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We analyze a new thermoelectric mechanism for the excitation of motion during heating. The 
action of the new mechanism is systematically compared with the excitation of the 
motion by the Archimedean force and the thermocapillary effect. In our considerations we 
use the example of liquid semiconductors (semimetals). Heating is possible both 
along and across the layer. We show that heating along the layer leads to a motion sharply 
(resonantly) increasing under the same conditions under which cellular motion is 
excited during preheating across the layer. This result is obtained on the basis of an exact 
solution of the appropriate problem. We consider the conditions for the excitation of 
an instability in the fluid film simultaneously heated from both directions. The thickness of 
the film changes during the heating. We analyze the effect of the new mechanism on 
the thickness. We give a numerical solution of the problem of the simultaneous, self- 
consistent determination of the temperature and the thickness of the film under such motion 
conditions. We compare existing experiments with proposed new ones. 

1. If the thermoelectric effect is possible in a fluid, a 
temperature gradient A= I V T  I leads to the appearance of 
a force which is electric in character. The volume force 
density is 

where E= yA is the thermoelectric field produced by heat- 
ing, en=ayAT is the volume charge density produced by 
this field in a fluid with permittivity E, y is the thermo-emf 
coefficient, and n is the density of carriers with charge e. 
The simplest example of such a fluid is a liquid semicon- 
ductor ( semimetal). 

It is just this force which competes with the Archimed- 
ean force produced by thermal expansion'y2 and is equal to 
pPgT ( p is the density of the fluid, 0 the thermal expan- 
sion coefficient, and g the free-fall acceleration) and with 
the thermocapillary produced by the temperature 
dependence of the surface tension coefficient a and equal to 
a A T  ( a  is the thermocapillarity coefficient). The thermo- 
electric force leads to motion of the fluid. This motion is 
one variety of the electroconvection structures5 and the 
thermoelectric mechanism leads to an instability also when 
there is heating from above or from a free surface when 
Archimedean (Rayleigh) or thermocapillary (Pearson) 
convection is impossible. 

The action of the thermoelectric force is characterized 
by the dimensionless number 

This number shows by how much the thermoelectric force 
exceeds the dissipation force due to viscosity and thermal 
conductivity ( Y  and tr are the kinematic viscosity and ther- 

mal conductivity coefficients). The characteristic dimen- 
sion of the motion in the fluid is h, the thickness of the 
layer; if we use this most suitable model. 

The number Z? has the same meaning as the Rayleigh 
number R or the Marangoni number M. 

which characterize the action of the ~ rch imedean~  and 
thermocapillary4 forces, respectively. 

It is clear from Eqs. (1) and (2)  that the numbers R 
and M are proportional to the heating A to the first power, 
and therefore in the case of heating from above or from a 
free surface, i.e., when A=A,  (the z-axis is perpendicular 
to the layer), the instabilities corresponding to them will 
not occur. The number 29 is independent of the direction of 
the heating and it is thus important to take thermoelectric- 
ity into account when analyzing experiments about heating 
from above.&1° 

Experiments on the melting of samples by a laser beam 
are carried out under conditions when the heated part of 
the surface is much smaller than the total area. Experi- 
ments on local heating require for their explanation a con- 
sideration of the motion occurring under the action of 
heating in the horizontal direction, A=A,  (the x-axis is 
directed along the layer). 

Of course, Rayleigh convection and the thermocapil- 
lary effect have a stabilizing effect" on the excitation of the 
instability when there is heating from above (or from a free 
surface), but in actually observed melts with a thickness up 
to several tens of pm7'8 it is just the thermoelectricity 
which should be the main cause of the motion. Since the 
dimensions of the fluid in the longitudinal direction are 
much larger than in the transverse direction, we can use 
the "film" approximation. Its principal premise is that the 
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velocity along the layer, vx=v, can be assumed to be much 
larger than the velocity of the same fluid element in the 
direction perpendicular to the film. 

The rest of the paper is constructed as follows: in $2 we 
analyze an exact solution of a model problem. The exact 
solution of the equations of free convection with a constant 
longitudinal temperature gradient is given for a plane hor- 
izontal fluid layer in the Appendix. In reality this is motion 
in the central part of the heated zone. The motion under 
such conditions12 occurs at arbitrarily small values of Z?. It 
turns out that for Z? = $*=473, i.e., when the number g 
reaches the value necessary for the excitation of thermo- 
electric convection under transverse heating," the velocity 
in the longitudinal direction increases steeply (resonantly). 
In $ 3 we solve the case when the temperature in the heat- 
ing pulse varies both along the x-axis and along the z-axis, 
i.e., when the temperature in the film varies both along and 
across the layer. Up to then we consider a layer of constant 
thickness. In $ 4 we analyze how the thermoelectric effect 
affects the thickness of the layer. It turns out that the film 
thickness is the smaller the larger the heating, and the layer 
outside the heating region consists of "hills" and "dales," 
i.e., its surface is wavelike. In $ 5 we consider the self- 
consistent problem of the simultaneous calculation of the 
film thickness and the fluid velocity in it. $ 6 is devoted to 
an analysis of experimental data which, however, are 
scanty. 

2. We consider the solution of the problem of convec- 
tion for a plane horizontal layer of a liquid semiconductor. 
Motion of the kind considered arises, for instance, in the 
central part of a wide rectangular vessel with a plane hor- 
izontal bottom. If one of the vertical walls (x=O) is cold 
and the opposite one hot, it is impossible to have equilib- 
rium for the fluid and motion occurs for an arbitrarily 
small temperature difference. Such problems have been 
solved in Refs. 4 and 12 to 14. 

We can write the boundary condition for the temper- 
ature in the form 

T=Ax for z=0 and z=h. (3) 

The z-axis is directed vertically upwards and the x-axis 
from the cold to the hot wall. The motion is independent of 
the y-coordinate. Here and henceforth we reckon the tem- 
perature T from the value T(0) on the cold wall and A is 
the horizontal temperature gradient, A=A, .  In the thin 
film approximation we can assume that the flow occurs 
only along the bottom and the surface so that v,=O, u,=O, 
v,= v(z) . The temperature T, the pressure p, and the car- 
rier density n depend on both coordinates. 

The equations of motion (the x- and z-components of 
the Navier-Stokes equation) take the form 

a2v 1 ap eny a T  

1 JP eny a T  
---+gPT= -- - 

P az P a z .  

Using the fact that the electric field strength is caused 
solely by thermoelectricity, as in the equations above, i.e., 

that the field strength is equal to yVT, we can easily elim- 
inate n by using the electrostatic equation. We have 

a2T  d2T 
en=y& div VT=y& -+- . (ax a l )  

It is possible to find an exact but very cumbersome solution 
of the problem posed here (see Appendix). 

We turn to an analysis of the results. Of course, for 
y=O ( g  =0)  Eqs. (5)  and (6)  change into the exact so- 
lutions for the flow of the kind considered for the case 
when only the thermocapillary and the thermal expansion 
effects are operating; these solutions were found in Refs. 12 
to 14. It is also natural that there occurs at the boundaries 
(for c=z/h =O and c= 1 ) a surface charge density which 
is constant, u=EE,(O) =&E,( 1 ), but varies under different 
boundary conditions. The velocity profile in the case of two 
rigid boundaries is antisymmetric and for c=0.5 we have 
v=O. In the lower part of the film in the case of heating 
along the layer the velocity under such boundary condi- 
tions has the same direction as the heating gradient (up to 
{=0.5) and reaches its maximum for c=0.25. In the up- 
per part (0.5 < 6 < 1 ) the velocity is in the opposite direc- 
tion and reaches the same maximum value for {=0.75. We 
can similarly describe the motion when there is a free 
boundary present (see below in 56), as will be done for an 
analysis of the experiments. 

However, it is more important that the exact solution 
enables us to reveal also solution properties which appear 
just because of the action of the thermoelectric effect and 
are not present in a fluid in which this effect is not impor- 
tant. We are referring to the steep (resonant) increase of 
all the characteristics of the motion when the number 8 
approaches a value g* 4 2  for the motion between rigid 
boundaries and given by 

when there is a free boundary present. This formula is the 
result of solving the equation tan K = K. 

The quantities v, T (in any x-cross-section), n, E,, the 
heat flow Q,, and Fx= enEx increase near 2?, as ( 
- @) - ' and the heat flows in the horizontal direction, 

(C, is the heat capacity of the fluid at constant pressure) 
and the force per unit volume acting in the fluid in the 
direction perpendicular to the layer, F,=enE,, even as 
( K - @) -*. This effect is characteristic just for ther- 
moelectricity and is not present when y=O. 

Such a resonant increase when one heats from the side 
is a manifestation of the electric nature of the thermoelec- 
tric force. Indeed, both the Archimedean force produced 
by thermal expansion and the surface force produced by 
the thermocapillary effect depend significantly on the di- 
rection of the heating. In contrast, the thermoelectric force 
is independent of the direction of the heating and excites an 
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instability both for heating in a direction perpendicular to 
the layer1' and for heating along the layer. This is just the 
reason why the resonant values of 8', which are approxi- 
mately equal to 40 and 20, are close to the values necessary 
for the excitation of cellular motion. 

CONCLUSION 

In sufficiently thin layers heating from the side can 
reach a value such that in fluids in which a thermoelectric 
effect is possible, instability sets in when the dimensionless 
number g ,  which characterizes the action of this effect, 
approaches the value g, . There occurs then a deviation 
from a one-dimensional motion and cellular motion is 
excited." It is not possible to excite instability when one 
heats from the side by normal convection or by the ther- 
mocapillary effect. 

3. A sample can be heated by laser radiation in a melt 
both along the layer A =Ax, and at right angles A =A,. It 
is well known that, since the heating is from above (from 
a free surface), in a fluid with P >  0 and o < 0 excitation of 
the cellular-motion instability is impossible either by 
Archimedean  force^"^ or by the thermocapillary 
but it is possible, for instance, by thermoelectricity" both 
for heating along and heating across the layer. In the case 
of heating across the layer the Archimedean force and 
thermocapillarity turn out to be stabilizing effects, but not 
in the case of heating along the layer. 

We consider therefore a liquid semiconductor (semi- 
metal) layer acted upon solely by thermoelectric forces, 
with the aim of elucidating the conditions for the excitation 
of the instability. We shall discuss the effect of other forces 
later. 

The linearized equations of motion (two projections) 
of electrostatics and thermal conductivity, in the same film 
approximation in the central part of the melt, i.e., for 
u=ux)u,, relate the deviations of the velocity, v, of the 
temperature, T1 = T - To, of the pressure, p l  = p  -PO, and 
of the electric charge carrier density. We have 

The incompressibility equation av/ax + avJaz= 0 enables 
us to determine the vertical velocity component which does 
not enter in the remaining equations in the approximation 
used. We assume the field to be thermoelectric. Eliminating 
all variables except u we find 

If we introduce the natural length unit, the layer thickness 
h, it is clear that the start of the instability is characterized 
by the dimensionless "film" number 

which is completely analogous to the number 8' by which 
we characterized earlier the action of thermoelectricity. 

The equation itself is solved by the method of separa- 
tion of variables. It is clear that 

where the separation constant kx> 0 since the heating is 
the largest at the center of the layer (for x=O). In fact, kx 
determines the size of the region of the motion in the lon- 
gitudinal direction, A, according to the law kx= 
2 &rh/A, if we assume that a rectangularly shaped cell is 
excited. 

As usual, the problem of the excitation of free 
convection2 is a dual eigenvalue problem. Indeed, the ho- 
mogeneous system (7) and (8) must be supplemented by 
homogeneous boundary conditions. The lower boundary 
(z=O) can under actual conditions always be assumed to 
be rigid, v=  0, and isothermal, T1 = 0. This is a boundary 
with a substrate. Numerical calculations show that if the 
upper boundary is the same, motion appears when the film 
number which characterizes the action of thermoelectricity 
reaches the value 

On the other hand, assuming that the excitation of the 
instability occurs for values of 8 close to the resonant one 
(see $2), i.e., for gf -40, we find that A=70h, i.e., the cell 
is strongly elongated in the longitudinal direction. This 
result may serve as an indirect confirmation of the validity 
of the chosen film model. For estimates we must put 
AxzA,. 

The effect of the Archimedean force pPgTl which we 
can take into account in Eq. (7) means that we must in all 
calculations replace gf by g f b - ~  where b is a number of 
the order of 100. Using Eqs. (1 )  and (2) we find that the 
thermoelectric effect dominates for film thicknesses 

although the Archimedean force may exert a stabilizing 
action when we heat across the layer. 

4. So far we have considered a layer of constant thick- 
ness. If the film has a free surface it may change its thick- 
ness under the action of the heating. 

The condition determining the thickness of the layer 
(film) is the condition that the pressure have no disconti- 
nuity on the free surface. This condition must be written 
down with the field taken into account.15 The field is due to 
the action of the thermoelectric effect. Therefore we have 

We shall assume that the temperature varies only along the 
layer, i.e., that, as in $2, A=Ax. We shall consider the 
general case in $5. Here, on the other hand, we shall as- 
sume that the temperature is a given function of the coor- 
dinate along the layer, A=A(x). We shall assume that the 
thickness variation is sufficiently smooth so that we can 
neglect the change in pressure due to the twisting of the 
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surface. This approximation is in complete agreement with 
the film approximation, A>h and v =  v,) v,, which we as- 
sume to be satisfied. All forces inside the fluid are unim- 
portant under such conditions and there remains solely the 
viscous friction force which prevents spreading by the pres- 
sure. The connection between these forces is given by Eq. 
(7 ) .  

Integrating this equation twice after using ( 10) to sub- 
stitute the pressure into it we find 

To determine the integration constants we used the condi- 
tion of "rigidity" at the bottom, z=0, and the presence of 
thermocapillarity at the free surface, vpdv/dz=da/dx= 
-udTdx. We recall that a is the surface-tension coeffi- 
cient. We now use the condition that the flow is closed. We 
find that in the more realistic case when Ah= T is inde- 
pendent of h that we can write the equation in the form 

where ho is the thickness of the layer at the place where 
p =  po, T = To, and so on. If the temperature changes little 
along the layer we find 

This formula changes into the relation given in Ref. 1 when 
there is no thermoelectric effect. 

5. When evaluating the conditions for excitation (53) 
we assumed that the thickness of the fluid layer even with 
a free boundary was given. The temperature distribution 
was determined by the heating conditions. On the other 
hand, when calculating the thickness we assumed that the 
temperature distribution in the layer was given. In 
reality9,10 neither the one nor the other quantity is given 
independently, but they must be determined simulta- 
neously, i.e., self-consistently, from the theory. We can as- 
sume that the characteristics of the external heating pulse 
the given parameters may assume, as a very rough approx- 
imation, that A, and A, are such parameters. 

Thus, let us have T - T o = A s  at the boundaries of the 
layer (one can solve the problem also for different horizon- 
tal temperature gradients on the boundaries) while inside 
the temperature is determined by the vertical gradient and 
can be written as A$+ T. The lower boundary z=0  of the 
layer is rigid: v,=O, v,=O, and at the upper one the viscous 
tension is balanced by the thermocapillarity. 

Under appropriate conditions, the problem posed here 
goes over into the problem solved above. 
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Nonlinear terms such as v.Jux/ax and v$v,/az were 
dropped from the equations since the velocities of the con- 
vective motions are always small as compared to the char- 
acteristic velocities x / h  and v/h. 

One can, of course, solve the problem posed here only 
numerically. In the first approximation we always applied 
the layer model. Taking onto account the actual thickness 
of melted we assumed the main force to be the 
thermocapillary one, in the second approximation we took 
the thermoelectric force into account in thin layers, and in 
thicker ones the Archimedean force. The thickness for 
which the main force is the thermoelectric one, 

can be reached only when the layer becomes thinner under 
the action of the heating. 

The calculation of the excitation conditions shows that 
a consistent change in the layer thickness leads only to 
small changes in the results obtained in $3. Cellular motion 
does not occur in first approximation, and in second ap- 
proximation cells appear under the action of thermoelec- 
tricity, with A/h - 70 for $, - 30 to 40. The results of the 
calculations in the first approximation are close to those 
obtained in Ref. 13. The horizontal velocity component has 
a parabolic profile and is determined by the value of Ax for 
z=  h. The vertical component v, has a cubic profile in z and 
is determined by the quantity aAdax for z=  h. Of course, 
both velocity components are proportional to the number 
M which characterizes the action of thermocapillarity. 

Taking thermoelectricity into account thus leads to an 
increase of the longitudinal dimension of the cell by an 
order of magnitude. This result is due just to the action of 
the thermoelectric field produced by the longitudinal tem- 
perature gradient. When there is no thermoelectric field, 
cellular motion occurs only under the action of a trans- 
verse gradient A, and leads to cells with A/hz 3 to 5. One 
can approximate the numerical solutions obtained also by 
harmonic functions. This is principally important for the 
x-dependence of the calculated quantities. 

Using the relation 

which is the usual one in the theory of convection in a 
layer,2 and the fact that 

one can determine from the formula which in these calcu- 
lations replaces Eq. ( 1 1 ) how the layer thickness depends 
on the coordinate along the layer in a form which is close 
to repeating the results of the numerical calculations in the 
self-consistent problem. For g f / ~  5 1 the largest terms in 
the relative change in the layer thickness in the x/ho>l 
region will be 



Hence it is clear that the layer thickness for motion along 
the layer from hot to cold regions increases gradually, ex- 
ecuting oscillations around the line of this increase. The 
slope of the line is determined by the quantity FYf /~  and is 
small in accord with the assumptions of the model used. 
The coordinates of the points in which the deviation from 
the initial even surface is extremal are equal to 

xeX =g 7 arccos (Xf) - - -- :I 
The largest difference in layer thickness will be 

The thermocapillary effect, which is the main effect 
producing motion, leads to a total increase in the level 
(thickness) in the "cold" region considered by 2MhdR. 

The simultaneous determination of the characteristics 
of the motion (convection) and the thickness of the fluid 
layer thus shows that it is necessary to take the tempera- 
ture distribution which appears under the action of heating 
into account when calculating the thickness. However, the 
change in the thickness affects the characteristics of the 
motion but little, at any rate, in the problem considered 
here. On the other hand, the model considered is applica- 
ble for small relative changes in the thickness. For in- 
stance, the calculation of the coordinates of the points in 
which the layer, so to speak, disappears, h=O, goes beyond 
the present framework. In the general case, however, when 
the pressure produced by the thermoelectric field enters 
into the discontinuity of the pressure at the free surface 
(10) as 

one must determine the film thickness from the formula 

a 2 ( m  
x ( l + f l T )  7 dx. 

This formula has been written down taking into account all 
three effects produced by the motion and taking into ac- 
count the conditions for heat transfer at the free surface. So 
far the solution has been carried out only either for the case 
of thermal insulation, aT,/az=O, or for the isothermal 
case, T I  =O. The thermocapillary effect is impossible in the 
case where the free surface is isothermal. In the general 
case we have 

where B= qho/pCp7t is the Biot number characterizing the 
conditions of heat transfer from the free ~u r f ace ,~  where q 
is the heat transfer coefficient. In the region where we car- 
ried out the numerical calculations, i.e., for x=i1/4, we can 

assume that the quantity (2M/R)ho is enclosed by the 
layer thickness if we solve the problem for a layer with 
constant thickness. 

6. The kind of experiments, for the interpretation of 
which we can use the results of the theoretical analysis 
given here, are the experiments mentioned already in 81 on 
the heating from above by laser light."10 A detailed anal- 
ysis of the table of ratios of the sizes in the alloyed zone,8 
i.e., the zone in which motion took place, shows that the 
best fit occurs for the ratio of the transverse and longitu- 
dinal dimensions, which is close to /l/h=40, i.e., the ratio 
/l/h occurring when the thermocapillary and thermoelec- 
tric effects act simultaneously in the case of heating along 
the layer. This does not exclude the possibility that heating 
in the perpendicular direction there can also produce cells 
inside with a much smaller ratio A/h. 

Unfortunately, the experiments described in Refs. 6 to 
10 were performed for particularly practical purposes and 
far from the conditions of the models we considered. Also 
the parameters of the heating which occurs when the laser 
radiation is absorbed are badly known. For the melts we 
take the fluid parameters:'0 

We can write the thermoelectric-power coefficient in 
the form y=dkB/e where kB is the Boltzmann constant, e 
the electron charge, and we can take the number d to be 
equal to 10 to 100. We can assume the heating, the differ- 
ence in the temperatures acting on the layer, to be equal to 
AT= lo3 to lo4 K. Using Eqs. (9)  and (12) to estimate 
the thickness we see then that for actual melt thicknesses 
up to tens of pm the main effect causing motion is the 
thermocapillary one and the thermoelectric effect on the 
background of the latter must be taken into account as a 
correction. 

Numerical calculations of the current lines in the fluid, 
dx/v,=dz/v, with velocities u, and u, actually coinciding 
with those found in Ref. 13, show that one can obtain lines 
resembling the "tungsten filaments" shown in the photo- 
graphs in Ref. 6. It is unclear, however, in how far these 
filaments can be identified with current lines. 

Unfortunately, it was completely impossible to find 
data about the temperature distribution in the melt. The 
crucial quantity, the constant a in the expression for DT, 
therefore remains unknown. However, it is a known fact 
that additional material is carried away to the edge of the 
alloyed zone (crater) for powerful pulses (more than 5 J 
per cubic mm of the melt); it was observed and also occurs 
in  calculation^.^ The crater itself is, of course, the result of 
simple evaporation, but the fact of the raising of the edge 
lies within the confines of the theory developed here. 

We were also unable to find a description of experi- 
ments on heating, from above or from the side, of a fluid 
between rigid plates, for instance, in a microwave oven, so 
that we indicate only effects expected for heating from a 
free surface. The velocity of the fluid is largest at the sur- 
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face and after that it vanishes for 5=0.6. Even closer to the 
bottom the flow is in the opposite direction. The velocity is 
maximal for 5=0.3. 

The result that the velocity of the fluid along the sur- 
face must be from "hot" to cold" corresponds to the mo- 
tion from the center of the heating pulse to the 
periphery.68 Appendix Exact solutions of Eqs. (4) to (6) 

Eliminating the density and also the pressure we get 
the equation 

a 3 ~  P g a T  YE av ( a ~ ) '  
7---=--- - az v a x  pxvaz ax 

which must be solved together with the heat conduction 
equation 

a T  a ' ~  a = ~  
v--x -+- =o. 

ax ( a t  ax') 

The continuity equation is satisfied identically. One can 
solve the problem exactly when it is stated in this way. 

Of course, for a complete solution one must supple- 
ment the system (4) to (6) by boundary conditions. On 
the bottom the boundary is always assumed to be "rigid" 
and on it the sticking conditions are satisfied: v = O  for 
z=0. The other boundary may be "rigid": v = O  for z=h, 
or free.' On the free boundary thermocapillarity can occur 
and then the boundary condition will be 

a~ a T  
pv -= -a - for z=h. 

az ax 

These conditions, Eq. (3),  and also the condition that the 
current be closed, 

Ioh  
vdz = 0, 

are sufficient to obtain a solution. 
It is convenient to write down the solution, introducing 

a dimensionless variable in the direction perpendicular to 

the layer, {=z/h. We note, first of all, some general prop- 
erties: firstly, it turns out that the temperature depends 
linearly on the x coordinate along the layer so that aT/ax 
= A .  This relation had already been used when deriving 
Eq. (8). Secondly, we have for the density 

i.e., the charges are completely frozen in. Finally, Ex= yA. 
The actual dependence of the velocity, the tempera- 

ture, and the field on the coordinates is determined by the 
boundary conditions. In the case when the boundaries of 
the fluid are rigid surfaces we get 

When the fluid has a free surface and all three effects 
which cause motion (thermal expansion, thermocapillar- 
ity, and thermoelectricity) operate it is also possible to get 
an exact solution of Eqs. (4) to (6) but the formulas be- 
come cumbersome. 

It is well known that in thin layers the action of the 
thermocapillary effect is stronger than that of the 
Archimedean force.3 A comparison of %' from ( 1 ) with R 
and M from (2)  shows that thermoelectricity is important 
only in yet thinner films. We therefore give the solutions 
obtained taking into account only thermocapillarity and 
thermoelectricity. Thus, assuming that R=O (P=O) we 
have 

x M (1-cos@)[cos(@{)-l]+(@--sin@)sin(@{) 
u =  -- - 

h @  @ cos @ - sin J%'. 9 

( 1 - ~ 0 ~ @ ) [ % ' ~ ' + ( 4 - - ~ ) ~ ] - 2 @ ~ s i n @  1 v 
- 

@ cos @-sin @ 

The formula for Ez= yaT/az is too complicated also in this 
approximation. 
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