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Quantum calculations of the photon-number fluctuations in the cavity of a multimode laser 
are performed. Both the total number of photons and the number of photons in each 
individual field mode are stabilized near the lasing threshold but, unlike in a single-mode laser, 
the fluctuations and their dependence on the excess above the lasing threshold depend 
principally on the multimode-laser parameters. Calculations show that the number of photons 
in an individual mode as well as the total number of photons in the cavity obey quantum 
statistics when the decay rate of the lower laser level exceeds greatly that of the upper. 

INTRODUCTION 

One premise of the quantum theory of lasers is that the 
number of photons in a cavity is not a determined quantity. 
The photon-number fluctuations are governed by three 
factors-vacuum fluctuations, spontaneous emission, and 
pump noise. Quantum theory predicts a decrease of the 
photon-number fluctuations in one laser mode above the 
lasing threshold, i.e., as the generated-field intensity in- 
creases the photon-number statistics changes. ' Near the 
lasing threshold the emission has threshold Bose-Einstein 
statistics with a stationary variance 

where no is the stationary expectation value of the number 
of photons. Above the threshold the photons tend to Pois- 
son statistics with a variance 

i.e., the intensity becomes stabilized. 
The suppression of the photon-number fluctuations in 

a cavity under was considered in a number of theoretical 
~ t u d i e s ~ - ~  of the interaction between the active medium and 
one quantum-field spatial mode. An appreciable excess 
above threshold was assumed and the presence of the so- 
called regular pumping that does not contribute to the 
fluctuations. These studies have shown that regular pump- 
ing results in sub-Poisson statistics ( (An2) < no), both in 
the case of a gas l a ~ e r ~ ' ~  and in the case of a semiconductor 
laser. 2-6 

The questions of the photon-number fluctuations and 
statistics in a mode of a multimode laser and of the total 
number of photons in the cavity of a multimode laser have 
so far not been sufficiently investigated. Among the first to 
deal with this question was ~ c ~ u m b e r . '  Assuming that 
the lower laser level of a four-level laser system is empty, 
he supplemented the system of kinetic equations with shot- 
noise sources and obtained in the linear approximation an 
expression for the spectral parameters of the intensity fluc- 
tuations: 

where a: (a,) are creation (annihilation) operators of the 
qth normal mode of the field. 

A fundamental difference was observed between the 
quantum intensity fluctuations in a mode of a multimode 
levels and the fluctuations of a one-mode laser. It was 
noted in Ref. 7 that, in view of the nonlinearity of the 
kinetic equations, the quantum fluctuations of the total 
intensity in all the lasing modes are stabilized if more than 
one mode is strongly pumped. In an individual mode, how- 
ever, the field intensity is not stabilized. 

Mandel et a ~ . ~ - ' ~  studied theoretically the intensity 
fluctuations in a ring laser. They considered the semiclas- 
sical Van der Pol equations, without allowance for four- 
wave interaction, for two counterpropagating modes whose 
frequencies coincide with the frequency of the atomic tran- 
sition, i.e., in a situation typical just for a ring laser. The 
simplified equations were supplemented with random 
sources by relating the laser field fluctuations to the spon- 
taneous emission. Combined field-intensity probability 
densities were obtained analytically by changing from the 
stochastic Van-der-Pol equations to the Fokker-Planck 
equation, and the total-intensity fluctuations as well as the 
intensity fluctuations in the modes were calculated. The 
calculations have shown that the low-intensity mode re- 
sulting from mode competition has, in the limit of strong 
intermode coupling, fluctuations indicative of a random 
thermal field at a large excess above threshold, whereas the 
fluctuation in a high-intensity mode decreases as the pump 
is increased. In Refs. 9 and 10 are reported theoretical 
predictions, confirmed by experiment, for the case of ex- 
actly equal frequencies. No such phenomenon was ob- 
served in the case of a finite detuning. 

The theoretical calculations of Ref. 8 were generalized 
to include the case of an arbitrary number of modes by 
~ i o e , "  who used analogous Van-der-Pol equations and 
model random sources in the limit of strong mode cou- 
pling. The fluctuations in the modes, under conditions of 
strong and equal pumping of all the modes, are close to the 
thermal fluctuations typical of black-body radiation, 
whereas the total intensity becomes stabilized as in the 
single-mode case. Note that in the limit of independent 
modes there are no mode fluctuations at all in the model 
used by ~ i o e "  and  ande el.'-" 
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In another study known to us, of the role fluctuations 
in multimode lasing, McMackin et a1. l2  used the Maxwell- 
Bloch quasiclassical equations with Langevin noise 
sources. The mode intensities were determined numerically 
with account taken of the spatial structure of the field. 
Allowance for intermode interaction in a dye laser leads in 
their theory to irregular intensity dynamics in the field 
modes. The calculations have shown that the main cause of 
this behavior is that the equations contain not random 
sources that simulate quantum fluctuations, but four-level 
mixing. The field-intensity individual-mode irregularity ob- 
served in Ref. 12 was therefore named "deterministic fluc- 
tuations. McMackin et al. have shown that the mode in- 
tensities remain regular if there are no four-wave mixing 
terms in the stochastic equations for the field amplitudes. 
Similar irregular field-amplitude oscillations in the modes 
of a laser with inhomogeneously broadened line shape were 
observed earlier by Brunner et aI.l3 who likewise used a 
semiclassical theory but with no allowance for noise. They 
have concluded that the amplitudes in the field modes of a 
laser with inhomogeneously broadened line are random in 
the case of strong coupling and competing modes (i.e., 
when the natural linewidth is much smaller than or of the 
order of the intermode spacing). 

The results of Ref. 12 and their comparison with Ref. 
13 lead to the conclusion that the irregular (random) field 
oscillations observed in laser modes near the lasing thresh- 
old are not due to quantum fluctuations but to strong in- 
termode coupling and mode competition. On the other 
hand, ring-laser s t u d i e ~ ~ - ' ~  point to a decisive role of quan- 
tum fluctuations in the behavior of the intensity of one of 
the counterpropagating modes above the threshold. A con- 
sistent quantum-mechanical calculation of the photon- 
number fluctuations in laser modes above the threshold 
would therefore permit an estimate of the role of quantum 
fluctuations in multimode lasing, would therefore be of 
interest. We use here therefore the quantum-mechanical 
Lax-Louisell-Langevin formalism to calculate the photon- 
number fluctuations in the cavity of a multimode laser. 

According to the Lax-Louise11 theory,'"16 the active- 
medium-atom subsystem as well as the electromagnetic- 
field subsystem, which interact with one another, each un- 
dergoes disspations and fluctuations because it interacts 
with a corresponding statistically independent reservoir 
that is in thermodynamic equilibrium. We shall assume 
that the reservoir can be completely eliminated from the 
equations of motion for the atom+field system operators 
by introducing into the dissipation coefficients into the ef- 
fective equations of motion for the quantities describing the 
system, to which are added fluctuation sources by using a 
Markov approximation and perturbation theory. The in- 
fluence of the reservoirs on the behavior of the system- 
operator reservoirs averaged over a statistical ensemble is 
thus taken into account by introducing into the equations 
of motion the damping constants and transition probabili- 
ties, i.e., the system dissipation parameters. 

We begin with the premise that the complete Hamil- 
tonian consists of the system Hamiltonian Hs, the Hamil- 
tonians R A  and RF of the atomic and field subsystems, and 
of the interaction between them: 

It is assumed, without loss of generality, that the interac- 
tion between the subsystems and the reservoirs are de- 
scribed by operators of the form 

where F, and Q, are respectively operators pertaining to the 
system and reservoir, respectively. 

We expand the atom-reservoir interaction operator in 
terms of basis operators made up of the eigenvectors of the 
atoms 

where f ,, is an operator pertaining to the atom reservoir. 
The field-reservoir interaction operator is similarly chosen, 
in accordance with (2), in the form 

z i f i  C (a,'gq-aqg: 1, (4) 
4 

where a; is the creation operator of the normal mode of 
the cell A X BX C, and gq is the reservoir operator; both 
operators are connected with the mode q. The last term in 
(4)  was obtained in the rotating-wave approximation. l6 

We use for the atom system the four-level Lax- 
Louise11 model in which the atom is excited by pumping 
from the ground state 10) into the upper energy state 13) 
which has a high probability of nonradiative decay to the 
upper laser level 12), connected by a radiative transition 
with the lower laser level I I ) .  That is to say, the effective 
pumping is directly to the 12) level. 

In the expansion in terms of normal modes, the Hamil- 
tonian of the electromagnetic field in the AX BX C cell, 
interacting with an atom n of the atomic subsystem, can be 
expressed in the rotating-wave approximation in the form 

+i@ 1 la:( I l)(21 In-(  12)(l I ),aq]. ( 5 )  
4 

The last term of this expression, which is indicative of 
the interaction of an atom with a multimode field, we use 
a dipole approximation; the coupling constant is then 

where dl, is the matrix element of the atom's dipole- 
moment operator, V is the volume of the cell, and 
a,= rcq/A.  
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2. STOCHASTIC EQUATIONS OF MOTION This yields (without the relaxation terms) 

To eliminate the reservoir dimensions from the differ- 
ential equations of motion for the system operator, we use 
in the framework of the stochastic description of the sys- 
tem dynamics the Markov approximation for the stochas- 
tic operators of the reservoirs, and calculate the system- 
operator changes due to interaction with the reservoir over 
a finite time interval At longer than the reciprocal natural 
frequencies of these operators in the Heisenberg represen- 
tation, but shorter than the correlation times 7 of the res- 
ervoir operators (values corresponding to the "collision 
time" of the system with the reservoir), and then setting 
At-0. The effective equation of motion for an arbitrary 
Heisenberg operator of the system, averaged over the sta- 
tistical ensemble of the reservoirs, is reduced with the aid 
of the Langevin approach14 to the form 

d 
iii- (M)R=([M,Hs])R+ifiexp 

dt 

This form of the Heisenberg equation for the mean values 
is valid if all the correlation times are shorter than the 
variation time of the slow operator m ( t) .  The influence of 
the reservoir on the behavior of the average operators is 
characterized by the last term of (7).  The reservoir is thus 
excluded, and its influence is a reflection of the displace- 
ment (Am/At)R, which is included in the equation of mo- 
tion for the slow operator. The Langevin equations for the 
exact values are obtained from the equations for the mean 
values by adding Langevin noise sources with zero mean 
value and with zero correlation time (At$r).  

The dissipative terms of the final expressions are ex- 
pressed in terms of the transition probabilities or the damp- 
ing coefficients by using an iterative solution of the equa- 
tions of motion for slow operators whose variation 
determines completely the potential of the interaction with 
the reservoir, under the condition that the random pro- 
cesses are Markovian [(Qi(t) Q,(tf ) ) -6(t- tf  )].I6 

The atomic subsystem of the laser is described by the 
operators MG) = ( I k) (11 ), , for which we obtain 

where WA= (E2 - El)/ii  is the atom transition frequency. 
A multimode field is characterized in the second- 

quantization representation by a set of operators 
M=aTaqt. Using the equation of motion7 without damp- 
ing terms, we obtain 

applying the commutation relations for Bose creation and 
annihilation operators 

We find similarly that 

Substituting expressions ( lo)-( 14) and ( 16) in the corre- 
sponding equations of motion of general form (7)  for 
atomic and field subsystems we obtain a closed set of equa- 
tions for the averages (11)(11),, (12)(2)) , ,  (11)(21), 
over the reservoir and a:, a,, a:aq., describing the inter- 
action of an nth atom with a multimode field in the absence 
of noise. The contribution of the reservoirs to the dynamics 
of the system operators is manifested by the presence of 
relaxation terms in the equations for the mean values. In- 
teraction with reservoirs leads to transitions between states 
of the atomic subsystem as well as to field damping in the 
cavity modes. The stochastic equations of motion needed 
to study the fluctuations can be obtained, in the Langevin 
approach, from the equations for the mean values by sup- 
plementing the latter with random noise-source operator. 
The result is the system of stochastic equations 

(18)  
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( wo2 is the pumping rate). The dissipation coefficients yq , 
r l ,  r 2 ,  r= rph+ r1 + r2/2 contained in the equations 
(rph are the constants of the atom dipole-moment phase- 
relaxation constants as a result of the elastic collisions) 
include information on the reservoirs and are expressed in 
terms of integrals of the correlation functions of the oper- 
ators pertaining to the reservoir. The Langevin noise 
sources are random operators pertaining to reservoirs with 
zero mean values and (in view of the assumption of Mar- 
kovian behavior) &correlated second moments, which de- 
pend in general on the time: 

The diffusion coefficients 2 DUB for the operators Mi= aq , 
a,+, (I 1)(1I In ,  (12)(21 In ,  ( 1  1)(21 ),aswellasa,+ anda, 
can be calculated with the aid of the generalized Einstein 
equation, using the equations of motion derived above for 
the mean values.14 For the field operators we obtain 

here $ is the number of photons drawn into mode q from 
the reservoir at a temperature T R  and is assumed hereafter 
to be negligibly small. The diffusion coefficients for the 
atomic operators are perfectly analogous to those given in 
Ref. 14 for the single-mode case. 

We proceed next to slow system operators, eliminating 
partially the high-frequency time dependence of the 
Heisenberg operators. Assuming that the interaction with 
the field is the same for all atoms, and that the spatial 
structure of the field is immaterial for the fluctuation cal- 
culations, we consider henceforth average macroscopic op- 
erators. 

We introduce the operators 

Fq = f eiob. (32) 

We shall omit henceforth the tildes over the slow field 
operators. 

We assume here and below that the frequency wo used 
to define the slow dipole-moment operator a is equal to the 
atomic-transition frequency WA . Under these conditions, 
the equations of motion of interest to us take the form 

Bq=p{a,+a exp [i( wq-wA) t ]  

The diffusion coefficients (second moments) defined in 
(22) and (23) for random sources with zero mean values 
and contained in Eqs. (33-37) can be calculated directly 
from (7) and also, as shown in Ref. 14, by using for the 
correlators the equation of motion 

where A i  denote the constant-displacement operators that 
determine the right-hand sides of the equations of motion 
for the operators Mi.  

Using (39) and taking (30) and (32) into account we 
obtain the diffusion coefficients 
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2D1221=u11(r2+2rph), (46)  

where R = NAwO2. 
Suppose that the atomic line is wide enough, such that 

r%{'/,), T I ,  r2, and exclude adiabatically the variable a 
from the set of equations (33)-(38).' Assuming thus that 
du/dt- y u 4  ru, we neglect the time derivative in (35 ) ,  
whence 

0 oad=- 1 aq exp[ - i (wq-w~) t1  +F12, 
I? s 

B= (ff22-u11).  (47)  

We substitute this adiabatic value of the polarization in the 
equations for the populations D, N , ,  and N2.  

For 

Nj=NAuj j ,  j = 1,2, (48)  

we obtain 

PL +c D x {a;aq. exp[i(wq.-oq.)t] 
4'24'' 

+ +aq,,aql exp [ -i( wq, -oq,,) t ] )  + GI , (50)  

+ +aq,,aq, exp [ - i( wq, - wq,,) t ]  } + G2. ( 5 1 )  

Using (47) ,  we obtain for the laser field operator 

397 JETP 77 (3), September 1993 

The new random sources with zero first moments are of the 
form 

+a~~12exp[i(wq~l-wA)tl)~A 

+ 
= U,.~G:,,G.' 9" aqll,. (58)  

Note that expressions (50)  and ( 5  1 ), as well as (54-56), 
were obtained in the adiabatic limit r-  m ,  and it is as- 
sumed that 2,u2/I' remains finite nonetheless. 15,16 Since the 
random processes are Markovian, it is assumed also that 
( F l l  ( t ) a  ( t )  ) =O as E-0. We obtain for the correspond- TC 
ing diffusion coefficients 

(Gi ( t )G j ( t f  ) )  = (2Di,)S(t-tf ), (59)  

+ + aqlaq,, exp [ - - wqPp) t ]  N2}, (67) 
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Equations (50)-(53) contain bilinear field operators pro- 
portional to a;aqtt, where q'fq", and oscillating at the 
intermode-beat frequency. These variables, which are re- 
sponsible for the dynamic interaction of the modes, will be 
omitted in the calculations that follow, meaning that we 
use the balance-equations approximation widely used in 
multimode-laser theory. A similar approximation is used 
by us also for the diffusion coefficients (60)-(65), i.e., we 
neglect the influence of 8, and I;, on the photon-number 
fluctuations. 

The resultant stochastic equations contain only the op- 
erators n,, N1, and N2 (or D)  which commute with one 
another. However, the second moments and the diffusion 
coefficients of the corresponding random processes depend, 
as shown by the calculations, on the sequence in which the 
random sources G enter the correlators. Using the results 
of Ref. 15, we shall consider normally ordered diffusion 
coefficients, i.e., we choose the sequence of the operators to 
be a:, N,, N2, and a,. We shall assume hereafter that 
expressions (48)-(65) written in the normal order are 
c-numbers, and that all the variables commute with one 
another. 

3. QUANTUM MULTIMODE LASING STATIONARY 
OPERATING POINT 

Following Ref. 16, we discard random sources from 
Eqs. (33)-(38) reduced to normally ordered form, and 
regard then as c-number equations relating the quantities 
a,= (a,), a; = (a:), u =  (u), #= (u+)  etc. We shall 
leave out in the present section the averaging-operation 
symbols. Using the resultant equations, we obtain the 
quantum stationary values of the laser quantities net NlO, 
N2,, and also Do. 

To determine the field and atomic variables indicative 
of the dynamics of a multimode laser in an established 
stationary regime n@, Nlo, N20, and Do, we equate to zero 
the time derivatives of the slow mean values (33)-(38). 
We assume by the same token that the basic high- 
frequency time dependences of the Heisenberg variables a, 
and ( 1 ) (2 1 have the form exp( - iwJ) and exp( - iwAt), 
and are completely cancelled out by introducing slow op- 
erators in accordance with (26) and (28), while the pop- 
ulations of the laser levels in the stationary state are con- 
stant in time. 

From the equation for a, 

we obtain 

Substituting this expression in (35) 

we obtain from the stationary condition as the working 
value of the population difference 

Changing to Eqs. (36) and (37) for all and uz2 and using 
the c-number relations obtained from (70) 

we obtain for the quantities B, indicative of the stimulated 
emission and absorption 

We get then from (36) 

and, in view of (72), the populations are 

We determine the stationary mean value of the number of 
photons in one mode from (37), by substituting (75), 
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IIQ 

(76) 

where 6- 1 is the excess of the pump above the threshold 
value 

We use the equivalent-mode approximation, wherein y z yq 
and II -, IIq for all q, meaning also that the stationary mean 
value is 

Note that the obtained working inversion y/nQ is reason- 
able. It reduces for Q= 1 (single-mode laser) to the known 
value2 y/n that the inversion decreases in multimode las- 
ing (Q> 1 ), i.e., the saturation is more complete for stron- 
ger pumping, a specific feature of multimode lasing. 

A threshold condition of a different type is obtained 
from the approximate balance equations that follow for the 
populations from (50)-(53) in the adiabatic approxima- 
tion, neglecting bilinear field operators of the form a: and 
a q ~ ~ ,  in which case we have no=1T' / I I~( I I~ / r2y-1) ,  
RIh = yr2/H, 6' = R/R&. It is easily seen that the ob- 
tained threshold pump Rth depends on the number of 
modes participating in the lasing, and is thus shifted at 
Q> 1, compared with R:,, toward lower values of the --- 
pump needed to have no>O, whereas at large excesses 
above threshold, when f and f' become simultaneously 
larger than 1, the numbers of photons coincide in both 
cases. The quantum stationary point (74), (75) obtained 
from the exact equations differs substantially from the sta- 
tionary values obtained in the balance approximation 
(N;, = y N d r l ,  N;, = y N d r l  + y/II) only nearthe lasing 
threshold, when the inversion is comparable with y N d r l .  
Above the threshold, for y /n  and y/IIQg yNdT1, the 
two stationary points coincide. 

We calculate now the mean stationary values of the 
diffusion coefficients (60)-(66) obtained above. To this 

+ end, recognizing that [a,, ,aq,,] = Sqpqp,, we shall henceforth 
assume that (8 , )  and (8,) are c-numbers under stationary 
conditions. Using (73), we obtain for the following station- 
ary mean values for the diffusion coefficients: 

(2Dqq) = nSono+ yno, (82) 

where So r Nlo+ N2,. We neglect the small terms QnNzo 
and PIIN,, at values high above the threshold. We shall 
use hereafter the diffusion coefficients (78)-(82) to calcu- 
late the photon-number fluctuations. 

It is easy to verify that the obtained values of the sta- 
tionary inversion and of all the values that determine the 
stationary operating point can be obtained by expanding a 
and N j  ( j  = 1, 2) in the field modes that take part in the 
lasing. Neglecting frequency pulling, since r) y,, we use 
expansions of the form 

Substituting these expansions in Eqs. (35)-(37) and using 
(33) we see readily that a,,= ( ( 1) (2 ( ) ,, are equal for all 
q in the time interval y-',r, ' ,T, ' > t) r-' of interest to 
us (the same holds for 01.7~)) within the framework of the 
equivalent-modes assumption, in the case w ~ > A w  where 
Aw = I w - WA 1 is the multimode-laser frequency range. 
That is to say, expansion of the microscopic variables 
(11)(21),, and (I j ) ( j I ) , ,  in terms of the cavity frequen- 
cies leads, within the framework of the approximations 
used, to the slow average variables 

and therefore does not influence the results of the fluctua- 
tion calculations. 

4. FLUCTUATIONS OF TOTAL NUMBER OF PHOTONS IN A 
MULTIMODE-LASER CAVITY 

We obtain in this section in an exact expression for the 
fluctuations of the total (summary) number of photons 
Nph in the cavity of a multimode laser, in the framework of 
the employed model and without adiabatic exclusion of the 
laser-level populations in the quasilinear approximation. 
By changing to Fourier transforms of the equations of mo- 
tion for the problem variables n,, N , D, and N1, and by 
using the Wiener-Khinchin theorem5: for the correspond- 
ing random processes we can forgo the adiabatic exclusion 
of the variables D and N1 in the equations for the varia- 
tions, and we can obtain for the fluctuations equations free 
of constraints imposed by the adiabatic excl~sion '~ on the 
relation between the damping constants. 

The system of stochastic balance equations for the 
variables in question is2) 
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with 

2 - 

1,s - 
FIG. 1. Ratio of the stationary fluctuations of the number of pho- 
tons in the cavity of a single-mode laser (&n2) to the mean station- 

I ary value, as a function of the excess above threshold 6 (n=  1 s-I, 
1 - y= lo6 s-I); 1- rl= lo9 s-I, T2= lo7 s-'O; 2-regular pumping, 

2 T, =T,= lo9 s-I; 3-regular pumping r l > r 2 ,  T I  = lo9 S-I, 
I-,= 10' s I .  

representing the deviations from the mean stationary val- 
ues. Discarding the terms nonlinear in the variations, we 
obtain 

0,s 

We have left out of the right-hand sides of (90) and (9 1 ) 
the constant terms - ( 1 - l/Q) yno and - ( 1 - l/Q) yNo, 
respectively, since the presence of determinate time- 
independent constant terms in the stochastic-equation dis- 
placement vector will not alter the fluctuations (variances) 
calculated below, as follows from the properties of the lin- 
ear transformations of the stochastic quantities 

- 
3 

D[aX + b] = a2 D[x],  where X is a stochastic quantity. Sim- 
ilarly, the constant terms have been left out of (88) and 
(89). 

We carry out next a Fourier transformation of the sys- 
tem (88)-(91) 

-iwAnq,= -yAn,+II(DoAn,+noAD,)+Gq,, (95) 

from (92) and (93) we obtain 

We substitute (96) in (94) 
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FIG. 2. Ratio of stationary fluctuations of the total number of pho- 
tons in the cavity of a multimode laser (AN') to the mean number 
of photons No as a function of the excess of the pump above 
threshold (n=1 s-I,) rI=1o9 s-I, r2=107 S K I ;  1-Q=101, 
p 1 0 6 ;  s-I; 2-Q=3, y=106; s-I; 3-Q=3, y = l ~ 9  s-'. The 
dashed curves correspond to regular pumping. 

Applying the Wigner-Khinchin theorem (see footnote 1) 
and using (99) we obtain for the stationary photon- 
number fluctuation 

1 
(hNih) =- 2.7~ Im - m  I S I I - ~ ~ I  ~ N ~ ~ , G ~ I ~ ( ~ D I I )  

+ l nNph@l I2(2D22) + / il 2 ( 2 ~ ~ p h ~ p h )  

- nNPho2 Re(8S)  DIN^^) + nNph02 Re 

x (zTE) ( 2 4 ~ ~ ~ )  - ( ~ N , ~ o ) ~ ~ R ~ - ( z ? z I  ) 

The diffusion coefficients in ( 102) are obtained from (60)- 
(65) by substituting the stationary mean values No, no, 
Nlo, and Do, equations for which were obtained in Sec. 3. 

Calculations using ( 102) are shown in Fig. 1 for Q= 1 
(single-mode laser) for random pumping with a damping 
constant y= lo6 s-' and laser-level decay rates (in s- ' ) 
rl= lo9 and 10' (curve 1, we omit hereafter the dimen- 
sionalities (s- ' ) of y, rl , r 2 ,  and rI ). For regular pump- 
ing we consider the two characteristic situations rl>r2 
(r,=109, r2=107) and rlzr2 (I',=r2= lo9). Just as in 
Ref. 2, we assume for regular pumping that the term re- 
sponsible for the pump noise in expression (61) for the 
diffusion coefficient vanishes (R = 0). The pump- 
dependent term in Eq. (51) for the population should be 
conserved, since it determines the stationary operating 
point of the laser. 

In the case of random pumping, the photon-number 
fluctuations for large ( reach the Poisson value (hn2) =no. 
With increase of 6, in accord with the data of Refs. 2-6, 
sub-Poisson statistics are obtained for regular pumping, 
and at r l ) T 2  the fluctuation level reaches a minimum 
no/2 equal to the vacuum fluctuations. 

The fluctuations of the total number of photons at 
Q > 1 are shown in Fig. 2. Curves 2 and 3 were obtained for 

Q=3, for y=  lo6 and lo9, I?,= lo9, and r2= lo7. Curves2' 
and 3' correspond to regular pumping at the same param- 
eter values. It is seen from the plots that in the multimode 
case the fluctuations above the threshold are less than the 
Poisson value, i.e., sub-Poisson statistics obtains, whereas 
in the case of regular pumping n d 2  reaches a minimum. 
The vacuum level is not reached for Q= 101 (curve I ) ,  but 
sub-Poisson statistics obtains, and pump noise plays no 
significant role. Calculation has shown that at large Q (Q 
= 101 ) the fluctuations are independent of y. Introduction 
of regular pumping does not alter the results in this case. 

5. PHOTON-NUMBER FLUCTUATIONS IN AN INDIVIDUAL 
MODE 

Let us consider Eq. (95) for the Fourier transforms of 
the deviations An, of the photon numbers from the station- 
ary mean in a mode of a multimode laser. Using, as in Sec. 
4, the equations for An and the Wiener-Khinchin theo- 

4". 
rem, we obtain an expression for the stationary fluctuations 
( ~ n i ) .  Since we are using the equivalent-mode approxima- 
tion, we have no=n@=No/Q and in addition 
AN,,,,= z:= ,An,, . Substituting expression (96) for the 
Fourier transformation of population-inversion variation 
AD, in (95), we obtain 

Using Eq. (89) for ANph we obtain for {An,) a set of 
equations in the form 
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Cq- - z z ~ ~ O G I , + Z ~ ~ ~ O G ~ , + C G ~ , .  (109) 

The quantities f, zl , and z2 are given by expressions (97) 
and (98). The solution of this set of algebraic equations for 
the 9th mode is 

It is convenient further to rewrite (1 10) in terms of ran- 
dom sources: 

5 p-- 
A-B [A+B(Q-2)1, 

It is also easy to obtain (see footnote 1) for the photon- 
number fluctuations in a mode 

2 ( A n  2~ -- I A + ( Q - ~ ) B ~  -2[ la12(2~11)  

+2 Re(Pv)  (2DqI2)]do. (1 16) 
4 ' 2 4  

The results of calculations using ( 116) are shown in Fig. 3 
for a radiative damping constant y= lo6. Curves 1, 2, and 
3 correspond to the number of modes Q=3 for rl = lo", 

9 r2=107, rl=109, r2=107 and r l = r 2 = 1 0  , respectively. 
It follows from the plots of Fig. 3 that if T l ) r 2  (curves I 
and 2) the number of photons in an individual mode is 
lower than the Poisson value over an appreciable interval 
of <. For very large the fluctuations in cases 2 and 3 
increase rapidly and the photons have a super-Poisson sta- 
tistics, whereas in case I ( T1)r2) the growth is insignifi- 
cant. The presence of regular pumping (dashed curves 
near 1, 2, and 3) does not alter the result significantly. 

Curves 4, 5, and 6 were obtained for Q=101 for 
9 rl= lo1', r2= lo7; r l= lo9, r2= 10' and rl=r2= 10 . In 

this case of many modes, the number of fluctuations has a 
minimum over a large range of f, owing to the vacuum 
fluctuations nd2, while for r l )T2  (case 4) the fluctua- 
tions reach a minimum everywhere. In cases 5 and 6 the 
fluctuations increase almost linearly with increase of the 
pump. 

FIG. 3. Ratio of the stationary fluctuations of the number of photons in 
an individual mode of the cavity of a multimode laser (hn2) to the mean 
stationary number no of photons, as a function of the excess 4 of the pump 
above threshold (n=1 s-I, y=106 s-I); 1-Q=101, r l =  10" s-I, 
r2=107 S-I; 2-Q=IOI, r1=109 S K I ,  r2=107 S-I; 3-Q=IOI, 
r1=r2=1o9  S-'; 4--Q=3, r1=10" S - I ,  r2=107 S-I; 5-Q=3, 
r, = lo9 s-I, r 2 =  lo7 s-I; b Q = 3 ,  rl = r2= lo9 s-I. The dashed curves 
correspond to regular pumping 

The calculation results for y= lo9 differ little from 
those for y = lo6. The statistical properties of the pump at 
Q= 101 have likewise no effect on the result. 

This unexpected behavior of the fluctuations in an in- 
dividual mode of a multimode laser, much more compli- 
cated than that of the fluctuations of a single-mode laser 
and the fluctuations of the total number of photons in a 
multimode laser, calls for a more detailed analysis of the 
multimode case, which is possible in particular within the 
framework of the quasilinear approximation, using adia- 
batic exclusion of the atomic variables. The results of such 
an analysis are given in the next section. 

6. CALCULATION OF QUANTUM FLUCTUATIONS IN A 
QUASILINEAR APPROXIMATION ADIABATIC IN 
THE ATOMIC VARIABLES 

We assume in this section that r ls yq and r2, yq. It 
can be assumed in this case that dANi/dtgrjANi, i= 1, 2 
in the equations (88) and (89) for the population devia- 
tions from stationary values, and adiabatic exclusion of the 
variables AD and AN1 is possible. In the case of a signifi- 
cant excess above threshold we have for an adiabatic quan- 
tities 
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(it is assumed in Eq. ( 1 18) that 6 -  1% 1 ). 
For an individual mode we obtain 

In the quasilinear approximation used by use, the Langevin 
equations ( 1  19) and ( 120) for the photon numbers can be 
written in the following form which is useful for the cal- 
culation of second moments of random quantities 

e 2 - ~ t - 1  
~ = @ ( ~ ) = @ % l  for ~ $ 1 .  (124) 

We write the system of stochastic equations for the corre- 
sponding Markov processes in a general Langevin form 

where A, is a constant displacement linear in Ani and G 
represents random sources. The following general equation 
of motion16 for second moments can be used in Eq. (125): 

and its stationary solution yields the necessary set of the 
second moments that determine the stationary fluctua- 
tions. Setting the derivatives in (126) equal to zero, we 
obtain 

(127) 
kf,' 

Considering diagonal diffusion coefficients (q=qt  ) we get 

where S are nondiagonal correlation functions, which are 
equal to one another in our equivalent-mode approxima- 
tion. 

If, however, qfq ' ,  we have 

whence, taking (128) into account, we have for the sta- 
tionary value of the nondiagonal correlation function 

(2Dqq,) /A- (2Dqq)/Au 
(An,An,,) = 

2a-2 ( Q -  l ) / a + 2 ( Q - 2 )  ' (130) 

and for the photon-number variance 

We define the diffusion coefficients (2Dqq) and (2Dqqt) in 
accordance with 

where the fluctuation sources in the correlators are given 
by ( 120). Using Eqs. (78) - (82)  for the stationary diffu- 
sion, as well as expressions (72 )  and (74) - (77) ,  we obtain 

for Q  > 1 .  We denote here 

For the off-diagonal diffusion coefficient we have 

(2Dqql)  = OD,,) - W O -  nnoSo . (135) 

Using (133),  we find that above the threshold 

( 136) 

Substituting ( 133) and (136) in (131), we arrive at the 
following expression for photon-number fluctuations in a 
mode above the lasing threshold, for arbitrary Q >  1, 

If the number of modes is large ( QB 1 ), Eq. ( 137) reduces 
to 

2 no rl n o n 2  
( (An , )  )=-+no ---+- no.  

2  @ - 2  r1 
If r , ) l  and 7 - 0 ,  the fluctuations reach a minimum 

value 

but if r , z r2  and 7 + ( 6 - 1 ) / 2 ,  the fluctuations at low 
pumps are close to vacuum fluctuations, but increase lin- 
early for large 6 in accordance with the equation 
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Consider now the second term in expression ( 137) for 
the fluctuations. Using ( 134) with Q> 1 and multiplying 
the numerator and denominator of this term by Nlo, we 
obtain at f >  1 

Evidently I INf l ldTINlo  is the ratio of the stimulated ab- 
sorption to the spontaneous decay of the lower laser level. 
It can therefore be concluded that the level of the vacuum 
fluctuations is reached in a laser mode at the minimum 
ratio of these quantities, and in particular in the case of an 
empty lower laser level, rl + a. 

7. DISCUSSION OF RESULTS AND CONCLUSION 

The quantum calculations of the present paper have 
shown that the photon statistics in the cavity of a multi- 
mode laser above the lasing threshold differ substantially 
from the single-mode case. The total number of photons in 
the cavity of a multimode laser becomes stabilized, just as 
in a single-mode one, but in the multimode case one ob- 
serves a fundamental dependence of the photon-number 
fluctuation on the number of modes participating in the 
lasing, on the laser-level relaxation parameters, and on the 
radiative damping constants of the field modes. The fluc- 
tuation is below the Poisson level at large excess of the 
pump above the threshold, whereas for many modes ( Q  
= 101 ) and for r1>r2 a minimum fluctuation level nd2 
due to vacuum observations is observed in the entire range 
2 < f < 10, while for few modes (Q= 3 )  the fluctuation 
level is higher, but the field still retains sub-Poisson statis- 
tics at 1 0 ~ < ~ < 1 0 ~ .  In the presence of regular pumping, the 
fluctuations for large f tend to the vacuum-fluctuations 
level for any number of modes. 

Calculations for a separately taken mode have shown 
that the number of photons in a mode is also stabilized at 
a moderate excess above threshold, while under the condi- 
tions rl>r2 and Q % l  the photon-number fluctuations 
reach the minimum vacuum level in the entire range of (. 
If r1 and r, are comparable or equal, the fluctuations 
increase with f and the photons have a super-Poisson sta- 
tistics at f )  1. If the number of modes is small (Q= 3) a 
super-Poisson statistics is observed in the entire range of 
pump excess above threshold f > 2. 

It is interesting to note that in contrast to fluctuations 
of the total number of photons, the photon-number fluctu- 
ations in an individual mode are practically independent of 
the radiative-damping constant. 

Our results contradict those obtained by semiclassical 
 calculation^^^ where, in general, a value indicative of ran- 
dom blackbody radiation, ( ~ n i )  - ni was obtained for 
mode intensity fluctuations of a multimode laser in the 
high-pumping limit. Note the model-like character of the 
computations of Ref. 11, using approximate semiclassical 
Van der Pol equations that are correct only near the lasing 
thre~hold , '~ '~  and a model-dependent rigid intermode cou- 
pling was considered. 

In view of the above contradiction, we must mention 
the results of a study12 where, using a substantially more 
accurate semiclassical theory than in Ref. 11, a numerical 
simulation has shown for the actual case of a dye laser that 
even near the threshold (at an excess 5 10%) the observed 
chaotic behavior of the intensity in the mode is due not to 
quantum noise but to the presence, in the equations, of a 
term responsible for four-wave interaction. Our present re- 
sults lead to the conclusion that nonstationary field pulsa- 
tions in the modes of a multimode laser are, under our 
conditions, the consequence of a dynamic interaction be- 
tween modes, whereas above the threshold the contribution 
of quantum fluctuations is insignificant. 

It was stated in Refs. 17 and 18 that there is no inten- 
sity stabilization at all in a mode of a multimode laser. This 
was deduced from simplified balance equations with ran- 
dom sources, without allowance for the fluctuations of the 
laser-level population, and under the assumption that the 
lowest laser level is empty. This is completely contradicted 
by our present results, which are based on a consistent 
application of the quantum Langevin formalism, as follows 
from the foregoing. It is noteworthy that the fluctuation 
obtained in Ref. 18 for the total photon number in the case 
of a threefold or larger excess above the threshold becomes 
smaller than the minimum value of the vacuum fluctua- 
tions, thus contradicting also the data of Ref. 11. 

We note in conclusion that we have considered in our 
laser model a case when the spontaneous decay of the laser 
levels takes place directly in the lower atomic state of a 
three-level system, i.e., it has been assumed that the rate of 
the spontaneous decay of the upper laser level to the lower 
one is much lower than the rate of its decay in the lower 
level. Allowance, in the laser model, for spontaneous tran- 
sitions between the laser levels can apparently alter some- 
what the calculated photon-number fluctuations. 

The author thanks A. F. Suchkov for calling attention 
to the question of quantum noise in a multimode laser. 

' ) ~ c c o r d i n ~  to the Wiener-Khinchin theorem, the mean square d, over 
an ensemble of realizations of a random process is connected with the 
(real) spectral density ( f d , )  = G(o)S(o  - a ' )  by the relation 

(f:) = 1 / 2 ~  $ " G ( ~ ) ~ u  where f, and f ,  are mutual Fourier trans- 
forms. Assuming that f,=A(w)F,, c, = A*(~')F:, , and also, since 

the random process is Markovian, that (F,,I.;*) = 2D6(t - t '),  where 
2 0  is the stationary value of the diffusion coefficient, we obtain 
(f:) = D/2r $LA(o)A*(w)do.  

 ere and below we omit from the balance equations, in contrast to Eqs. 
(50)-(52), the terms responsible for the spontaneous emission and con- 
tained in the constant Langevin displacments, since these terms are 
small compared with the others. 
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