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We solve the problem of the occurrence of self-localized spin-wave excitations of 
parametrically coupled magnetostatic waves when they are inelastically scattered by a 
traveling acoustic wave. Using nonlinear coupled equations in the dissipationless limit we 
obtain soliton solutions describing self-localized stationary spin waves inside the 
nontransmission band of the frequency spectrum of the linear waves. We use perturbation- 
theory methods to introduce equations for the adiabatic change of the soliton 
parameters in a dissipative medium and analyze the conditions for its stabilization when a 
source for the generation of one of the parametrically interacting waves is switched 
on. 

INTRODUCTION 

Nonlinear spin-waves in a ferrite may undergo auto- 
modulation and self-focusing similar to a light beam in a 
transparent nonlinear crystal.'" The modulational insta- 
bility of a uniform nonlinear wave of constant amplitude is 
connected with the tendency to form spatially localized 
spin-wave packets--envelope solitons caused by the com- 
petition between dispersive and nonlinear changes in the 
phase velocities of the harmonics making up the wave 
p a ~ k e t . ~  For waves with a strong dispersion for which the 
frequency w does not vanish at the same time as the wave 
number k, i.e., w(k=O)#O, the condition for the occur- 
rence of the instability is the Lighthill criterion8 
( a d d  1 q1 2, (&/a@) < 0, where cp is the wave amplitude. 
This criterion makes it possible to predict the formation of 
small-amplitude envelope solitons for waves with a known 
dispersion law and nonlinearity. In particular, this refers to 
cases where the frequency branches of interacting waves 
intersect. The intersection of frequency branches is very 
common in the spectra of magnetostatic waves in thin 
magnetic films in which there exist at the same frequencies, 
together with nonexchange magnetostatic waves (MSW), 
modes of spin-wave resonant oscillations which are 
strongly nonuniform along the thickness of the 
Another example of magnetic systems with an intersection 
of frequency branches in the spectrum of spin-wave oscil- 
lations are the magnetic layer  structure^.^^^'^ Very typical, 
besides the unidirectional resonant interaction of waves, is 
the situation with the formation of intersecting frequency 
branches when one uses diffraction lattices for the control 
of the wave In the region where the spectral 
curves of the interacting waves intersect, wo(k) 
=wo(K-k) where K is the wave number of the lattice, a 
nontransmission band, I w - wo 1 > wg, is formed, at the 
edges of which the dispersion a2w/a@ of the hybridized 
wave changes sign. The nonlinear MSW can thus, in ac- 
cordance with the Lighthill criterion, form solitons only 
near one edge of the gap. However, the behavior of the 
nonlinear coupled waves inside the nontransmission band 
itself, where linear waves transform into one another, is 

unclear. To solve such a problem we consider Bragg scat- 
tering of a nonlinear MSW by a traveling sound wave, 
E = E ~  cos(0t--Ky), which plays the role of the reflecting 
lattice."-l7 Some effects of the scattering of nonlinear 
MSW by a sound pulse, connected especially with the oc- 
currence of hysteresis effects when they pass through or are 
reflected, were studied in Refs. 16 and 18. However, the 
self-localization effects of nonlinear magnetostatic waves in 
an unbounded sound "lattice" has not been discussed be- 
fore. The problems indicated above are rather general in 
nature and their solution is of interest also for acoustics 
and nonlinear optics (see, e.g., Refs. 19 to 21 ) . 

We shall analyze in the present paper the conditions 
for the formation and stabilization of envelope solitons of 
magnetostatic waves which are parametrically coupled by 
a pumping sound wave far from magnetoacoustic reso- 
nance. In the first part of the paper we discuss the basic 
coupling equations for nonlinear waves and the approxi- 
mations used. On the basis of these equations and the con- 
servation laws we find a soliton solution for a dissipation- 
less medium. After that we derive equations for a brief 
description for a "gap" soliton at rest, taking into account 
dissipation and electromagnetic pumping, and we analyze 
the conditions for its stabilization. 

1. BASIC EQUATIONS 

A sound wave in a ferrite, E = E ~  cos(Ot- Ky) with ,c0 
the amplitude of the elastic strain of the crystal in the 
acoustic wave, y the running coordinate, and t the time, 
produces a spatially periodic change in the effective mag- 
netic field, h - ( B E ~ M )  cos (Ot- Ky) with B the magne- 
tostriction coefficient and M the magnetization. This field 
acts on the spin subsystem of the magnetic crystal. The 
result is a stable parametric interaction of spin-wave Flo- 
quet harmonics, cp, (n  = * 1, * 2, ... ), arising when a mag- 
netostatic signal wave propagates in a moving sound "lat- 
tice"; they suffer a multiple shift in frequency and wave 
number by n(0,k)  and interact with one a n ~ t h e r . ' ~ , ~ ~  
When the coupling parameter is small, q= B E ~ M ~ ( ~ ,  the 
strongest of their interactions occur in a narrow frequency 
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and wave-number region, I w - wo 1 /o0, I k - ko ( /ko - 74  1, 
near the point of intersection of the reference curves w, (k)  
of neighboring harmonics n = 0, * 1 for which the condi- 
tions are satisfied for phase synchronism, w,(K-k) 
=wo(k) +nR of the incident, p+ (n=O), and reflected, 
q,- (n= * 1 for Stokes or anti8tokes scattering), waves. 
The Bragg scattering of linear MSW by a traveling acoustic 
wave is then satisfactorily described by the coupled equa- 
tions for two waves which are obtained by the reduction of 
the Landau-Lifshitz equations of motion for the magnetic 
moment and the Maxwell equations in the magnetostatic 
approximation, taking the appropriate boundary condi- 
tions into account.15723 These equations have the form 

where the v, are the group velocities, the the coupling 
coefficients, and the Sw, the line widths of the interacting 
MSW. These parameters depend on the geometry of the 
magnetization of the film and the polarization of the acous- 
tic wave. In particular, for the case of scattering of a sur- 
face MSW by a surface acoustic wave with small wave 
numbers, Kd,kd(l, when the magnetic moment lies in the 
(zy) plane of the film and the MSW and SAW propagate at 
right angles to it along the y-axis, these parameters are 
equal to2! ' 

v, = v,=aw/ak 1 k = O = ~ & i / 4 ~ 0 ,  with uM= Y~TM, 

y is the gyromagnetic ratio, 

2 with x1 = o @ ~ / ( w  -w;), X2 = omM/(02  -w&), while 
E, and E,,, are components of the elastic deformation ten- 
sor in the acoustic wave near the surface. 

We have neglected in the coupled Eqs. ( I )  the wave- 
guide dispersion of the interacting waves which in the case 
of surface MSW is equal to a20/dp = - ( w 2 2 /  
16wi) ( 1 + 8w&/oi). This is valid only for not too strongly 
localized wavepackets. Indeed, if we recognize that the 
coupled Eqs. (1) give for the frequency mismatch, 
Aw=w-wo, and for the deviation, Ak=k-ko, of the 
wave number from the point of phase synchronism the 
dispersion relation ( A U ) ~ =  a%+ (v&k12, we get from the 
condition a2ho/a( Ak) % aZw/akZ a restriction on the 
width of the wavepacket, Ak 4 (uB/vg) [ 1 u;/w&i~ 1 'I3 

- 1]'12. This condition is satisfied for surface MSW pro- 
vided that 

In the opposite case one must take the waveguide disper- 
sion into account. 

If there is no acoustic pumping, when w$ =0, the 
equations of the system ( 1 ) split up and describe the evo- 
lution of the envelope of each MSW in the dispersionless 
approximation. Including the waveguide dispersion and 
the nonlinear frequency shift makes it possible to describe 
the evolution of nonlinear MSW in a ferrite. For the long- 
wavelength spin oscillations (kd4 1 ) the main mechanism 
for the nonlinear frequency shift is then the decrease in the 
average magnetization (M,) = M (  1 - (m:+ m i ) / 2 ~ ~ )  
which is connected with the precession of the magnetic 
moment and the conservation of its total magnitude. 
Taking this fact into account we can find the cor- 
responding nonlinear frequency shift, w ( k,q,) = o ( k,0) 
+ (aw/a 1 q, 1 2, 1 q, 12, where 1 p 1 2 =  (m:+rn;)/2~~ is the 
square of the wave amplitude. For instance, for surface 
MSW we have2 aw/a I q, 1 = - ( wflM/4aO) ( 1 + w&/o~).  

When there is an acoustic wave present in the ferrite 
there appear parametrically coupled coherent oscillations 
of the signal and the scattered MSW. The decrease in the 
average magnitude of the saturation magnetization is thus 
determined by the amplitudes of both waves. After aver- 
aging over time and taking the Doppler shift in the fre- 
quencies of the interacting harmonics of the MSW into 
account we shall have ( (mx+ + m,- ) + (my+ +my- ) 2, 

=((m,+IZ+ (my+)2)+((mx-)2+ (my-12) and thus1) 

This change in the saturation magnetization will pro- 
duce also a nonlinear change in the group velocities u, of 
the interacting waves and in the coupling coefficients w$. 
However, for wavepackets with a weak localization in 
space [see condition (2)] we can neglect the nonlinear dis- 
tortion of the group velocities. Moreover, the nonlinear 
frequency shift of the hybridized wave, caused by the non- 
linearity of the coupling coefficients, will be of the order 
- ~ ~ ( p l ~  which is considerably smaller than the contri- 
bution to the nonlinear frequency shift of each harmonic, 
which is approximately equal to -- (wflM/4wo) ( q, 1 2. Tak- 
ing all this into account we can write for the nonlinear 
MSW in a ferrite which are parametrically coupled with a 
traveling acoustic wave the following equations 

where a = aw/d 1 p ( 2. 

If we normalize the variables [t] = w &, b] =yw B / ~ g ,  
[p]=q, I a/wB\ 'I2, then Eqs. (3), together with the com- 
plex conjugate pair, take the form 
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whereH,=H+1p,1~,~=1q+1~+1p-1~,~=* l i s t h e  
sign of the nonlinearity, and l? = Sw/o B. 

The system of equations we have obtained have for 
r = 0  two integrals, the evolution of which at r#O 
describes the change in the energy and the momentum of 
the wavepackets. Multiplying (4) by the vector g1 
= ( - p t  , p+ , - p? ,p- ) and adding the equations to- 
gether we get after some straightforward transformations 

- 
where G = w - wo and k= k- ko are, respectively, the mis- 
match frequency and wave number. We shall then consider 
the amplitude and the phase of the soliton to be self-similar 
functions of the coordinate and the time, i.e., 
R, ,xi = f (y-vt) where u is the soliton velocity normal- 
ized by the group velocity u, of the signal MSW. The nor- 
malization of the other variables was given above. The 
required solutions must be localized in space so that we 
have R,(lyl =m)=O. 

We can now obtain two integrals from (5)  and (6). 
The first, which is essentially the analog of the Manley- 
Rowe relations, has the form 

For r = 0  this is the energy conservation law. Similarly, if we take the boundary conditions q (  lyl = m ) =O into 

multiplying (4) with the vector g2=ay(pT,p+,  account. The second integral which follows from (6) and 
p? ,p- ), adding the equations, and transforming the sum corresponds to the momentum flux conservation law gives, 

to the form of a divergence, we get if we use (8), 

+(p-a~c-pta+P-)+s( Ip+I2+ 1 p - 1 ~ )  where x=x+--x-. It follows from (8)  that 
R , = [( 1 & v) H/2] 'I2. Separating the imaginary and real 

+ 2 1 ~ + p -  I2+2(p+p? + d ~ - )  I parts in Eqs. (4) and using the self-similarity of the re- 
quired solution we can now obtain the following equations 

For r = 0 this equation is the momentum conservation law. 
&-E+sH cosx 

2. SOLITONS OF PARAMETRICALLY COUPLED MSW IN A a6x+ = l W v  +(l-u2)l/2' 
DISSIPATIONLESS MEDIUM - 

We first of all consider the conditions for the existence G-k+sH+ c o s ~  a,x- = - - of solitons of coupled magnetostatic waves in a dissipation- l + v  ( 1 - ~ ~ ) ' / ~ '  
less medium, r = 0 ,  which is the limiting case of a weakly 
dissipative medium with a high level of acoustic pumping, where C=y-ut, H, = ( 3  =t u)H/2. Using (9) and integrat- 
wB>Sw ( T g l ) .  We seek localized solutions in the follow- ing these equations enables us to find the required soliton 
ing form, solution 

where is given by Eqs. (9) and (1 1) and xo is an arbi- 
trary constant. 

For Z,k=O the solution we have found is the same as 
the soliton solution describing self-localized stationary 
waves in a periodic structure, which were obtained in Ref. 
19 (see also Ref. 20). For G,k#O it follows from ( 1 1) that 

the condition for localization of the solution obtained is not 
violated provided the soliton velocity lies in the range 
v+ > v> v-, where v +  = (&k =t , / m ) / ( l  + i 2 ) ,  

I i, ( < 1. Hence it follows also that the soliton frequency G 
and its wave number k must lie between the branches of 
the dispersion curves of the linear MSW, i.e., 
(&I < ( 1 -+ E2) 'I2. The soliton can thus not move with a 
velocity exceeding the group velocity of the coupled waves 
which are its components, and its frequency for a given 
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wave number of the phase mismatch cannot exceed the ( H )  = ( H )  I ,=o exp( - 2 W ,  
frequency of the linear MSW. 

(15) 

In terms of dimensional variables the maximum soliton where ( H )  = S H ~ Y -  After integrating and using ( 1 1 ) we 

amplitude is equal to get from ( 15) after some transformations 

G=s cos[x exp(-2I't)], 

where 

and its characteristic width is 1 +sG(O) sO(0) 

JcGp ( I  _3)1/2--arctg ( - 3 ) 1 / 2 ]  

6y= ( u g / a ~ )  - - - (14) 2 u(O-UBk )z/o; = arccos [so (0) I. 
The soliton amplitude thus depends on the gap width COB, 
which is determined by the level E, of the acoustic pump- 
ing, and on the nonlinear frequency-shift coefficient. The 
soliton width also depends on the magnitude of the acous- 
tic pumping and, moreover, on the soliton frequency and 
velocity. - 

For k=O solitons of coupled MSW exist only inside 
the nontransmission band, ( o ( < a,, and they can thus be 
called conventionally "gap" solitons. The amplitude of a 
"gap" soliton at rest tends to zero as sG+ + CXJ, i.e., close 
to one of the edges of the nontransmission band, near 
which the Lighthill criterion for the formation of small- 
amplitude solitons is satisfied, and reaches a maximum 
near the other edge, when sG-, - 1, where this criterion is 
violated. 

We now consider the evolution of a soliton in a weakly 
dissipative medium when h # O ,  but aB>&o. For simplic- 
ity we restrict our analysis to the case of a soliton at rest 
(v=O) with k=O. Assuming the amplitudes and phases of 
the "gap" soliton, which are determined by the evolution 
of the mismatch frequency Z=Z(qt )  with q a small pa- 
rameter ( q g l ) ,  to vary slowly with time we have, after 
integrating Eq. (5) over y  and using the boundary condi- 
tions, 

The formulas obtained show that the presence of dis- 
sipation in the absence of added pumping of energy leads 
not only to a decrease in the soliton amplitude, but also to 
its broadening and also to a shift of the mismatch fre- 
quency to the edge of the nontransmission band near which 
the soliton vanishes. 

3. STABILIZATION OF COUPLED SELF-LOCALIZED MSW 
STATES IN A DISSIPATIVE MEDIUM 

To stabilize the soliton we can use additional electro- 
magnetic pumping of the energy into one of the interacting 
magnetostatic waves. To take this into account it is neces- 
sary to introduce into the right-hand side of the equations 
of the set (4),  which describe the evolution of the ampli- 
tude of one of the coupled waves, an additional term de- 
scribing its source. The coupled equations can then be writ- 
ten in the following form 

* where (p = (YT ,p+ ,Q- ,p-) is the vector describing the 
solution and L a nonlinear operator acting on it and equal 
to 

The vector f includes dissipation and the source h(y,t) for ized units, and 6(y) is the Dirac delta-function. We can 
the excitation of one of the coupled MSW. It is equal to carry out the analysis of the conditions for the stabilization 

of the soliton in a weakly dissipative medium, r g l ,  using 
a perturbation theory for solitons, similar to the one of Ref. 

(19) 24- 
In zeroth approximation, when f =0, the unperturbed 

set of equations &=o has a soliton solution described by 

We shall assume in what follows that the source for the Eqs. ( 7 )  3 (9)  9 ( and ( 12) which we denote by the 

electromagnetic generation of MSW is much more strongly Vector Po. We shall look for the solution of the perturbed 

localized than the soliton. We can then put system ( 17) in the form (p=qo+(pl, where (pl is a small 
h = h$(y)exp(~~- iG~t) ,  where h, is the amplitude, xh the correction to the zeroth approximation ( I (pl 1 4 1 (po ( ) 
phase, Z l = o l  -a0 the frequency of the source in normal- which in first approximation satisfies the linearized set of 
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equations (17). In order that the correction to the zeroth the "slow" time. In that case the first approximation cor- 
solution retain its smallness for large times t-l '- ' it is rection q1 must satisfy the equation 
necessary to stipulate a slow (adiabatic) change in the 
soliton p_arameters pi(t)-the frequency i3(r), the wave Ll91=f- C f 2 @ i ( ~ ) ,  

i 
(20) 

number k( r ) ,  the position yo(r)  of the center of the soli- 
ton, the phase xO(r) ,  and the velocity u(r),  where T - r t  is where 

while fi = dpi(q+, - qT ,p- ,qf )0, where the derivatives 
are with respect to the parameters of the soliton solution 
p,,. To eliminate the secular terms in the correction ql ( t )  
to the zeroth solution, which cause it to grow rapidly with 
time, it is necessary to satisfy the condition that the right- 
hand side of the linearized system of equations (19) be 
orthogonal to the solutions of the homogeneous adjoint 
system Lrgi=0.  This yields an equation for the evolution- 
ary change of the soliton parameters 

where () denotes integration over the whole of the y-axis. 
One checks easily that the vectors ( i= 1 to 5 )  are 

solutions of the homogeneous adjoint set and enable us to 
find the corresponding equations for an abbreviated de- 
scription of the soliton. 

For simplicity we consider the case of a soliton at rest, 
v,k=O, which in zeroth approximation is described by the 
following formulas 

where 

where P= -Gt+xo(t) +xh+x(0)/2. 
When there is no additional pumping of energy, when 

ho=O, the first equation of the set (24) describes the re- 
laxation of the mismatch frequency i3 to the edge of the 
nontransmission band, i3-s, near which the soliton van- 
ishes, in complete agreement with Eq. ( 16). 

In the general case equilibrium states of the set (24), 
a,Z=a#=O, are reached for values of the frequency i3 
satisfying the equation 

This equation always has a solution sw = 1, corre- 
sponding to a stable state with a zero soliton amplitude 
near the corresponding edge of the nontransmission band. 
For ho < ~ ( 2 / 3 )  'l2r this equilibrium state is the only one. 
However, when the threshold value ho=~(2 /3 )1 /2 r  is 
reached a new equilibrium position appears for G=O, 
fl= 3 ~ / 2  corresponding to a node in the phase plane of the 
system (24). When the amplitude of the source changes 
into the range of values 1 ~ ( 2 / 3 ) ' / ~ r <  ho<3~(2 /3 )1 /2 r  
there appear two equilibrium points with nonvanishing 
soliton amplitudes of a saddle-point and focal point type. A 
numerical analysis of Eqs. (24) shows that there appear 

W 

Let us analyze the conditions for its stabilization when we 
---I switch on a point source generating at the point y=O a 

wave 9- at the synchronization frequency, when Gl =O. It 
is clear from symmetry considerations that the stabiliza- 
tion of the soliton will take place in the point yo=O and it 
is thus sufficient to consider the evolutionary equations 
describing the change in w(t) and xo(t).  It follows from 
( 19), (20) and (2 1 ) that the required equations have the 
form 

- Jjho 
w - - JG- cos P, 

2 (24) FIG. 1 .  Phase portrait of the set of equations ( 2 4 )  obtained by integrating 
them numerically for h , ( 3 / 2 ) " 2 = 2 ~ ~ = 0 . 3 .  
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FIG. 2. Evolution of the mismatch frequency of a self-localized state of 
coupled waves for two different initial conditions: I-Initially the trajec- 
tory is chosen in the region of the phase portrait in Fig. I where the 
soliton solution is stabilized. 2-The initial state is chosen outside the 
region of attraction to the equilibrium point with nonvanishing ampli- 
tude. 

then in the phase portrait of the system (Fig. 1) regions 
where the phase trajectories are attracted to a stable equi- 
librium point. Outside these regions the frequency Z tends 
to the edge of the gap, Z-s, as for ho. This is clear from a 
comparison of the two functions Z(t) in Fig. 2 obtained for 
different boundary conditions (curves 1 and 2 ) .  

The stabilization of the soliton thus depends on its 
initial amplitude and phase agreement with the source. 
When the amplitude of the stabilizing source is increased 
further new pairs of stable equilibrium positions will ap- 
pear. The fact that notwithstanding the nonlinear nature of 
the excitation of one of the coupled waves the stabilization 
process of coupled waves has characteristic features of the 
parametric stabilization of solitonsz5 deserves attention. 

CONCLUSIONS 

The calculations performed here show thus that when 
nonlinear magnetostatic waves are excited in a magnetic 
film by a traveling sound-wave envelope solitons of para- 
metrically coupled waves may appear in the region of the 
nontransmission band. Their amplitude depends on the 
phase mismatch frequency of the interacting waves and the 
soliton velocity. The solitons are "softly" produced near 
the edge of the nontransmission band in accordance with 
the Lighthill self-localization criterion and "rigidly" (with 
a finite amplitude) produced near the opposite edge. Out- 
side the nontransmission band there are no self-localized 
coupled waves with a uniform phase shift. The soliton ve- 
locity can vary from zero to the group velocity of the signal 
wave when the conditions for phase synchronism of the 
interacting waves are satisfied. 

Dissipation causes a change not only in the amplitude, 

but also in the width and mismatch frequency of the cou- 
pled waves in the solitonlike packet. When there is a source 
present for the generation of one of the coupled waves a 
self-localized state of parametrically coupled waves may be 
stabilized provided the power of the generation source ex- 
ceeds a threshold value and the necessary conditions for 
the agreement of the initial phase of the soliton and of the 
generation source are satisfied.26 
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"A similar kind of nonlinearity was considered in Ref. 22 in an analysis 
of the effects of the propagation of nonlinear electromagnetic waves 
under conditions of Bragg reflection by a static periodic lattice. In that 
case, however, the absence of cross-terms of the q+q* and q*,q- kind 
in the nonlinear frequency shift requires a justification. 
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