point on the surface of 
the object have the coordinates c= ({,q), and let the ray 
emitted from this point and falling on the observer inter- 
sect the plane of the lens at a point with coordinates 
r =  (x,y). This point can be viewed as the image of the 
point ( 6 , ~  )in the lens system. Therefore the plane of the 
lens will play at the same time the role of the image plane. 
If the ray from the point ({,q) can fall on the observer by 
different paths, this means that that point has several im- 
ages. In the case that both coordinate systems are chosen in 
an interdependent manner the coordinates of the source 
and its image are connected with each other by the so- 
called lens equation 

where Ds , Dd, Dds are the so-called angular dimension dis- 
tances in the Friedmann world (see, for example, 
weinberg8) between source and observer, lens and ob- 
server, and source and lens, respectively. The quantity $ is 
the scalar potential of the lens, connected with the vector 
angle of refraction a as follows: 

We note that in the case that the coordinate systems are 
not correlated the form of Eq. (1) remains unchanged, 

however the previous potential is replaced by a new one for 
which relation (2) is not valid. It is convenient to intro- 
duce dimensionless coordinates: 

The quantity Ro is the so-called Einstein-Khvol'son ra- 
dius, see Ref. 9: 

where r, is the gravitational radius of the lens. 
In dimensionless units the lens equation takes the form 

(the marks over the coordinates are omitted from now on) 

By means of Eq. (5) the points in the plane of the lens are 
mapped as the points in the plane of the object. Local 
mapping is accomplished with the help of the Jacobi ma- 
trix: 

Here 

We shall consider here lenses corresponding to systems of 
point masses. Outside the points where the masses are lo- 
cated we have the equality (see, for example, Ref. 10) 

Further we introduce the notation: 

The amplification coefficient A of the lens, i.e., the ratio of 
the radiation flux density received by the observer to the 
density he would receive in the absence of the lens, equals: 

1 
A=-= 

1 
det A 1-u2-uZ' 

The curve in the plane of the lens at each point of which 
the amplification coefficient A becomes infinite is called the 
critical curve. It follows from (9) that the equation of the 
critical curve has the form: 

1-u2-u2=o. (12) 

The curve that is the image of the critical curve in the 
plane of the object is called the caustic curve or simply the 
caustic. We note that sometimes a different terminology is 
used in which the critical curve in the lens plane is called 
the caustic. Two remarks should be made regarding the 
caustic. Since the one-to-one correspondence of the map at 
the points of the critical curve is violated, the smooth map 
is singular there. The singularity of the smooth map with 
smallest codimension (curve on a plane) is a fold," hence 
in the general case the caustic is a fold. The critical curve 
can sometimes have a point as its map in the plane of the 
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object, i.e., this is the case when the caustic degenerates 
into an isolated point. This situation takes place in the case 
of a point-like lens. It is not hard to see that such a singu- 
larity is structurally unstable, i.e., for a minuscule change 
in the parameters in the problem it disappears (or is con- 
verted into gathers and folds), since according to the fa- 
miliar theorem of Whitney the only stable smooth maps of 
a surface on a plane are gathers and folds (see, for exam- 
ple, Ref. 1 1 ). 

3. GENERAL PREMISES OF THE THEORY OF MUTUAL 
INTERFERENCE OF IMAGES IN A GRAVITATIONAL LENS 

If one and the same object has several images in the 
gravitational lens, then in the case of coherent addition of 
the intensities of the radiation fields coming from all the 
images, the total flux density I of the radiation equals 

I= C Ii+2 C. 1 yij 1 cos ,pij ,  
i= 1 i= l 

where I i  is the flux density of the ith image, yij is the degree 
of mutual coherence of the i-j pair of images, and ,pij is the 
phase of that quantity as a complex number. The summa- 
tion is over all pairs of images. The second term in that 
formula will be referred to as the interference component 
of the flux. The degree of mutual coherence yij of a pair of 
images is the crucial theoretical concept in this problem 
and we discuss it first. By definition (see the monograph by 
Born and wolf1') it is equal to 

where Vi,, is the intensity of the radiation field of the ith 
and j th images, respectively, (...) indicates averaging over 
time; Vi is the instantaneous value of the intensity of the 
radiation field, representing the result of the addition of 
instantaneous radiation field intensities due to all the radi- 
ating elements of the object. The same applies of course to 
V j ,  the difference being that Vi is determined by the radi- 
ation propagating along the trajectory of the ith image 
while for V j  we use the trajectory of the j th image. It will 
be assumed here that each element of the object radiates 
statistically independently of each other. Following the dis- 
cussion in Born and wolf1' the degree of mutual coherence 
of two images can be written in the form 

where the integration is over the entire radiating surface of 
the object; J(6,q) is the surface brightness of the source in 
the reference frame of the observer; Rph(g,q) is the pho- 
tometric distance between the radiating element and the 
observer taking into account the action of the lens for the 
ith image; 

is the relative time delay between the signals propagating 
along the trajectories of the two images, measured in the 
reference frame of the observer; the received radiation is 
quasi-monochromatic with average cyclic frequency w; 
g(St(6,q) ) is the reduction coefficient of mutual coherence 
due to a relative phase shift in excess of the coherence time; 
g(0) = 1. The radiation flux is given by the integral 

The theory of the gravitational lens gives a general expres- 
sion for the photometric distance between the radiating 
element ( 6 , ~ )  and the observer 

where D, is the distance between the lens and the observer, 
D({,q)/D(x,y) is the Jacobi matrix of the lens. The quan- 
tity Dd cancels out in the formula for yij. It  is convenient 
to change to the dimensionless coordinates 6,q and x,y (we 
do not change the notation). Then the scale factors in the 
expression for yij also cancel out. We can then write in 
dimensionless variables 

The quantity Pi, will be referred to as the mutual- 
coherence integral. In formula (20) we can pass from in- 
tegration over the surface of the object to integration over 
the surface of the images 

4. STATIONARY CURVES OF THE MUTUAL-COHERENCE 
INTEGRAL 

The mutual-coherence integral belongs to a class of 
two-dimensional integrals with a rapidly oscillating factor 
in the integrand. By "rapidly oscillating" is meant that 
within the integration region u the quantity wSt((,q) runs 
over a large range of values exceeding .rr many times. The 
numerical evaluation of such integrals is very complicated 
while an exact integration is, as a rule, impossible. It is 
therefore necessary to turn to special asymptotic methods 
of approximate evaluation of this type of integrals. We 
make use here of the method of stationary phase. Although 
this method is a purely calculational tool, its application 
will permit us to draw a number of principal conclusions 
about the effect of mutual coherence of images. So let us 
consider a two-dimensional integral with a rapidly oscillat- 
ing factor in the integrand 
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where fl)1 is a dimensionless quantity. The stationary- 
phase method permits one to obtain an asymptotic expan- 
sion of the integral (22) in powers (not necessarily inte- 
ger) of the quantity l/fl. The central idea of the method is 
that the main contribution to the integral comes from the 
neighborhood of the so-called stationary lines, at each 
point of which the following equalities are satisfied 

i.e., every point of a stationary line is by definition a critical 
point of the phase function @(x,y). In addition to station- 
ary lines there can exist stationary isolated points. It is 
important that the integration over the remainder of the 
region S, i.e., outside the neighborhood of stationary 
curves and points, gives a negligible contribution (which 
can be estimated) to the complete integral. In the evalua- 
tion of integrals of the type (22) by the stationary-phase 
method one determines first the stationary points and 
curves of this integral in the integration region S. Then 
there exist many methods for the evaluation of the main 
part of this integral-the result of integration in the neigh- 
borhood of the stationary curves and stationary isolated 
points. Besides, an estimate of the remainder of the integral 
is performed. Let us analyze the situation connected with 
the mutual-coherence integral ( 19) from the point of view 
of the ideology of the stationary-phase method. It turns out 
that we can draw a number of general conclusions about 
the stationary curves of this integral. The phase function of 
this integral has the form: 

where rg is the gravitational radius of the whole lens, zd is 
its red shift, g are the coordinates of the radiating element 
in the plane of the object, r are the coordinates of the point 
of intersection of the lens plane by the trajectory of the 
light going from that element to the observer; $ is the 
scalar potential of the lens; i and j are the numbers of two 
images. The operation 6{ f ( x , ~ ) ) ~ ,  means the following: 

i.e., the difference in the values of the function f at the 
points of the ith and jth image. Let us determine the ex- 
tremum points of the phase function 
at(g,q9x(g,q),~(g,q) 1: 

The expressions in the square brackets vanish in view of 
the lens equation. The quantity a6tij/ac is calculated sim- 
ilarly. As a result we have 

ast,, -- 'I, (l+zd)sxi,, 
C ag --- 

Consequently we have at the stationary points of the 
mutual-coherence integral (22 ) 

The formula (29) means that the point (&q) and only the 
point (g,q) of the radiating object will be a stationary 
point of the integral mutual coherence of two images pro- 
vided its maps are the same in these images. In brief, the 
images (xi,yi), and (xj,yj), of the point ( 6 , ~ )  should 
coincide. Then the point (6,q) is a stationary point of the 
mutual-coherence integral for the pair of images i and j .  
From this we can draw a more constructive conclusion: the 
stationary lines of the mutual-coherence integral are the 
caustic and only the caustic curves of the gravitational 
lens. 

Let us prove this assertion. As is well known, to any 
point in the neighborhood of a caustic corresponds a pair 
of images in the neighborhood of the critical curve. These 
two images are located on different sides of the critical 
curve and coalesce into a single point on the critical curve 
in the limit as the radiating point approaches the caustic. 
In this way every point of the critical curve is the common 
point of two extended images. Consequently, the critical 
curve is the boundary of two images of an extended object, 
intersected by the caustic. It follows hence, in view of Eq. 
(29), that the caustic is always a stationary line of the 
mutual-coherence integral. This proves the sufficient part 
of the assertion. We now pass to the proof of the necessary 
part. Let a segment of the curve T I T 2  intersecting the 
object be a stationary curve of the mutual-coherence inte- 
gral of two images. The corresponding representation 
T;T;  of this curve in the plane of the lens is, according to 
Eq. (29), a common line of this pair of images. We shall 
also assume that for each of the images this line is not 
isolated and that the pair of the images have no two- 
dimensional region in common. It follows then from for- 
mula (29) that the segment Ti Ti of the curve is the com- 
mon boundary of these images. We assume, of course, that 
the derivatives of 6t with respect to 6 and 7 exist in the 
neighborhood of the curve T ,  T 2 .  Since outside this curve 
all these derivatives are different from zero, it follows from 
(29) that every point in the neighborhood of the caustics is 
represented by two points lying on different sides of the 
curve Ti T i .  We now turn to the lens equation. Expanding 
it at the point PA on the curve T ; T ; ,  and keeping only the 
linear terms of the series, we get 

532 JETP 77 (4), October 1993 A. F. Zakharov and A. V. Mandzhos 532 



It follows from the existence of a pair of images for any 
point in the neighborhood of T, T2 that the determinant of 
this system vanishes 

Otherwise the linear system (30)-(31) would have only 
one solution for (x-xo) and (y -yo), in contradiction to 
the fact that to every point in the plane of the object cor- 
responds a pair of images. It follows from Eq. (32) that 
Ph is a critical point. Since similar considerations can be 
applied to any point of the curve Ti Ti ,  it follows that the 
curve is critical. Since this critical curve is always unam- 
biguously represented by the caustic, it follows that the 
curve TIT2 is the caustic of the lens. This proves the sec- 
ond part of the assertion: only a caustic can be a stationary 
curve of the mutual-coherence integral of two images in a 
gravitational lens. 

It should be noted that the assertion, that the caustic 
and only the caustic (naturally with certain restrictions on 
the class of functions under consideration) is a stationary 
curve of the corresponding rapidly oscillating integral, is 
valid in the general case of optical systems (see, for exam- 
ple, Ref. 13). However in the present case (gravitational 
lens) a simple proof of this fact, technically speaking, can 
be provided. 

5. SOLUTION OF THE LENS EQUATION NEAR THE 
CRITICAL POINT 

To evaluate the integral by the stationary-phase 
method it is necessary to know the behavior of the inte- 
grand in the neighborhood of the stationary line, which is 
the segment of the critical curve intersecting the object. 
The solution of the lens equation can be written in general 
form. Consider the neighborhood of a certain point 0 ,  ly- 
ing on the critical curve CR in the plane of the object, and 
the neighborhood of the point 0 ' ,  which is the map of the 
point 0 in the plane of the lens. It is assumed that the point 
0 is an ordinary point of the critical curve (not being a 
return point, and the point 0' lies outside the distributed 
mass of the gravitator). Here weintroduce the system of 
local dimensionless coordinates 6, with origin at the 
point 0 and orientation of the axis 6 along the tangent to 
the critical curve CR,  as well as the local coordinates ?,F 
with origin at the point 0' and orientation of the axis 2 
along the tangent to the curve C'R. The universal solution 
of the lens equation near the critical curve, valid for prac- 
tically any gravitator, to which correspond critical curves 
in the plane of the object, is written in the form (see, for 
example, Ref. 10) 

where all the quantities are expressed in terms of deriva- 
tives of the scalar 4, taken at the origin of the coordinates -- 
x,y : 

- a24 a24 u=- lJ=- 
a34 

agay, 

The two signs in the formulas for ?,ycorrespond to the two 
branches of the local solution, which gives rise to the for- 
mation of a pair of contiguous images of the extended ob- 
ject. Indeed, as the radiating point S tends to the point 0 ,  
both its images S; and SI_ tend to each other and at the 
same time to the point 0'. It follows hence that the tight 
pair of images of the object, intersected by the critical 
curve, will have a common boundary in the form of the 
segment TiT; of the critical curve in the plane of the lens. 
We recall once more that our considerations apply near a 
fold-type singularity. In addition, a real solution of the lens 
equation exists only for radiating points from that side of 
the critical curve CR for which one has the inequality: 

We agree to call this the positive side. For a change in sign 
of the coordinate 7, i.e., in passage of the radiating surface 
to the negative side of the curve CR the solution becomes 
imaginary, which corresponds to disappearance of images 
of this point. This circumstance results in only that part of 
the object, which lies on the "positive" side of the critical 
curve, participating in the formation of the contiguous pair 
of images. The remaining part of the object makes no con- 
tribution to these images. Therefore the integration in ( 19) 
extends in fact only over the "positive" part of the surface 
of the source. 

The relative delay time, the transformation determi- 
nant, and the photometric distance between the observer 
and the radiating element are written in the form 

where z~ is the red shift of the lens; 

in these formulas can be considered to be the geometric 
length along the critical curve. 
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6. CALCULATION OF THE DEGREE OF MUTUAL 
COHERENCE 

The integration region in the formula for mutual co- 
herence can be broken up mentally into two parts. One of 
them, Ago, represents a narrow strip adjacent to the criti- 
cal curve. Within this strip the approximate Eqs. (36)- 
(38) are valid. Its width is not rigorously determined. It is 
only necessary that the phase factor exp{iw6t) undergo a 
sufficiently large number of oscillations upon displacement 
along the coordinate line ?j from the critical curve to the 
strip boundary. In line with the above remark, integration 
over this region gives the main contribution to the degree 
of coherence, while the result of integration over the re- 
maining part of the surface of the source can be neglected. 
With these considerations in mind and as a result of pas- 
sage to dimensionless variables in the integral of formula 
( 15), the replacement x = [ a  and passage from a 
double to a repeated integral we obtain 

where i= ( D~/R, )~ ,  R is a dimensionless constant: 

- 
6, (x) and a x )  are the end points of the radiation region 
in the coordinate line X; X, is the coordinate "width" of 
the region Au,. With the replacement p=X1/2 we are faced 
with the integral 

To calculate this integral we make use of an approach 
proposed by ~ i1more . l~  We suppose that 

Integrating term by term we have reduced the problem to 
the calculation of integrals 

We make the change of variable y =  !J1I3p. In the case that 
n> 1 it is necessary to evaluate the integral 

We consider the integral in the complex plane over a closed 
contour consisting of a sector of a circle of radius R cen- 
tered at the origin of the coordinates. We take the initial 
angle to be 90 = 0, the final angle to be pf= ~ / 6 .  Since the 
function y2k exp(iy3) has no poles in this region the inte- 
gral over this region vanishes and, on the other hand, 

+ i  sin n ) ] exp(g )dR.  2 

It is not hard to see that 

x exp[iR3(cos 3q+i  sin 39) ] idq-0, (47) 

as R- CO. Indeed, let us break up this integral into two 
integrals 

x exp [iR3 (cos 39 + i sin 3q) ] idq = IoP* ... + J;: ..., 

(48) 

where the angle q, will be chosen below. It is clear that 

xexp[iR3(cos 3q+i  sin 3q)l idq < R ~ ~ + ~  

X exp( - R3 sin 3q,).rr/6-0, 

as R - + C O  

xexp [iR3(cos 3q+ i  sin 39) ]id? < R ~ ~ + ' c ~ , ,  (50) 

and if we choose q,= 1 / ~ ~ ~ + ~  then the last integral also 
tends to zero as R -+ CO. Consequently 

where T ( x )  is the Euler gamma function. In this way we 
obtain 

m 1 2k+ l  
I= 2 c2k exp i(2k+ 1)- 

k=O [ i ] . jr (T)  (52) 

where ck are the coefficients in the expansion of the func- 
tion F (p)  in a Maclaurin series. Therefore accurate up to 
the first term in the expansion we have the following ex- 
pression for the mutual coherence 
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If we take two terms of the expansion into account, we 
obtain 

With the help of the ErdClyi lemma the expression (53) 
was obtained in Ref. 6. The expression for yl;) can also be 
obtained by making use of the asymptes of the integral: 

where the function f (x,y) has compact support. The as- 
ymptote of this integral is calculated in Ref. 15. 

We call attention to the frequency dependence of the 
mutual coherence: y{;) K w-"~. This circumstance "en- 
sures" the increase of the mutual coherence by several or- 
ders of magnitude in comparison with a point gravitator 
y12 a In Ref. 6 an expression is given for the mutual 
coherence of a radiating disk of uniform brightness and 
small dimensions (the disk radius RQ4Ro) from (53) one 
can deduce the following formula: 

where K and E are the complete elliptic integrals of the 
first and second kind, respectively, s is the distance from 
the center of the disk to the critical curve, expressed in 
units of the disc radius. We have s> 0 when the center of 
the disc is on the "negative" side of the critical curve, and 
s < 0 if it is on the "positive" side. The close vicinity of the 
point s= + 1 is excluded, as it corresponds to a situation 
where only a narrow sickle of the disc participates in the 
formation of the image. In that case the method of station- 
ary phase is not applicable and, consequently, the corre- 
sponding relations are not valid. For s= 1 the degree of 
coherence within the framework of this approximation 
vanishes. Note in formula (56) the very weak dependence 
of the degree of coherence on the mass of the lens: 
y12 a r,-'/I2. The dependence on the size of the object is 
substantially stronger: yl2 a RQ 'I2. 

7. THE CASE OF THE TWO-POINT LENS 

The choice of the two-point lens for quantitative cal- 
culations of the effect of mutual coherence of contiguous 
images is explained by the fact that this is, on the one hand, 
the simplest case of a lens with critical curves in the plane 
of the source and, on the other hand, as was already men- 
tioned above, it is a typical case of a broad class of lenses 
(see, for example, the remark on this subject in Ref. 10). It 
is also appropriate to note here that, in contrast to this 
case, the single-point lens occupies a special place, since for 
it the critical curve in the plane of the source degenerates 
into a point. It is precisely for this reason that the degree of 
mutual coherence of images for the single-point gravitator 
has extremely small values.435 The surface mass density in 
the two-point lens is given by 

where M1 and M, are the masses of the components of the 
gravitator; the radius vectors of these masses are equal to 
p1 =(P,O}, p2={-p,O). The vector of the angle of refrac- 
tion calculated from formula (2) is given in the present 
case in the form 

where r and p are two-dimensional vectors, and the quan- 
tities rg, and rg2 are the gravitational radii of masses M,  and 
M2. The scalar function 9 of the lens in dimensionless 
variables3 can be written as follows: 

where ,ul=Ml/(M1+M2), hl=pl/Ro, p2=p2/R0. The 
lens equation takes the form 

and the critical curves in the plane of the lens are described 
by the equations4 

Let us suppose that we have a source in the form of a 
round disk, intersected by the critical curve. We then have 
in the plane of the lens a pair of contiguous images of the 
source with common boundary in the form of a segment of 
the critical curve TiT;. According to remarks made pre- 
viously the radiation from that part of the disk which lies 
to the right side of the critical curve does not participate in 
the formation of the given pair of images. Although the 
here-presented picture in terms of dimensionless variables 
can correspond to a continuous set of dimensional param- 
eters, the calculations were performed for the following set, 
corresponding to the following realistic situation: 
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A)  cosmological decelerating parameter go= 1/2; 
the Hubble constant Ho = 55 km/ (secMpc) ; 
the quasar (object) red shift ZQ= 1.25; 
the lens red shift zG=0.2; 

B) component masses of the double star (lens) 
M,=M2=Ma; 
distances between the lens components 2p=Ro (p^ 
=0.5); 
radius of the disk of the quasar nucleus RQ 
= 1.5. 1016 cm. 

Here Ro is the radius of the effective Einstein ring of the 
lens. It should be noted that since the gravitational lens 
does not change the surface brightness of the object, the 
ratio of the areas of the images to the area of the source 
gives the lens magnification of the flux densities for the case 
of a uniformly radiating disk. 

The degree of mutual coherence for a pair of images 
was calculated from formulas (53)-(56). Here the group 
B of parameters was varied, while the parameters from 
group A were kept constant. The core of the quasar was 
represented by a circle of uniform brightness. Its center 
was translated along the straight line i j  =0.4. The location 
of the disk was determined by the quantity s, equal to the 
distance of the center from the critical curve, expressed in 
units of the radius of the nucleus. In the extreme left loca- 
tion the disk was tangent to the critical curve from the left 
side (s= - 1 ), in the extreme right location-from the 
right side (s= 1 ). In Fig. 1 we show graphs of I y12(s) I for 
the case M,=M2=Ma for a disk radius 1016 cm, respec- 
tively, in the optical (A.=4000 A)  and radio (A= 18 cm) 
regions. We note first of all the sharp increase in the degree 
of coherence as the object disk is shifted from left to right. 
Near the point s=  1 the mutual coherence reaches its larg- 
est values. Calculations were not carried out in the imme- 
diate neighborhood of this point, since in that case the 
number of oscillations of the phase factor exp(io6t) be- 
tween the limits of the part of the disc forming the image 
turns out to be too small and the application of the sta- 
tionary phase method is not correct. 

As can be seen in Fig. 1 the modulus of the degree of 
coherence reaches tens of percent in the radio region. This 
result exceeds by several orders of magnitude the values 
obtained in Refs. 3-5 and permits a realistic prospect for 
the detection of this effect. However in the optical region 
under the same circumstances the coherence is measured in 
fractions of a percent. In Fig. 2 we demonstrate the case 
M1 =M2=0.01 Ma, RQ= 1013 cm, when the mutual co- 
herence reaches a few percent. 

The dependence of the degree of coherence on the 
wave length of the radiation il is of principal significance. 
In Fig. 3 we show the graph of the dependence of I yI2(il) I 
for the case M1=M2=M, RQ= 1015 cm for coordinates of 
the center of the disk lo=0.15, 4,= -0.4. This graph 
demonstrates the fact that the degree of coherence varies 
widely with varying wavelength. This should have as a 
direct consequence variations in the overall spectrum of 
the quasar core over the period of intersection of the latter 
by the critical curve of the microlens. This is connected 

FIG. 1 .  Modulus of the degree of mutual coherence of contiguous images 
of the quasar core in a two-point lens (MI = M,=MO) as a function of 
the location of its center (radius of the quasar core Rp= 1014 cm). 

with the fact that the degree of coherence enters into the 
formula for the overall radiation flux density. Such varia- 
tions in the continuous spectrum of the quasar core are one 
of two observable manifestations of the effect of mutual 

FIG. 2. Modulus of the degree of mutual coherence of contiguous images 
of the quasar core in a two-point lens (M, =M2=0.01MO) as a function 
of the location of its center (radius of the quasar core RQ= 10" cm). 
Optical region (1 =4000 A).  
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FIG. 3. Modulus of the degree of mutual coherence of contiguous images 
of the quasar core in a two-point lens (Ml=M2=Ma) as a function of 
the wave length of the radiation (radius of the quasar core Rp= 1015 cm, 
coordinates of the center of the disk &,=0.159, qo= -0.4). 

coherence of images of the microlensing quasar. It should 
be noted here that there exists another reason for the vari- 
ation of the spectrum over the microlensing period: the 
dependence of the lens amplification coefficient on the 
wave length due to different dimensions of the core in dif- 
ferent frequency regions. This question requires a special 
study. 

As can be seen from formula (56) and the graphs, the 
effect of mutual coherence depends substantially on the 
dimensions of the source. Here it should be kept in mind 
that what is relevant is not necessarily the entire core but a 
separate bright detail on its surface. In order for such a 
detail to indeed give rise to an appreciable effect of mutual 
coherence, it is necessary that its glitter at the instant of 
intersection with the critical curve should be comparable 
with the glitter of the core against the background of the 
entire quasar. 

8. DISCUSSION 

First of all it is necessary to call attention to the so- 
called coherence time of the radiation under consideration. 
Connected with it is the question of the validity of the 
application of the stationary-phase method and the validity 
of this work in general. The coherence time 67 is not an 
independent characteristic of the source but is determined 
by the acceptance width of the receiver according to the 
formula:I2 

If for the given element of the source the relative retarda- 
tion time 6t does not exceed the coherence time ST 

then at the point of the observer the two radiation fluxes 
from the pair of images will add up coherently; if instead 
6t)Sr then the addition will be incoherent. That part of 
the surface of the source for which the inequality (64) is 
satisfied can be called the "coherence zone." This zone 
represents a strip near the critical curve, since S t  vanishes 
on the critical curve. The width of this strip is expressed in 
terms of the width of the spectral strip with the use of 
formulas (36), (63) and (64). The application of the sta- 
tionary phase method is correct if the number of oscilla- 
tions N,  of the phase factor is sufficiently large. It follows 
from formulas (63) and (64) that the relative width of the 
transmission strip is expressed in terms of N,  as follows: 

For example, with No= 50 for A = 18 cm the width of the 
strip needed from the point of view of the coherence time 
equals AVZ 3 MHz, and for A =  4000 A we need M z 8 A. 
The width of the transmission strip can turn out to be 
inadequate from the point of view of sensitivity of the ap- 
paratus. The entire transmission range can be broken up 
into substrips of satisfactory width from the point of view 
of the coherence time. Coherent reception takes place 
within the boundaries of each substrip. Then the fluxes of 
all substrips are added up incoherently. If the images of the 
quasar are mutually coherent then the results of the obser- 
vations in such a multi-channel setting will differ from the 
results of the observations of the same quasar over the 
whole range. This effect is the second expected manifesta- 
tion of mutual coherence of the images of the microlensing 
quasar.') Let us also indicate a possible observable mani- 
festation of a sizeable coefficient of mutual interference. In 
that case, as is not hard to see, the intensity of the radiation 
near the caustic will be significantly different from the sum 
of the intensities of different images [in accordance with 
relation (13)], which could be one of the reasons for the 
observed variability of quasars. The study of the variability 
of quasars and its connection with microlensing has been 
performed previously using the method of imitation mod- 
eling (see, for example, the dissertation by wamsganss16), 
thus the discussed in this work asymptotic approach sub- 
stantially complements the numerical analysis of Ref. 16. 

As a consequence of the proper relative motion of the 
observer, the intermediate galaxy and the quasar, a trend 
of the latter relative to the multiple curves of microlensing 
occurs and is caused by the stars of the galaxy. For the 
problem studied in this paper it is important to know how 
often intersections of the critical curves by the quasar oc- 
cur. An answer to this question is given by model 
cal~ulations. '~~'~ According to these calculations, in the 
passage of the quasar radiation through the galaxy zones 
located sufficiently close to its center (as is the case for the 
quasar Q 2237+030 or the image of the quasar Q 0957 
+561), such events take place once every few years, i.e., 
often enough from the point of view of possible observa- 
tion. As regards the duration of the "transit" of the quasar 
core through the critical curve, that depends on the dimen- 
sions of the latter and could amount to between a few 
weeks to a few years. 
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