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Results of computer modeling of a symmetric 1-1-valent ionic plasma reveal that ion 
microclusters display an anomalously rapid switch in their thermodynamic behavior to the 
extensive properties characteristic of a macroscopic system. This effect is explained by 
the strong shielding of the electrostatic interaction of the ions in the liquid phase and has 
significant consequences for the nucleation mechanism in a dense symmetric plasma. 
In a plasma in which the charged symmetry of the ions is violated the nucleation mechanism 
changes qualitatively. Near the gas-liquid coexistence curve the plasma is organized 
into a gas of ion triplets, and the orientation forces between the triplets interfere with the 
formation of dense-phase nuclei. In order to investigate the mechanism for the 
retardation of nucleation, the lattice approximation and the physical-group approximation 
have been introduced and the Monte Carlo technique has been used to simulate the 
process in an isothermal and isobaric statistical ensemble. 

The conventional approach in the theoretical descrip- 
tion of atomic and molecular systems by means of statisti- 
cal mechanics is to expand in power series in a small pa- 
rameter. Examples of this approach are the virial 
expansion in equilibrium statistical  mechanic^,'-'^ linear 
perturbation theory in nonequilibrium statistical 
 mechanic^,'"'^ and perturbation techniques in quantum 
 mechanic^.'^-^' But a small parameter is by no means al- 
ways available to theory. Approximate theories of this type 
are asymptotically correct as the small parameter ap- 
proaches zero; the most interesting regions, e.g., the region 
of phase transitions in highly nonideal systems, are not 
accessible to them. 

In the middle of the 1950s a fundamentally new ap- 
proach in the description of molecular systems became 
possible: numerical modeling with ~ o m ~ u t e r s . ~ ~ - ~ ~  One 
area for the application of such mathematical modeling 
techniques is that of small systems of particles. Numerical 
modeling methods in this area have a special role because 
of the absence of rigorous analytical approaches to the 
statistical description of systems whose dimensions are 
comparable with those of their constituent particles. 

Success in an analytical approach to the statistical- 
mechanical description of a very nonuniform atomic or 
molecular system depends on a number of simplifying cir- 
cumstances. These include, among others, a small interpar- 
ticle correlation length in comparison with the typical di- 
mensions of the microscopic irregularities. The use of local 
thermodynamic properties, such as the surface stress at the 
phase boundary, the chemical potentials of the phase, and 
the local pressure, presupposes that local regions inside the 
nonuniform system are sufficiently isolated from one an- 
other. This isolation is necessary because the apparatus of 
the Gibbs statistical ensembles, and hence the possibility of 
going from a microscopic description to a simplified ther- 
modynamic description, requires that the weak interaction 
between the system and the reservoir vanish in comparison 
with the interactions within the system.39 The Gibbs dis- 

tribution remains valid even in the absence of a thermody- 
namic limit as the particle number increases, N +  CO. A 
small system continues to obey the Gibbs distribution re- 
gardless of its size, provided that the interaction with its 
environment is vanishingly weak.39 This does not mean 
that the small system size does not introduce a number of 
features into the application of the method of statistical 
ensembles. The absence of a thermodynamic limit requires 
that the relative fluctuations be finite: the average differs 
from the most probable value, which makes the description 
in different statistical ensembles inequivalent.40s41 How- 
ever, this inequivalence is not a defect of the theory; it 
reflects the physical inequivalence of different ways of dis- 
tinguishing a small system from its macroscopic environ- 
ment. 

There are a number of reasons for the interest in study- 
ing small systems. On the one hand, the properties of in- 
dividual atomic clusters, molecules, or ions can have a 
crucial effect on the behavior of macrosystems. The clear- 
est example of this is afforded by the condensation process, 
whose rate is determined by the thermodynamic properties 
of the critical seeds.42 In the Frenkel-Band theory4346 a 
nonideal gas is described as a mixture of clusters of differ- 
ent sizes: dimers, trimers, etc. A particle cluster in a gas 
can be regarded as an isolated object, since the time needed 
to establish equilibrium within the cluster is considerable 
less than the interval between collisions of the cluster with 
gas particles. On the other hand, small systems of this sort 
are interesting from the standpoint of statistical theory. 
There is general interest in the answers to the questions, at 
what number of particles do collective effects appear and to 
what extent do they give rise to phase transitions in mac- 
rosystems. 

There is particular interest in clusters of charged par- 
ticles. As is well known, attempts to develop a theoretical 
description for systems of charged particles in the very 
nonideal region are complicated by the long-range nature 
of the Coulomb interaction. Even when the density de- 
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creases, collectivization in the system does not cease as is 
the case with short-range forces; on the contrary, it in- 
creases by virtue of the rapid increase in the size of a Debye 
sphere.47-51 Shielding turns out to be the only factor that 
prevents the thermodynamic potentials from diverging, 
and must be taken into account even in evaluating group 
integrals. The idea of expanding group integrals in clusters 
with simpler connections and then regrouping them was 
suggested by ~ a ~ e r . ~ ~ ' ~ ~ ~ "  In principle this permits one to 
write down expressions for the virial coefficients in terms of 
convergent cluster integrals. Application of the convolu- 
tion theorem in the summation of the Fourier transforms 
of ring diagrams leads to the Debye potential of the aver- 
age force between the ions. The contributions from the 
other diagrams reduce to "prototype diagrams" with De- 
bye screening in the connections responsible for their con- 
vergence, and they can be regarded as corrections of higher 
order in the density to the Debye limit of the law. Despite 
its elegance, the Mayer theory is still an asymptotic theory 
for low densities and high temperatures. The question of 
the radius and rate of convergence of these expansions 
remains open, and the expansions themselves can only as- 
pire to the role of small corrections to the Debye limit, and 
are not in a position to describe the qualitative structural 
changes and the related nonmonotonic behavior of the 
thermodynamic properties of an ion plasma at intermedi- 
ate densities and temperatures. Consequently, the most im- 
portant specific results for ion systems have been obtained 
not from virial expansions but by methods usually em- 
ployed in the theory of liquids, namely integral-equation 
methods.5260 

The cluster approach to the problem of describing the 
thennophysical properties of very nonideal gases reduces 
to identifying the leading contributions to the statistical 
integral by dividing the phase space of the system into 
regions. Each region is associated with some subdivision of 
the macrodivision into clusters. The location of the bound- 
aries between regions depends on the specific definition of 
the physical cluster and allows a well-known arbitrariness, 
since the result of the calculations varies slightly as the 
locations of the boundary change if the latter pass through 
phase points corresponding to improbable molecular con- 
figurations. If the problem consists of just calculating equi- 
librium properties, the statistical integral reduces after a 
trivial integration over momenta to an integral in terms of 
the molecular coordinates only, i.e., a configuration inte- 
gral. In this case the cluster subdivision of phase space 
reduces to a subdivision of configuration space; including 
the kinetic properties in the definition of a cluster does not 
make the theory more accurate. Then an accurate general 
cluster theory can be developed regardless of the specific 
definition of the cluster.41 

In the kinetic theory of nucleation the steady rate of 
cluster formation is expressed in terms of the equilibrium 
properties of the nucleate. Thus, the calculation of the 
equilibrium properties of clusters (the nucleate) of a dense 
gas is the central problem of the theory of homogeneous 
nucleation. The exponential dependence of the rate of for- 
mation of the nucleate on its free energy imposes severe 

requirements on the accuracy with which the latter is eval- 
uated. 

PRINCIPAL RESULTS OF NUMERICAL MODELING, KNOWN 
FOR THE INTERNAL PHASES OF A NONIDEAL ION 
SYSTEM 

Systematic studies of the equilibrium properties of 1-1- 
valent charged spheres using the Monte Carlo method be- 
gan with the calculation of the high-temperature isotherm 
corresponding to an aqueous solution of a 1-1-valent elec- 
trolyte at room temperature in the canonical NVT statis- 
tical A nearby isotherm was studied by the 
Monte Carlo method in Ref. 63. The results for the os- 
motic coefficients from Ref. 62 were compared with the 
hyperchain approximation in Ref. 64. The results of the 
Monte Carlo calculation for T = 298 K and N = 32,64, and 
200 ions in periodic geometry were compared systemati- 
cally with the numerical solution of the Percus-Yevick 
integral equation, the spherical model, and the hyperchain 
approximation in Ref. 65. This showed that the hyperchain 
approximation yields answers that are closest to those ob- 
tained with the Monte Carlo method. Liquid-state calcu- 
lations of an ion system with a Huggins-Mayer and Poling 
ion-ion potential were carried out in Refs. 66-72. Valleau 
and developed a method for calculating the density 
of States by the Monte Carlo method and a way of over- 
coming normalization difficulties. Chasovskikh and 
Vorontsov-Vel'yaminov used the Monte Carlo method to 
calculate the same isotherm as in Ref. 65, but with an 
isothermal-isobaric NpT ensemble. The rules governing 
the sharp increase in two-particle correlations (the forma- 
tion of ion pairs) were established. A deviation in the be- 
havior of the binary distribution functions from the Debye 
distribution was observed in the pairing region only at dis- 
tances close to contact. Kinks were observed here in the 
temperature dependence of the thermal coefficients. These 
structural alterations in the system were interpreted74 as a 
transition from many-particle shielding of the opposite ion 
in the Debye region to shielding by a single opposite ion. It 
is well known that for charged-particle systems strong 
long-range correlations in the particle positions exist both 
at high density ("liquid" oscillations of the binary distri- 
bution function) and at low ( "gaslike") density. The latter 
are associated with the fact that the correlation distance in 
a low-density system is the Debye radius, which increases 
as the density decreases and the temperature rises. Conse- 
quently, for higher densities in the system of charged par- 
ticles a point must be observed at which the correlation 
length is a minimum. The region of minimum correlations 
has been studied along two isobars.75 As the temperature 
drops the correlation length decreases to its minimum 
value, at which time the binary distribution function un- 
dergoes a qualitative change: weak antiphase oscillations 
develop, which grow in amplitude as the temperature sub- 
sequently decreases, and spread out over large distances. 
The thermal coefficients calculated from the fluctuation 
formulas have finite discontinuities at the point where the 
minimum correlations occur. At approximately the same 
parameter range, corresponding to the condition of screen- 
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ing by a single opposite ion, independent Monte Carlo cal- 
culations of the l-l-valent charged-sphere model were car- 
ried out by Zelener et a~~~ They studied the deviations of 
the energy and pressure from the limiting values of the 
Debye laws as the departure from ideal behavior increased. 

Calculations of one isotherm and one isobar in the 
supercritical region in the NpT ensemble of a system of 
ions with weak repulsion ( cc rF8) was carried out in Ref. 
77. Introducing a soft short-range force in the ion-ion po- 
tential does not affect the presence of a boundary in the 
phase diagram between the Debye region and the ion- 
pairing region. An asymmetric NaCl+KCl mixture with a 
Huggins-Mayer potential in the liquid-state region was 
simulated by Larsen et ~ 1 . ~ ~  Reference 79 discussed the 
similarity relation for the internal energy in the charged- 
sphere model. 

The first gas-phase approach to the dense phase in a 
charge-symmetric 1-1-valent ion macrosystem was studied 
in Ref. 80 in an NpT statistical ensemble using the nearest- 
image technique.61 In Refs. 81-84 the same technique was 
used to estimate the critical parameters of the system. 
Comparison of the data from Ref. 84 for the energy with 
the calculations of ~ a r s e n ~ ~  at low temperatures in the 
high-density region reveal that the results of Ref. 84 are 
lower by 10-15% than the corresponding values from Ref. 
85. On the other hand, for the gaseous branch the results of 
Refs. 84 and 85 are in good agreement. In Ref. 85 the 
Ewald procedure was used to treat the long-range interac- 
tions, while in the calculations of Ref. 84 the nearest-image 
technique was used. In Refs. 86 and 87 the equations of 
state along three isotherms for the 1-1-valent charged- 
sphere model and three isotherms for the model with a 
"soft" short-range part a: r-8 were calculated to determine 
the phase transition in the system with long-range interac- 
tions. Using the Ewald method to include long-range in- 
teractions reduces the critical pressure by more than a fac- 
tor of ten, the critical temperature by 20-30%, and the 
critical density severalfold. Comparison of the results of 
the numerical simulation with indirect data from a labora- 
tory experimenta8 for K+Cl- and Na+Cl- reveals that the 
agreement is quite satisfactory for the critical parameters 
of the 1-1-valent charged-sphere model. 

For the points of the gaseous branch the contact value 
of the binary distribution function g+ - (r)  for oppositely 
charged ions is typically extremely large and the binary 
distribution functions g+ + ( r )  and g- - (r)  for like-charged 
ions have a strong maximum at distances of two particle 
diameters. Sequences of configurations exhibit separate 
pairs of oppositely charged ions and, less often, clusters of 
three ions. For the liquid branch the contact value of 
g+ - (r) is smaller by more than a factor of ten; for both 
binary distribution functions antiphase oscillations are typ- 
ically observed. Sequences of configurations in the dense 
phase consist of a network of long convex branching chains 
with a succession of ions having opposite signs. Note the 
anomalously large value of the critical volume of the ion 
system. Thus, for water the critical volume is three times 
the dense-packing volume and the factor is the same for 

argon; for the 1-1-valent charged-sphere model it is a fac- 
tor of ten. 

Based on the data from numerical modeling, a number 
of regions can be distinguished in the VT diagram. At high 
temperatures the region of weak correlations (the Debye 
region) for small specific volumes goes directly into the 
region where the structure is close to a dense system of 
hard spheres with in-phase oscillations of both types of 
binary distribution function. At lower temperatures the 
Debye region abuts the ion-pairing region, in which these 
functions are monotonic but differ considerably from the 
Debye distributions at short distances. The curve consti- 
tuting the boundary between these regions is characterized 
by anomalies in the behavior of the specific heats and other 
equilibrium properties, and its location in the phase dia- 
gram approximately corresponds to where the Debye and 
Bjorrum radii coincide. Another boundary in the diagram 
separates the region where the binary distribution func- 
tions vary monotonically (the ion-pairing region) from the 
oscillatory distribution (the three-body correlation re- 
gion), and corresponds to the minimum in the correlation 
length. The gas-liquid coexistence curve corresponds to 
temperatures that are several times lower than the first two 
boundaries for the same values of the volume. The pres- 
ence of these boundaries confirms the results of the calcu- 
lation by an independent method using the theory of phys- 
ical gro~ps.89*90 

In Refs. 91 and 92 the Monte Carlo method was used 
with an NpT ensemble to study the thermodynamic prop- 
erties of an asymmetric two-component macrosystem of 
charged spheres with ion charges +2 and - 1 (model 2) 
along the three isotherms T, =0.287, T2=0.125, and 
~ ~ = 0 . 0 7 2 . ' )  The configuration energy in a unit cell with 
48 particles was evaluated using the Ewald method, i.e., 
partial summation in the reciprocal space. The study of the 
asymmetrical system by the Monte Carlo method was con- 
tinued in Ref. 93. The low-temperature isotherm T3 has a 
discontinuity corresponding to the gas-liquid phase tran- 
sition. Estimates of the critical parameters for the system 
in question (pc= vc= 10, Tc=O. 1 ) in comparison 
with the critical parameters of model 1 (pc= vc= 10, 
Tc=0.06) reveal that the phase transition in model 2 oc- 
curs at higher temperature. In the behavior of the com- 
pressibility factor @=pv/T the Coulomb attractive forces 
(@ < 1) dominate in the region of molar densities 
lo-' > p >  for p > lo-' the system displays typical 
liquid behavior. The Boyle point @= 1 corresponds to the 
value v = ~ - ' =  lo6-lo7. The plot of the internal energy as 
a function of the specific volume v for T, displays a kink 
and for T3 a discontinuity, which is related to the gas- 
liquid phase transition. The isotherms T, and T2 of 
the specific heat have strong maxima at v =  lo3, resulting 
from the transition from the weak-correlation region (the 
Debye region) to the region of electroneutral ion triplets 
( - 1, +2, - 1 ). In model 1 this transition corresponds to 
the transition to the region of large two-particle correla- 
tions (ion pairs). 

The presence of structural transitions is confirmed by 
analysis of the radial distribution functions g + + ( r ) ,  

415 JETP 77 (3), September 1993 S. V. Shevkunov 415 



TABLE I. Comparative equilibrium properties of a small system consisting of 36 ions (u,u,@) and mac- 
roscopic properties9' (ul,u',@') in model 2 calculated per ion along the supercritical isotherm T ,  =0.287 
[here u is the specific internal energy (without the kinetic part), @ is the compressibility factor, and p is the 
pressure]. 

g+ - ( r ) ,  and g- - ( r ) .  On the high-temperature isotherm 
T, for v = 5 .  lo2 a maximum forms in g- - ( r )  at the point 
r=2,  which corresponds to the formation of ion triplets 
with linear structure; the positions of the triplets them- 
selves are weakly correlated. In the liquid-density approx- 
imation linear triplets are deformed: the maximum in 
g- - ( r )  is shifted toward large separations and broadens. 
At densities above the critical value correlations between 
doubly-charged ions are enhanced at a distance r=2 ,  
which corresponds to the continuous transition to a liquid 
in the chain structure. After the temperature is lowered the 
structuring processes appear more clearly on the T2 iso- 
therm, and the maximum in the radial distribution func- 
tion becomes narrower and higher. Close to the critical 
density multiparticle associates appear in the form of ion 
chains, although the role of ion triplets remains dominant. 
The transition from the triple correlations to liquid corre- 
lations on the subcritical isotherm T3 occurs discontinu- 
ously. The behavior of the function g+ + ( r )  at liquid den- 
sities implies that substructures of doubly-charged ions are 
present. 

Ion clusters in a charge-symmetric 1-1-valent ion sys- 
tem have been studied in detail by the Monte Carlo method 
in Refs. 94 and 95, in the harmonic approximation in Refs. 
96 and 97, by the Monte Carlo method in the generalized 
statistical ensemble in Ref. 98, and by the methods of the 
theory of physical groups in Refs. 89 and 90. A broad 
range of thermodynamic conditions is included in these 
calculations, from the formation of ion pairs in the gas 
phase to microcrystallization. The main results of these 
studies reduce to the following. The strong screening in a 
nonideal 1-1 ion system makes the long-range Coulomb 
potential effectively short-range. The smoothing of the 

long-range forces causes the properties of a small ion sys- 
tem to approach the corresponding properties of the mac- 
rophase. All types of restructuring that take place in the 
macrosystem are also observed in systems consisting of 
several dozen ions, and they occur at practically the same 
temperatures as in the macrosystem. For comparison it 
suffices to note that in systems of electroneutral particles 
with a Lennard-Jones interaction potential a cluster of 16 
particles undergoes microcondensation at a temperature 
lower by a factor of two and microcrystallization at a tem- 
perature lower by a factor of three than in the 
m a c r ~ s ~ s t e m . ~ ~  The absence of a delay in forming micro- 
droplets in a cooled ionic system makes it impossible to 
reach a supersaturated ion plasma in which metastable 
thermodynamic states develop. The nucleate of the dense 
phase in an ion plasma has a chain structure: branching ion 
chains form from ions with alternating signs of the charge 
( + - + - + - ...). The closing of the chains into a com- 
pact structure is unfavorable from the entropic point of 
view, while dissociation is energetically unfavorable. The 
linear structure of the chain clusters causes the free energy 
of the ion microdroplets to have an extensive behavior (as 
in a macrosystem), and they grow in size without any 
phenomenon like nucleation of the critical size. These re- 
sults for a 1-1-valent ionic system at first appeared to be 
universal for charged-particle systems, but as shown by 
subsequent studies to which the original part of the present 
paper is devoted, the loss of charged symmetry drastically 
changes the behavior of the ion system. 

TABLE 11. The same as in Table I, along the critical isotherm T2=0.125. 
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TABLE 111. The same as in Table I, along the subcritical isotherm T,=0.072. 

CALCULATION FOR A 2-1 VALENT SMALL ION SYSTEM 
BY THE MONTE CARL0 METHOD 

As noted above, the thermodynamic behavior of a 1-1- 
valent small ionic system differs little from the behavior of 
a 1-1 macrosystem even when the former contains only a 
few dozen ions. Whether the formation of an equilibrium 
microdroplet in a 2-1 system lags the condensation of the 
macrophase with formation of metastable states depends 
on whether the short-range nature of the shielded Coulomb 
potential is effectively maintained when the charged sym- 
metry of the system is destroyed. To clarify this matter we 
have carried out calculations by means of the Monte Carlo 
method in the present work using the NpT statistical en- 
semble of equilibrium thermodynamic properties of a small 
2-1-valent ionic system consisting of 36 ions with the 
charged-sphere model at the same p, T points as in Ref. 9 1. 
In addition to this we have calculated the T4=0.05 low- 
temperature isotherm lying far below the critical point of 

the model macrosystem. The system is situated in a spher- 
ical cavity with a variable radius that acts as a spherical 
piston. These boundary conditions duplicate the conditions 
used to model the problem in Ref. 95. The center of mass 
of this system is not fixed. When the Markov chain is 
generated the (36X 36) energy matrix is stored in the com- 
puter memory, speeding up the process of calculation by a 
factor of 1.5-2. The Markov process is directed by the 
transition probability matrix, which satisfies the con- 
dition of detailed balance: Wi,/ Wji= exp[ - ( Ui- U,)/ 
kT]exp[-p ( Vi/ V, )/kT], where i and j are configurations 
with energy Ui, U, and volume Vi, Vj, respectively. 

Tables I-V display the results of the Monte Carlo cal- 
culations carried out in the present work for a 2-l-valent 
small system of charged spheres. In Figs. 1 and 2 these 
results are compared with the on the modeling of 
a macroscopic system. On the T,  =0.287 high-temperature 
isotherm the difference in the values of the internal energy 

TABLE IV. The same as in Table I, along the subcritical isotherm T4 =0.050. 
-- -- 

TABLE V. Normalized density distribution of a small system (36 ions) as a function of distance from the 
center of mass for different values of the pressure p and subcritical temperature T4=0.050. 
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of the small system and the macroscopic system are of the 
same order as for the 1-1 system in the weak-correlation 
region. The density of the small system is found to be 
several times less than that of the macrosystem at the same 
pressure. The compressibility factor of the small system 
(Table I )  becomes larger than unity even at a density two 
to three times less than liquid densities, while in the mac- 
rosystem it crosses the unit level only when the system is 
compressed up to liquid densities. The radial distribution 
function data9' show that in this density range notable 

FIG. 1. Specific internal energy [without 
the kinetic part (3/2) kT] as a function of 
the specific volume in a system of hard 
spheres without charge symmetry (model 
2):  8--T=0.287, C T = 0 . 0 7 2 ,  b T  
=0.125, 0-T=0.050. The solid traces 
and points correspond to the small system 
with 36 ions, the dashed curves correspond 
to the macrosystem using the data of Ref. 
91. Calculation done using the Monte 
Carlo method. 

three-particle correlations are exhibited, which we associ- 
ated with the increase in the compressibility factor @ in the 
small system. The data95 show that the compressibility fac- 
tor of a small 1-1-valent system approaching liquid densi- 
ties passes through a minimum with a value less than 
unity, i.e., it behaves qualitatively just like a macrosystem. 
In the 2-1-valent small system the compressibility factor 
grows monotonically as a function of density in the density 
region 10~-10-~; there is no minimum (see Table I and 
Fig. 2). 

FIG. 2. Equation of state for a system of hard spheres without 
charge symmetry (model 2): 0-T=0.287, C T = 0 . 1 2 5 ,  0 - T  
=0.072, 0-T=0.050. Here the solid traces and points correspond 
to the small system consisting of 36 ions, and the dashed curves are 
for the macrosystem using the data of Ref. 91. Calculation per- 
formed using the Monte Carlo method. 

1 0-6 I 0-J P 
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The internal energy of the small system changes mono- 
tonically along the T2=0.125 isotherm. The deviation to- 
ward larger values in comparison with the macroscopic at 
the same density grows as the density decreases from a few 
to a several times ten percent ( - kT) .  The substantial 
difference in the values of the internal energy between the 
small system and the macrosystem at low densities is due 
here to the deflection of the macrosystem isotherm, which 
was attributed by s h i p 1  to the closeness of the critical 
point, i.e., to the rise in the multiparticle correlation re- 
vealed in the radial distribution function. In the small sys- 
tem this deflection is observed only in the next, lower- 
temperature isotherm T3. The delay in initiating the 
multiparticle correlations in the small system, as will be 
clear from the discussion below, is related to the internal 
repulsive forces and the enhanced values of the compress- 
ibility factor in the small system. Compression to specific 
volumes of order v =  lo+' leads to equalization of the in- 
ternal energies of the small system and the macrosystem, 
since the Coulomb forces at such densities become weaker 
than the short-range hard-sphere repulsion, and the ab- 
sence of charge symmetry in the system assumes secondary 
importance. The radial distribution functions g+ + ( r )  and 
g--(r) in the macrosystemgl at these densities exhibit 
equalization of the heights of the first maxima at the dis- 
tance r=2, and the correlation length decreases to r=2.5, 
i.e., it becomes smaller than the linear dimensions of the 
small system. 

In the equation of state, Fig. 2, for p > lov2  the density 
of the small system is an order of magnitude smaller than 
that of the macrosystem, while for small p(  < lop2) they 
agree satisfactorily, i.e., the difference in densities behaves 
in just the opposite way from the difference in energies. 
The difference in energies for equal specific volumes 
( p  < lop2) implies that the multiparticle correlations are 
primarily orientational near the critical point. Analysis of 
the ionic configurations in the system shows that these are 
orientational correlations of linear ion triplets ( - + - ) . 
For small system volumes, when the dimensions of the 

FIG. 3. Density profile in a system of 36 ions (model 
2 )  as a function of distance from the center of mass 
for T=0.05: 1)  p=8.72. 2 )  p=0.968. lo-'; 3 )  
p=0.108. 10-3. Calculation performed using the 
Monte Carlo method. 

small system become comparable with those of an ion trip- 
let, even a slight delay in the orientational correlations, 
which has little effect on the energy, significantly increases 
the volume and loosens up the system. The compressibility 
factor (Table 111) intersects the @= 1 level even for 
p =  lop3, when the average distance between particles is of 
the order of ten ion diameters. The repulsive interaction at 
such distances cannot be ascribed to the short-range part of 
the charged-sphere potential, and is related to the Coulomb 
interaction. In the macrosystem the level @= 1 is reached 
only at liquid densities. In the single-particle distribution 
function, measured from the center of mass of the small 
system, a gap develops in the neighborhood of the center of 
mass as liquid densities are approached. The abrupt de- 
crease in the density in the center of the small system is due 
to the internal repulsive forces. As the temperature de- 
creases (Fig. 3) the density in the center decreases by sev- 
eral orders of magnitude; in fact a cavity develops with no 
particles inside. 

The T3 =0.072 isotherm in the macrosystem intersects 
the gas-liquid coexistence curve: the specific volume 
changes discontinuously by more than two orders of mag- 
nitude from lo3 to a few times unity, and the compress- 
ibility factor decreases discontinuously from 0.20 to 
0.0016. In the gaseous phase the radial distribution func- 
tion and the instantaneous ion configurations clearly dis- 
play the formation of ion triplets. The phase transition is 
immediately preceded by an abrupt rise in the correlations 
of the doubly-charged ions at a distance of two diameters, 
which corresponds to "merging" of ionic triplets. In the 
small system the compressibility factor (Table 111) at the 
phase transition point in the macrosystem continues to 
grow monotonically, intersecting the unit level, and differs 
here from the macrosystem by more than a factor of one 
hundred. If the specific volumes of the small system and 
the macrosystem have the same order of magnitude on the 
gaseous branch of the equation of state, then at a pressure 
p= lop4 the macrosystem has a typically liquid density, 
while the small system remains in a gaseous state. The 

419 JETP 77 (3), September 1993 S. V. Shevkunov 419 



compressibilities x T =  - a(ln u )  /ap are determined from 
the slopes of the curves, and differ here by a factor of 
twenty. In a time sequence of configurations of the small 
ionic system individual ion triplets are visible. 

The ion binding energy in a geometrically regular ion 
triplet is - 1.16 per particle in the calculation. Even when 
the densities approach that of the liquid state the internal 
energy of the small system decreases by less than 5% from 
this value, which implies that the orientational correlation 
of the triplets is weak. The corresponding binding energy 
of the correlations in the macrosystem is larger by a factor 
of three. The phase transition in the macrosystem is ac- 
companied by a transition from the energy of the ion trip- 
lets to much lower values (Fig. 1). The size of the cavity 
that forms in the center of the small system under stable 
liquid macrophase conditions, which is equal to several ion 
diameters, yields an estimate for the distances over which 
the potential of the average force between ionic triplets, 
averaged over the mutual orientations? is repulsive. 

From the general theory of capillarity it is well known 
that owing to surface effects the formation of a dense phase 
encounters difficulty in a small system and usually occurs 
for more intense cooling and stronger compression than in 
a macrosystem. One can speak conditionally about a "co- 
existence curve" and "critical point" for the small system, 
whose positions depend on the number of particles. Here 
we must keep in mind that the very concept of a "phase 
transition" in a system with a bounded number of particles 
is problematical.40 The T3 isotherm on the p V diagram has 
a discontinuity for the macrosystem and is found to be 
continuous for the small system. For every subcritical tem- 
perature, generally speaking, there exists a minimum size 
of the nucleate which may become critical, i.e., remain in 
equilibrium with the gas at the corresponding pressure. 
Each size has its own coexistence curve with the dense 
microphase, tangent to the given subcritical isotherm of 
the small system in the region of metastable states of the 
macrosystem. From these results obtained by simulating 
the small system it follows that the coexistence curve for 
N =  36 lies below the isotherm of the T3 =0.072 metastable 
states, i.e., the minimum size of the nucleate for this tem- 
perature is larger than N=36. A further decrease in the 
temperature to T4=0.050 (Fig. 2) did not bring about the 
discontinuous formation of a microdroplet like that which 
took place in the charged-symmetric 1-1-valent small ionic 
system.95 The isotherm has the smooth form typical of the 
gaseous phase (Fig. 2). In the center of the system a cavity 
develops, which remains also at the highest pressure (Fig. 
3).  The compressibility factor passes through a minimum 
greater than unity (Table IV) . 

ESTIMATES OF THE EQUILIBRIUM ION-PAIR AND TRIPLET 
CONCENTRATIONS IN A SYSTEM WITHOUT CHARGE 
SYMMETRY 

The results of simulating a 2-1-valent ionic system im- 
ply that, as in the 1-1 system, the formation of stable ion 
associates is the decisive factor in determining the equilib- 
rium properties of highly nonideal plasmas. The internal 
repulsive forces in an ion microdroplet in model 2, as will 

be shown in detail in the next section of the present paper, 
are caused by the interaction of the ion triplets. 

The results and the method of calculating the equilib- 
rium ion cluster densities in Refs. 89 and 90 cannot 
be transferred without change to model 2 since in 
Refs. 89 and 90 substantial use was made of the condition 
that the anions and cations had equal activities 
z, = A I ~  exp(p,/kT), where A, =h(2? r rn ,k~) - "~  is 
the thermal de Broglie wavelength. The activity can be 
expressed in terms of the configuration integral 
Z ( N +  ,N- ,V,T) of the system and does not depend on the 
particle mass: 

(1)  
The symmetry condition ( 1 ) with respect to charge con- 
jugation is satisfied when the numbers of anions and cat- 
ions are the same, N+ =N- ,  and the diameters and va- 
lences of the ions are equal without being scaled by the 
masses. In the 2-1 system we have z+#z-, where the 
relation between z+ and z- changes as the temperature 
and density vary. 

We write down the usual expression for the statistical 
sum of an n-component system in the macrocanonical 
en~emble:~'  

fi({niI,v,T)= C Q(CKi),v,T) II'F, 
i 

(2) 
{Ki} 

where {Ki) = (K, ,K2,...,K,) is the composition, ili 
=exp(pi/kT) is the absolute activity, pi is the chemical 
potential of the ith component, and Q({Ki),V,T) is the 
canonical integral of the system with composition {K,). 
We represent the integral Q({K,),V,T) in the form of a 
sum of integrals over the regions of phase space, to each of 
which we associate a subdivision of the system into phys- 
ical groups (clusters), determined by the infinite 
n-dimensional tableau IlNll with elements NtkJ, a collec- 
tion of composition groups {k,) = (k, ,k2 ,. . ., k,) : 

Q(CKi),V,T)= C Q(11N11,V9T). (3)  
C kiN{k,}=Ki 

{k,} 

Then (2) can be written in the form 

where Bl lNl l  represents summation over all possible 
n-dimensional infinite tableaux IlNll with nonnegative 
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whole-number elements, and = II/lF is the absolute 
activity of the composition group {k;}. The relations (2)- 
(4) are exact. In the approximation of independent phys- 
ical groups 

where q { k ~  is the statistical integral of the composition 
group {k;}. In this approximation (4) simplifies consider- 
ably: 

1. Q({Ai}, v,T) = C q{kiyl{k,}. (7)  
{ k;} 

Differentiating (7) with respect to ln(A{ki}) we find the 
equilibrium concentration of the composition groups {ki}: 

where x ({ki}) = ~ I ; ( A ~ )  k;q{ki} is the configuration integral 
and Z { ~ J  = I I ; (A-~)  k ~ { k j }  is the activity of the composition 
group {k,}. If the momenta do not enter into the definition 
of a group, then z{ki} contains integration only over con- 
figuration space and does not depend on the ion masses. 
The independence of ziki} on the masses follows from ex- 
pression ( 1 ). Equations (3)-(8) remain valid for any def- 
inition of a cluster. In order to go over to numerical esti- 
mates we must specialize to a cluster definition. We will 
use the term "cluster" to mean a connected diagram of ions 
with negative interaction energy, where two particles are 
assumed to be coupled if the distance between them is less 
than R, and they have different signs. 

Analysis of the radial distribution functions obtained 
by the Monte Carlo method91p92 reveals that in the region 
immediately adjacent to the gas-liquid coexistence curve, 
on the side of low densities and high temperatures, highly 
developed three-particle correlations are observed-the 
system is organized into a gas made of electroneutral ion 
triplets. Then the equilibrium densities of the larger asso- 
ciates at densities less than liquid density are negligibly 
small: 

where p= up' is the molar density of the macrosystem and 
p, is the molar equilibrium density of n-ion clusters. We 
find expressions for pf , p l  , p2, and p3 in zeroth order in ,, 

the small parameter y. For this purpose we use (8)  to write 
down relations for the density: 

where x f=x( l ,O)=  V, x,=x(O,l) = V, x 2 r x ( l , l ) ,  
x3rx(1 ,2)  are configuration integrals of monomers, ion 
pairs, and triplets. Setting y=O we can write down the 
conditions for conservation of the number of ions of each 
species: 

The real positive solution of the system of four equations 
(101, (11) for p l ,  pit ,  p2, and p3 has the form 

where 

The ion-ion potential in model 2 gives rise to integrals 
which are not expressible in terms of elementary functions 
when we evaluate the configuration integrals x2 and x3 in 
Eq. ( 12). These are the integral logarithm and its integrals. 
The Coulomb-potential approximation by means of the 
function u- (R ) = - 2 ( 1 -1n R ) avoids this difficulty. On 
the domain of integration 1 < R < R ,  for 1 < R, < 1.1 the 
function u- (R ) differs from the Coulomb potential - 2/R 
by less than 0.4% ( -0.1 kT) .  For x2 we find 

In evaluating x3 in the approximation R, - 1 9  1 we assume 
that the distances between the ions are equal to 2 sin(a/2), 
Fig. 4. The Coulomb repulsive potential of the B and C 
ions on the interval 1 < R < 2 is approximated to within 8% 
( -kT)  by the function u*(R)=(3-R)/2. Since the er- 
ror in the approximation is less than 2% in comparison 
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FIG. 4. Diagram of an ion triplet. 

with the total energy of the ion triplet, the temperature 
shift in the functions resulting from this approximation is 
only a few percent, which is quite acceptable for our ap- 
proximate estimates. 

(15) 
In the second relation ( 15) we have changed the integra- 
tion variable to Z= sin (a/2) /T. 

It is easy to see that Eqs. (9)-(13) allow us to con- 
struct a numerical iteration procedure for determining the 
higher-order corrections in y to Eqs. ( 12). 

Figure 5 shows the results of a numerical calculation of 
the relative ion-pair, triplet, and monomer concentrations 
versus the temperature according to Eqs. ( 12)-( 15). The 

ion-pair concentration passes through a maximum near the 
start of the rise in ion triplet concentration. For low den- 
sities ( p  < lop6) the fraction of particles trapped in ion 
pairs reaches a saturated value 2p2=2p/3 somewhat ear- 
lier than the formation of triple associates begins. Its for- 
mation requires an additional negative ion. Consequently, 
free negative ions are lost more slowly as the system is 
cooled, as can be seen from the deflection in the tempera- 
ture dependence of p l  near the extremum of p2. As the 
temperature decreases further the system is converted en- 
tirely into a gas of ion triplets. At high densities ( p  > lop6) 
the deflection of p- is smoothed out, since the ion triplets 
begin to form before all of the positive doubly-charged ions 
become trapped by ion pairs-the extremum of p2 does not 
reach its saturated value. As the system becomes denser 
the region of pure pair correlation becomes partly absorbed 
by the triplet correlation region, and disappears in the ap- 
proach to the critical density. In Fig. 6 the same quantities 
are shown as functions of the specific volume of the system. 

The formation of larger associates out of electroneutral 
triplets leads to a slight decrease in the energy and there- 
fore does not grow much for temperatures below critical. 
However, on the superthermal isotherms along with the 
disappearance of the phase transition the mechanism for 
formation of the liquid phase through triplet ion associa- 
tion also disappears, since as the temperature increases the 
role of the Coulomb part of the potential is smoothed out 
in comparison with the short-range repulsion. 

Figure 7 displays contour levels for the fraction of par- 
ticles trapped in ion triplets on the V-T plane, calculated 
from relations ( 12)-( 15). 

POTENTIAL OF THE AVERAGE FORCE IN THE LAlTlCE 
APPROXIMATION FOR INTERACTING ION ASSOCIATES 

Since the 2-1-valent ion system is organized into a gas 
of ion triplets in the immediate vicinity of the transition to 
the dense phase (Fig. 7), we must look at the behavior of 
the latter interaction for a reason for the anomalous behav- 
ior of the small ionic system when the symmetry of the 
charged components is violated. 

1.0' 

0 , s  - 
FIG. 5. Temperature dependence of 

0 , 6  - the equilibrium densities p,  of ion trip- 
lets, p2 of ion pairs, and p+ = p : ,  
p = p ;  for monomers in a system of 
hard spheres without charge symmetry 

0 ,4  - (model 2) ,  calculated using Eqs. (12)- 
( 15) for various gross molar dens- 
ities: dotted curves) p =  lop4; dashed 

0.2 - curves) p =  lo-'; solid curves) p= 
lo-'' with R , = l . l .  The independent- 
cluster approximation was used. 

0 ' 
0.05 0 , l O  0,15 7' 
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FIG. 6. Equilibrium densities p, of ion 
triplets, p2 of ion pairs, and p+ , p- of 

..-' monomers in a system of hard spheres 
- ,  . ... .I without charge symmetry (model 2) as a 

function of the specific gross volume calcu- 
lated according to Eqs. (12)-(15) for dif- 
ferent temperatures: solid traces) T=0.1; 

.. dashed traces) T=0.08; dotted traces) 
T=0.06, for R,= 1 .1 .  The independent- 
cluster approximation was used. 

10' 10" 

The relative orientation of two linear triplets is char- 
acterized by the direction of the vector r connecting the 
centers of mass of the triplets and the vectors r1 and r2 
which coincide with the axes of symmetry of the triplets. 
Consider the discretized space of mutual orientations of 
linear ion triplets, a space consisting of configurations in 
which the axes of symmetry of the latter can be either 
parallel or mutually orthogonal. Equal phase volumes are 
assigned to all configurations. Each of the vectors r, r l  , and 
r2 in these configurations can be directed in six ways, par- 
allel to one of the three Cartesian axes. Thus, the discrete 
space of the joint orientations contains 6 X 6 X 6 = 720 
states. It suffices to specify r, and to consider 6X6=36 
configurations, since only the relative orientation of the 
triplets is important. In four of the 36 configurations the 
triplet axes lie on one straight line, in eight configurations 
they are parallel but lie on different straight lines, in eight 
the axes are mutually perpendicular and lie on different 
planes, and in 16 they lie in a single plane. When we av- 
erage the interaction energy of randomly oriented triplets 
the weights assigned to these four types of orientation are 
in the proportion 1:2:2:4. The dependence of the interac- 
tion energy on the distance between triplet centers for all 
four types of orientation is shown in Fig. 8. Only the fourth 
type of orientation gives rise to mutual attraction of the 
triplets; all the others give rise to repulsion. As can be seen 
from Fig. 8, the triplets repel on the average as T - co. 
When the temperature is reduced the contribution from 
the energetically favorable orientations of the fourth type 

increases, and the repulsion becomes an attraction. The 
result of the competition between the different orientations 
depends on the distance. Figure 9 displays plots of the 
interaction pseudopotentials of the ion triplets obtained by 
averaging in the discretized space over the reciprocal ori- 
entations with the Gibbs weights: 

The repulsive character of the pseudopotential at in- 
termediate distances becomes attractive at small distances, 
Fig. 9. At a distance r,,, the maximum energy is reached. 
The probability of finding two ion triplets at a distance r is 
estimated by replacing the potential of the average force in 
the expression for the radial distribution function by the 
approximate pseudopotential 

FIG. 7. Curves of constant relative ion-triplet molar content in a 
system of hard spheres without charge symmetry (model 2)  on the 
phase diagram of the system. The numbers correspond to the molar 
fraction of the ions trapped in ion triplets. The calculation was done 
using the independent-cluster approximation. The broken trace rep- 
resents the gas-liquid coexistence boundary in the macrosystem and 
x is the critical point. 
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FIG. 8. Ion triplet interaction energy in the 2-1-valent ion system in 
various mutual orientations. Only one type of orientation corre- 
sponds to a negative energy and to attraction. The heavy line rep- 
resents the energy averaged over all four types of orientation, cor- 
responding to T = co . 

This approximation is equivalent to neglecting three- 
particle and multiple interactions among the ion associates. 
The result of calculating ( 17) numerically is shown in Fig. 
10. If the maximum of uT(r) decreases as the temperature 
decreases, then the associated minimum G(r) deepens. 

The relatively weak minimum of G(r) has important 
consequences for the structure of the nucleating micro- 
scopic irregularities (microdroplets) with linear dimen- 
sions comparable to r,. The fact that the width of this 
minimum is comparable with the dimensions of the irreg- 
ularities makes these consequences even more significant. 

The potential of the average resulting force exerted on 
an individual ion triplet by all other triplets, disregarding 
higher correlations among the ion associates, takes the 
form 

The higher correlations among the ion triplets, on the one 
hand, must be taken into account in describing the inter- 
action of an individual ion associate with microscopic ir- 
regularities in the system; on the other hand, taking into 
account the higher correlations entails corrections in the 

FIG. 9. Ion-triplet interaction pseudopoten- 
tial obtained by averaging over the mutual ori- 
entations with the Boltzmann weight for dif- 
ferent temperatures: 1 )  T=0.3; 2) T=0.2; 3)  
T=0.1. 
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thermodynamically favored, but instead of aiding nucle- 
ation their profile impedes it even in the initial stage. 

Consider some virtual microscopic irregularity at a 
fixed distance from an isolated ion triplet, so that the av- 
erage density of the system at a distance r from it differs by 
a factor %(r )  from the corresponding value for a triplet 
immersed in a uniform system. In this case the potential of 
an average force at the location of a triplet near the micro- 
scopic irregularity is 

The relative probability of finding a triplet at this point 
FIG. 10. Probability density for observing two clusters of three ions in coupled to the microscopic irregularity is equal to 
model 2 at a distance r, normalized with respect to the volume. The 
ordinate is a logarithmic scale. The lattice approximation was used ( I -  W1-  W 
T = o . ~ ;  2-T=o.~;  3-T=o.I). exp(-T) =eXplp low G(r)4n-? In G(r)  

integrand of Eq. ( 18). It is well known from the general 
theory of integral equations for correlation functions4' that 
an infinite chain of n-particle correlation functions g,, 
n= 1,2, ...,a represents a self-consistent set satisfying an 
infinite system of coupled integral equations (the 
Bogolyubov-Born-Green-Kirkwood-Yvon equations). 
Each of the functions g, is expressed in terms of the fol- 
lowing function g,,, in the hierarchy. The infinite set of 
equations can be closed and converted to a finite system 
only approximately. An example is the well-known super- 
position approximation for g, (Ref. 41). In the spirit of 
these ideas about the functional relation between the lowest 
and highest correlations in the system it is easy to under- 
stand that the thermodynamic likelihood of formation in a 
system of microscopic irregularities must be imposed even 
in the form of the very lowest, binary correlations between 
ion associates. We can convince ourselves that when the 
specific form of G(r) for ion triplets is included the forma- 
tion of microscopic irregularities in the 2-1 ionic system is 

The last approximate expression is justified if the quantity 
%(rm) - 1 is sufficiently large that the principal contribu- 
tion to the integral (20) comes from the neighborhood of 
the minimum of G(r)  at r= rm,  and M is the effective 
number of triplets that happen to be in the region of this 
minimum, defined as 

The ratio of the probabilities of finding an ion triplet at two 
separate points "1" and "2" near the microscopic irregu- 
larity can be estimated by the relation 

We have G(rm) < 1, so arrangements with small M will be 
the most probable, since the number M at a distance of 
several ion diameters may reach a few dozen. The compe- 
tition between different spatial orientations of the triplets 

FIG. 1 1 .  Collective cluster distribution in model 2 for 
T=0.1: the probability density for observing M triplets 
simultaneously at a distance r from a specified triplet, 
disregarding triple correlations among them, normalized 
with respect to the volume. 
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in the microdroplet can be quite close even when the min- 
imum in G(r) is relatively shallow (Fig. 1 l ) ,  which deter- 
mines the density profile of the latter. 

If the microdroplet has spherical symmetry, the mini- 
mum value of M corresponds to arrangements of triplets 
on the surface. A hollow with a reduced density develops 
inside the small system, and the overall volume of the small 
system increases due to the repulsion of the particles to- 
ward the surface. If the size of the microdroplet is compa- 
rable with r,, almost all particles of the microdroplet are 
at energetically unfavorable distances from the ion triplet 
in the interior region, M-N. When an ion triplet shifts 
toward the surface the value of M corresponding to it de- 
creases severalfold. 

The repulsion of the ion triplets in the 2-1-valent mi- 
crosystem can be interpreted as an additional internal pres- 
sure balancing the external pressure of the macrosystem. 
Consequently the formation of microdroplets of size r, will 
be inhibited, i.e., will occur at higher pressures and lower 
temperatures. On the other hand, as the temperature de- 
creases the value of r, increases, and along with it so do 
the energetically unfavorable distances. If the energetically 
unfavorable interactions are found outside the characteris- 
tic dimensions of the microdroplet, condensation into a 
microdroplet becomes thermodynamically favored. Ac- 
cording to our preliminary estimates, the effect of slowing 
down of microcondensation due to the repulsion of ion 
triplets must be exhibited most clearly for microdroplets of 
lo2-lo3 ions. 

The competition between two factors, attraction at 
short distances and repulsion at intermediate ones, deter- 
mines the thermodynamic stability of the dense phase. In a 
small system the ions are distributed so as to minimize the 
number of pairwise interactions between triplets at dis- 
tances close to r,, while at the same time maintaining the 
interactions at short distances. A compromise solution is 
found by distributing the density of the small system non- 
uniformly while maintaining spherical symmetry. 

The selection of attractive orientations of the fourth 
kind from the whole set of orientations as the temperature 
decreases implies that orientational order develops at short 
distances. Thus, the necessary condition for the formation 
of a stable dense phase from a gas of ion triplets is orien- 
tational close ordering. In a macroscopic uniform system 
there are no surface particles, and the average number of 
nearest neighbors is larger than in a small system with the 
same conditions otherwise. Consequently, orientational 
close ordering must develop here at higher temperatures 
than in a small system. 

 ere and in what follows all numerical data are given in the natural 
system of units: the unit of distance is taken to be the ion diameter, the 
unit of charge is taken to be the charge of the negative ion, and the 
Boltzmann constant is set equal to unity. 
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