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We generalize the Planck law for the spectral energy density of equilibrium thermal radiation 
to the case of an inhomogeneous transparent system consisting of two homogeneous 
media. We study in detail the effect of the inhomogeneity of the system on the temperature- 
dependent component of the energy density spectrum and on the spectral component 
corresponding to the zero-point oscillations of the field. We show that the energy density of 
the quasistationary field remains finite at any distance from the boundary. We generalize 
the results of the theory to the case of media with different temperatures. We study the features 
of the frequency dependence of the spectral energy density for systems which are and 
which are not in thermodynamic equilibrium. 

INTRODUCTION surface layer near the boundary between the media. In a 

The spectral energy density of equilibrium radiation is 
a universal function of the frequency and the temperature. 
The presence of a transparent medium reduces, according 
to the Kirchhoff-Clausius law, simply to multiplying the 
energy density of equilibrium radiation in vacuo by the 
cube of the refractive index of the medium. One of the 
most wide spread methods for obtaining the energy density 
of equilibrium radiation is to represent the electromagnetic 
field as a superposition of oscillators and to use classical or 
quantum statistics to find the average energy of an oscilla- 
tor. The Rayleigh-Jeans and Planck distributions which 
are then obtained are uniform and isotropic. 

The spectra of the electric and magnetic fields of the 
equilibrium radiation in an unbounded transparent me- 
dium can also be obtained on the basis of the general cor- 
relation theory of thermal fluctuations1 which uses the 
fluctuation-dissipation theorem (FDT). When applied 
to the problem of the energy density of equilibrium radia- 
tion this approach is considerably more laborious than the 
traditional methods used for deriving the Planck formula. 
Nonetheless, the method based on using the FDT turns out 
to be very useful since it makes it possible in a single ap- 
proach to obtain the statistical averages for various qua- 
dratic quantities consisting of components of the electro- 
magnetic field taken in the general case at different points 
of space. One then does not require that there is no dissi- 
pation in the system. On the contrary, the transition to a 
transparent medium is considered to be a special case and 
the corresponding correlation functions are obtained from 
the general relations, taking in them in the correct way6-9 
the limit to the transparent medium. Moreover, one can, in 
principle, on the basis of this approach calculate correla- 
tion functions also in the case of an inhomogeneous equi- 
librium medium. 

Of course, the inhomogeneity of the medium destroys 
the homogeneity and the isotropy of the Planck distribu- 
tion. The presence of inhomogeneity in the system leads to 
the appearance of quasistationary components in the fluc- 
tuating electromagnetic field which are localized in a thin 

study of heat exchanges by the fluctuating electromagnetic 
field between two semi-infinite heated bodies separated by a 
transparent plane gap10 it was established that the contri- 
bution of the quasistationary part of the fluctuating elec- 
tromagnetic field can be substantial in the case of a narrow 
gap. 

We study in the present paper the energy density spec- 
tra of equilibrium radiation in the case of the simplest 
inhomogeneous system consisting of two uniform media. 

In the first section of the paper we find the spectral 
energy density distributions of equilibrium radiation in the 
case of an inhomogeneous transparent medium. We show 
that the energy density is finite at any distance from the 
boundary. We obtain the total radiation energy distribu- 
tion and study its deviation from the Stefan-Boltzmann 
distribution. In the second section we find the spectral ra- 
diation energy density distributions in the case of media 
with different temperatures. In the third section we give 
the results of a numerical analysis of the effect of the tem- 
perature and the parameters of the media which are in 
contact on the spectral energy density distributions. 

I. EQUILIBRIUM SYSTEM 

We find the energy density of equilibrium radiation 
which is characterized by the temperature T in a system 
consisting of two homogeneous, transparent, semibounded 
media with the z=0-plane as the dividing boundary. The 
first and the second media, which occupy respectively the 
z < 0 and z > 0 regions are characterized by the dielectric 
permittivities E ,  and E ~ .  The origin of the Cartesian coor- 
dinate system is taken on the boundary between the media. 

To find the spectral energy densities of the equilibrium 
radiation, 
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in the z < 0 (for n= 1) and z >  0 (for n=2) regions we 
need know the correlation functions of the fluctuating elec- 
tric and magnetic fields of the thermal radiation in the 
system. 

Since the system is in an equilibrium state the correla- 
tion functions of the electric field taken in the general case 
at different points of space, r and r', can be found by using 
the FDT'-~ 

where 19(m,T) is the average energy of a quantum har- 
monic oscillator of frequency m, in a state of thermody- 
namic equilibrium with a thermostat at temperature T, 
which is measured in energy units, 

and Gij(r,rl,m) is the Green function of a single harmonic 
point source, I . S(r-r' ) - exp( --jut) positioned in either 
the first (when z' < 0) or the second (when z' > 0) me- 
dium. The correlation functions of the magnetic field are 
obtained by using Eq. (2) and the connection between the 
electric and magnetic fields given by the Maxwell equa- 
tions. 

Since the system is homogeneous in the transverse di- 
rections it is convenient to use the Fourier transform 

to change from the spatial variables rl = (x,y,O) to the 
variables k1 = (k, ,k, ,0) . 

Using the expression for the Green function in the 
given system1' the final relations for the Fourier compo- 
nents of the spectral components of the correlation func- 
tions of the electric and magnetic fields can for z,zl < 0 be 
written in the form 

B ~ Z B Z ~ = E ~ E Z Z , ,  i,j=x,ys, 

( 6 )  

while the terms (Ei(z)q(z'))i:)m, (BT(z) Bj(zP))i;', are 
caused by the inhomogeneity of the system and defined as 
follows: 

where (E;(z)q(z1))i:),, (B;(z) B?(Z ' ) )~ : )~  are the well 
known correlation functions of the fluctuating electric and 
magnetic fields in an unbounded transparent medium with 
a dielectric permittivity E ' ,  

i, j =x,y,z. 

The quantities R,,(k, ,m) , 

have the meaning of the Fresnel coefficients for reflection 
from the second medium of homogeneous (for k, < kl)  or 
inhomogeneous (for k1 > k,)  electromagnetic p and s po- 
larized waves incident from the z < 0 region. The quantities 
rp,Jkl ,m), taken with a minus sign, are the ratio of the 
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surface impedance of the second medium to the surface 
impedance of the first medium for fields with p and s po- 
larizations, 

1/2 Z+=zfz l ,   WE, /c, k,,=(ki-kf )'I2, Imkzn>O, 
n= 1, 2, and iSij is the Kronecker symbol. 

The correlation functions of the electric and magnetic 
fields in the second medium (z,zl > 0) are determined by 
the same Eqs. (5) to (7) as in the first medium (z,zl <O) 
with the substitutions E ~ ~ + E ~  and iSiZ,,,-t -Siz,jz in them. 

Equations (5)  to (7) make it possible to study various 
objects of the correlation theory of equilibrium fluctuations 
in the case of an inhomogeneous transparent medium. 
Since we restrict ourselves in the present paper to studying 
the radiation energy density we must evaluate the field 
correlations in the same point in space (r '  =r ) .  In that case 
the spatial correlation functions of the fluctuating electro- 
magnetic fields are reduced to diagonal form and the re- 
quired spectral energy density distributions can be written 
as follows: 

Here u ( " ) ( ~ , T )  is the energy density of equilibrium radi- 
ation with a temperature T in an unbounded transparent 
medium with a dielectric permittivity E, which can be writ- 
ten as the sum of two terms, 

fio -- fro 
- 

2 = + e x p ( h / T )  - 1 

The first term, which is independent of the temperature, 

corresponds to the energy density of the zero-point oscil- 
lations of the field in the medium while the second term, 
u(")"(~,T), is determined by the classical Planck for- 
mula, 

for the equilibrium thermal radiation with temperature T 
in a transparent medium characterized by the dielectric 
permittivity E, . 
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The deviation of the spectral energy density of equilib- 
rium radiation, U(")'(z,w,T), from the classical distribu- 
tion u ( " ) ( ~ , T )  in an unbounded homogeneous medium is 
defined as follows: 

where 

It is convenient, as in the case of a homogeneous sys- 
tem, to split off as a separate term in the expression for the 
spectral density ~ ( " ) ( z , w , T )  the spectral energy density 
corresponding to the zero-point oscillations of the field in 
the system, 

where 

It follows from Eqs. ( 15) and ( 16) that when one is 
sufficiently far from the dividing boundary the energy den- 
sity goes over into the corresponding spectral energy den- 
sity distributions of equilibrium radiation u(") (a, T )  in an 
unbounded transparent medium with a dielectric permit- 
tivity E, for z < 0 or EZ in the z > 0 case. This result is valid 
both for the temperature-independent component of the 
energy density spectrum and for the quantity determined 
by the temperature. One should note that the spectral en- 
ergy density of the zero-point oscillations (17) of the field 
differs from the result obtained in Ref. 1 since in it the 
zero-point oscillations of the field were taken into account 
in only one of the media. It was found in such an approach 
that the boundary changes the energy density spectrum of 
the zero-point oscillations even at an infinite distance from 
it. This difficulty does not arise when we take into account, 
as is assumed in the present paper, that there are zero-point 
oscillations in the whole of space. 

The energy density spectrum ~ ( " ) ~ ' ( z , w , T )  of the 
thermal radiation contains components corresponding to 
the wave (k, < k,) and the quasistationary (kl > k,) 
parts of the field, 

where 
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xn= (e -k2,)lI2, n,m= 1,2, m#n, and O(x) is the Heavi- 
side function. 

The spectral energy density distributions (19) of the 
fluctuating electromagnetic field can be considered to be a 
generalization of the Planck law for the energy density of 
equilibrium radiation to the case of an inhomogeneous 
transparent medium. 

It follows from Eq. (20) that the spectral energy den- 
sity of the quasistationary field occurs in only one of the 
media, namely, in the medium with the smallest value of 
the dielectric permittivity. This conclusion can be reached 
also without having recourse to calculations if we use the 
same approach as when describing the equilibrium radia- 
tion in an unbounded transparent medium when one as- 
sumes that this medium is in a cavity which is thermally 
insulated from the outside with fixed nontransparent walls 
maintained at a constant temperature T. In the case of a 
uniform medium there is equilibrium radiation in it char- 
acterized by the uniform and isotropic spectral energy den- 
sity UP'(w, T) . Since the fluctuating electromagnetic field 
in the medium is the field of the thermal radiation of the 
walls of the cavity, in view of the unbounded dimensions of 
the system there are in it only those components of the field 
which correspond to propagating (k, < k) electromag- 
netic waves. 

In the case of an equilibrium inhomogeneous system 
consisting of two homogeneous transparent media with a 
plane dividing boundary the fluctuating electromagnetic 
waves propagating in it undergo reflection and refraction at 
the boundary. Since the reflected and transmitted fields are 
connected with the field incident upon the dividing bound- 
ary by the Fresnel reflection coefficients Rp,Jk1 ,w) only 
those coefficients should occur in the various correlation 
functions for the fluctuating quantities. Electromagnetic 
waves incident upon the dividing boundary from the me- 
dium with the largest value of the dielectric permittivity at 
an angle larger than the angle for total internal reflection 
are completely reflected from the boundary, penetrating 
only to some depth into the second medium. In the me- 
dium with the smaller value of the dielectric permittivity 
there is thus in a thin surface layer an exponentially 
damped quasistationary electromagnetic field which con- 
tributes to the energy density of the equilibrium radiation 

in the form of its quasistationary component u:. Since 
there are quasistationary fields only in one of the media, 
there must also be a quasistationary field energy density 
only in the medium with the smallest value of the dielectric 
permittivity and it is produced only by electromagnetic 
waves for which the modulus of the transverse component 
of the wavevector lies in the range between the absolute 
values of the wavevectors of the electromagnetic waves 
propagating in the two transparent media. These conclu- 
sions are fully in agreement with the results (20) obtained 
on the basis of direct calculations. 

We can estimate the behavior of the spectral energy 
density of the thermal radiation in the system of two trans- 
parent media at large and small distances from the dividing 
boundary. Far from the boundary (b, = 2kn 1 z 1 $1 ) the 
partial components ~ f ) ~ ' ( z , w ,  T) and ~;;)~'(z,w, T) of the 
energy density differ in the nature of their behavior, de- 
pending on the point of observation: the quantity 
~;;)~'(z,w, T) decreases inversely proportional to the dis- 
tance from the boundary, 

2 cos b, 
~; if)~ '(z,w, T) ,- u ' ~ ) ~ ' ( ~ , T ) ,  n = 1,2, (21) 

bn 

whereas the energy density of the quasistationary field 
tends to zero, inversely proportional to the square of the 
distance from the boundary1 

Near the boundary (b,( 1 ) the quasistationary compo- 
nent of the energy density may make the main contribution 
to the spectral energy density. We note that, in contrast to 
the conclusion of Ref. 1 that the energy density of the 
quasistationary field diverges inversely proportionally to 
the square of the distance of the point of observation from 
the boundary, the quantity ~:;)~'(z,w,T) remains finite at 
any distance from the boundary, including on the bound- 
ary itself. This statement follows both from the model con- 
sidered above of the radiation in an inhomogeneous trans- 
parent medium as radiation from the walls of a cavity, and 
is also seen directly from Eq. (20) for ~ i ; )~ ' ( z ,o ,T)  as an 
integral with finite limits of integration of a function with- 
out singularities. 

If the point of observation lies on the boundary the 
quantities L!;) (0,w) and L::) (0,w) are independent of the 
frequency and are determined solely by the ratio of the 
dielectric permittivities of the media [L!,")(o,~) 
r L!,") ({,), L::) (0,o) L::) ({,)I. The inhomogeneity of 
the system thus reduces simply to multiplying the Planck 
distribution by a constant quantity which is equal to 
[l+~Z,")(g,) +~(E,-E,)L~~)({,)I .  

Integrating Eq. (14) over positive frequencies we ob- 
tain the following representation for the total energy den- 
sity of the equilibrium radiation U;(Z,T) caused by the 
inhomogeneity of the system: 
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where Ufil(T) is the energy density of equilibrium radia- 
tion in an unbounded transparent medium with a dielectric 
permittivity E ,  , 

bTn = 2kTn(Z17 kT, = w~,&;/~/c, ~ ~ = 2 7 r ~ T / f i ,  n= 1,2. 
For bTn)l and finite values of the quantity gn the as- 

ymptotic behavior of Eq. (23) has the form 

The inhomogeneity of the medium thus leads for the 
medium with the smaller dielectric permittivity to an in- 
crease in the energy density as compared to the energy 
density u:'( T )  in the unbounded system and to a decrease 
in it in the medium with the larger value of E .  When we go 
away from the boundary U;(Z,T) decreases inversely pro- 
portional to the distance from it. In the special case when 
one of the media (e.g., the second) is filled with an ideal 
conductor Eq. (23) takes an especially simple form, 

The effect of an ideal conductor on the energy density far 
from the boundary is thus considerably weaker than for a 
dielectric. 

11. NONEQUlLlBRlUM SYSTEM 

The results obtained for the spectral energy density of 
the radiation in the case of a system in thermodynamic 
equilibrium can be generalized to the case when each of the 
media is characterized by its own temperature T,. To find 
the given quantities we shall assume that there is nonvan- 
ishing dissipation in the media, 

The fluctuating electromagnetic fields in the system 
considered are then the fields of the characteristic thermal 
radiation of the media and the difference in temperature 
makes it possible to identify the contribution of the thermal 
radiation fields of each of the media separately. To find the 
correlation functions of the fluctuating electromagnetic 
fields in the system we use the general solution9 of the 
problem of the excitation of a given system by arbitrarily 
distributed external sources ~ ( ' ) ' ( r , t )  and ~ ( ~ ) ~ ( r , t )  which 
are given, respectively, in the z < 0 and z > 0 regions: 

X [ezjnkjln(kl t ~ ) I ) e x ~ ( i k ~ i ) z l ) ,  

i=x,y,z (28) 

in the z < 0 region and 

X ts(k, ,a)r,(kl , a )  (ez,,k,l,[kl ,o )  I )  
x exp (ikz2z), i=x,y,z (29) 

for z > 0. 
Here 

s jn ) (k l  ,z,w) 

- - - 1  . - J dk, ( k?) Jy"k,w) 
(3 - m  
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tP,Skl ,w) = 1 -Rp,Jkl , d ,  (30) 

An(k,w) = E , , - c ~ ~ / w ~ ,  ~ ( " ) ~ ( k , w )  is the Fourier compo- 
nent of the current, given in the z < 0 region for n = 1 and 
the z > 0 region for n = 2 and continued mirrorwise into the 
adjacent region, and eijl is the third rank absolutely anti- 
symmetric unit tensor. 

We note that Eqs. (28) and (29) for the fields in the 
first and the second media go over into one another under 
the substitution: EI*E~, ~ ( ' ) ~ ( k , w ) 4 ( ~ ) ~  ( k , ~ ) .  

Assuming the external sources to be random and that 
the sources of the fluctuating field given in the different 
spatial regions (z < 0 and z > 0)  are uncorrelated, and also 
taking into account the nature of the analytical continua- 
tion of the sources, we get 

xS(kZ+ki)]  ( ~ f l ) ~ ~ ) ~ ,  i,j=x,y,z, n= 1,2, 

(32) 

where ( J , J ? ) ~ ) ~  is the correlation function of the random 
sources in the case of an unbounded system characterized 
by a dielectric permittivity E, and a temperature 
T,. According to the FDTl-5 this quantity is equal to 

'rr 
(Jfl)Ee=6(a,T,)-~ii Im E,,, i,j=x,y,z, n= 1,2. 

2T 
(33) 

Substituting Eqs. (28) and (29) into ( l ) ,  using Eqs. 
(3  1 ) and (32) to perform a statistical averaging, and also 
correctly taking the limit to a transparent medium (the 
limit limqn, +, is taken after integration over dk,; see Refs. 
6 to 9) we get the following final equation for the spectral 
energy density 

where ~ ( " ) ( z , w )  is the spectral energy density of the zero- 
point oscillations in a medium with a dielectric permittivity 

E, determined by the same Eq. (17) as in the case of a 
system in thermodynamic equilibrium and calculated using 
the FDT. The agreement of the results for the spectral 
energy density of the zero-point oscillations in the cases 
where the system is or is not in equilibrium is completely 
natural since the system is always in equilibrium as regards 
the zero-point oscillations. 

The second term in Eq. (34) depends on the temper- 
atures of the two media and, as in the case of an equilib- 
rium system, can be written as a sum of components cor- 
responding to the wave and the quasistationary parts of the 
field, 

The quantities ~!r)(z,w) and L;:)(z,o) are determined by 
the same Eqs. (20) as in the case of a system in thermo- 
dynamic equilibrium while the quantity ~ $ ) ( g " )  depends 
only on the relative refractive index c, and is equal to 

where 

=f [ rP(k l  ,w)+r,(kl , a ) ]  

is the coefficient for absorption of unpolarized light by the 
z > 0 region, 

is the energy coefficient for reflection of a plane unpolar- 
ized electromagnetic wave from the second medium, while 
r,,,(k, ,o)  = 1 - IR,,,(kL ,w) 1 and IR,,,(k, l 2  are 
the coefficients for absorption and the energy coefficients 
for reflection of plane p- and s-polarized electromagnetic 
waves, and K=min(k, ,k2) is the smallest of k, and k2. 

The fact that the system is not in equilibrium thus 
leads to the appearance of an additional term 
U$')~'(~,T,,T,), which is independent of the distance, in 
the energy density spectrum of the wave part of the field. It 
follows from the definition (35) of this quantity that it 
vanishes when we go over to a system in thermodynamic 
equilibrium ( T1 = T2= T )  :U:,")~'(W,T,T) = 0. 
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We note that the expressions for the spectral energy 
densities in the first and the second media go over into one 
another if we perform the following substitution in them: 
E,-E,, Tn++Tm. 

The quantity ~ g ) ~ ' ( w , T , ,  T,) determines the total 
spectral radiation energy flux density produced by the two 
media if the characteristic thermal radiation of a transpar- 
ent medium is interpreted as the radiation field of infinitely 
removed sources, positioned at the limits of the region oc- 
cupied by the transparent m e d i ~ m . " ~  One can then write 
u$')"(~,T, ,T,) as the difference of the spectral energy 
densities of unidirectional radiation fluxes, directed in mu- 
tually opposite directions, away from the boundary, 
U?)~'(W,T, ,T,), and toward it, u$')~'(w,T,), in the z <O 
region for n = 1 or the z > 0 region for n = 2: ') 

where 

Indeed, one can easily show, by using the expressions, 
obtained in Ref. 9, for the intensities of unidirectional ther- 
mal radiation fluxes of the system considered away from 
the boundary, ( w , , ~ , ,  T ,  and toward it, 
I Y ) ( ~ , T ~ ) ,  

that the spectral energy densities ~ ? ) " ( o ,  T, , T,) and 
~ y ) ~ ' ( w , T , )  which correspond to them are given by the 
following expressions: 

Here IF) (w, T,) is the intensity of the radiation from an 
absolutely black body with a temperature T, into unit 
solid angle dfl =sin Bdedq, in a transparent medium with 
dielectric permittivity E, , 

where 8 and q, are the polar and azimuthal angles giving 
the solid angle dfi, and V ~ ) = C / E ; ' ~  is the group velocity 
for the propagation of electromagnetic waves in a trans- 
parent medium with dielectric permittivity E, . 

We note that Eq. (35) for the spectral energy density 
U~~)~'(Z,W,T,)  of the quasistationary field retains the same 
form as in the case of an equilibrium system. However, this 
quantity is determined solely by the temperature T, of the 
adjacent medium which agrees with the representation of 
the characteristic thermal field of a transparent medium as 
the radiation field of infinitely far away  source^"^ which 
can propagate in the given medium only for kl < k,. 

The conclusion that the energy of the quasistationary 
field occurring only in one of the media is determined 
solely by the temperature of the adjacent medium can be 
reached also by using qualitative considerations, assuming 
that the given system is placed in a cavity the walls of 
which are maintained at constant, but different tempera- 
tures: the walls enclosing the first medium have a temper- 
ature T I  and the walls enclosing the second medium a 
temperature T2. Since the field in the system is a superpo- 
sition of the radiation fields of the walls of the cavity which 
are at temperatures T1 and T2 while the quasistationary 
field in one medium (say, in the first one when < E ~ )  is 
the radiation field of the walls of the cavity with tempera- 
ture T2 which penetrates into that medum and is exponen- 
tially damped when one moves away from the boundary, 
the quasistationary part of the energy density in the first 
medium can depend only on the temperature of the second 
one which is equal to the temperature of the walls of the 
cavity adjacent to it. 

On the other hand, the component ~;,")~'(z,w,T,) of 
the spectral energy density is determined by the tempera- 
ture only from the medium in which it is calculated. This 
quantity which depends on the point of observation can 
thus be interpreted as the result of the interference of 
waves of the radiation from the walls of the cavity with 
temperature T, incident upon the dividing boundary of the 
media and reflected from it. The quantity 2kzn 1 z 1 which 
occurs in the exp(i2kZ, ( z  ( ) factor takes into account the 
difference in paths traversed by those waves. 

The spectral component U$)~'(W, T, , T,) of the en- 
ergy density which is independent of the coordinate can be 
considered to be the difference of the spectral energy den- 
sities of the unidirectional radiation fluxes from opposite 
walls of the cavity which are heated, respectively, to tem- 
peratures T, and T,, and where the refraction of the ra- 
diation field at the dividing boundary is taken into account. 

This model for describing the fluctuating fields of the 
thermal radiation in a system of two transparent media 
thus enables us to reach correct qualitative conclusions 
about the peculiarities of the energy density distribution in 
the system based solely on the properties of the propaga- 
tion of electromagnetic-waves in it. Bearing in mind the 
existing large amount of material about the propagation of 
electromagnetic waves in various inhomogeneous media it 
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is advisable to use this approach also for constructing a 
correlation theory for geometrically more complicated sys- 
tems. 

One can consider Eqs. (34) and (35) as a generaliza- 
tion of the results for the spectral density of thermal radi- 
ation to the case of an inhogeneous system. 

In the special case when the temperature of only one of 
the media is taken into account Eq. (35) for the spectral 
density of the thermal radiation goes over into the results 
of Ref. 1 for the spectral radiation energy density of a 
semibounded body in an external cold medium. 

Far from a surface layer of thickness b, the quantities 
u;;)~'(z,w,T,) and ~$')~'(z,w,T,) decrease (see Eqs. 
(21 ) and (22) ), whence it follows that at large distances 
from the dividing boundary the spectral energy density of 
the thermal radiation reaches a constant level, 

which is the same as the classical Planck value 
U(" )~ ' (~ ,T , )  only in the case of a system which is in ther- 
modynamic equilibrium. 

If the temperature of one medium is much higher than 
the temperature of the other one (for definiteness we as- 
sume that T2% T1) the energy density in the whole of 
space is for e2 > primarily determined solely by the tem- 
perature of the second medium, 

Far from the dividing boundary (b,>l) the energy 
density in both media is defined as the radiation energy 
density of an absolutely black body with a temperature T2, 

differing, however, from the Planck distribution by the 
presence of a constant factor determined solely by the rel- 
ative refraction index g, of the media in contact. 

Ill. NUMERICAL ANALYSIS OF THE SPECTRAL ENERGY 
DENSITY 

Using the general Eqs. (35) we have calculated the 
frequency dependence of the spectral energy density distri- 
bution of the fluctuating electromagnetic field in an inho- 
mogeneous transparent medium for the cases of systems 
which are in thermodynamic equilibrium ( T1 = T2 E T, 
Fig. 1) and which are not in equilibrium (Fig. 2) for which 
E, = 1, E ~ =  10, T2= lo3 K and T2)T1. The energy density 
was normalized to the energy density of the equilibrium 
thermal radiation in the corresponding unbounded trans- 
parent medium with temperature T2. The frequency scale 

along the abscissa axis is logarithmic. It can be seen 
from the figures that in the case of the equilibrium 
system the quantities U(')~'(Z,W, T ) / u ( ~ ) ~ ' ( ~ ,  T) and 
u ( ~ ) ~ ' ( ~ , w , T ) / u ( ~ ) ~ ' ( w , T )  at the boundary surface are fi- 
nite and independent of the frequency (curves 1 in Figs. la  
and lb)  which is in complete agreement with the conclu- 
sion from the theory that for z=  0 the effect of the inho- 
mogeneity of the system reduces simply to multiplying the 
Planck distribution by a constant coefficient, the value of 
which, equal to ( 1 + L!;)(g1) + Li:)(Cl) ) for the first and 
[1+ L!;)(g2)] for the second medium, determines the ex- 
tremum value (in the given case the maximum value for 
the first and the minimum value for the second medium) of 
the energy density in the system. Since the dielectric per- 
mittivity of the second medium is larger than that of the 
first one the excess of the energy density U ( ' ) ~ ' ( O , ~ , T )  
over its Planck level u( ' )"(~,T) in the first medium (in 
Fig. l a  the quantity U ( ' ) ~ ' ( O , ~ ,  T)/U( ' )~ ' (W,T) ~ 6 . 7 9 )  is 
connected with the presence of quasistationary fields in the 
first medium which make a basic contribution to the en- 
ergy density for z=0. The transverse component k, of the 
wavevector can for the quasistationary fields only take on 
values from the range kl < k, < k,. Since the point of ob- 
servation is at the boundary the quasistationary fields with 
all possible values of k, will for any frequency contribute 
to the energy density. 

When we move away from the boundary one can for 
the quasistationary fields conventionally distinguish three 
frequency ranges. In the first (long-wavelength) region all 
quasistationary fields in the first medium make, as in the 
z=0  case, a contribution to the quasistationary component 
of the field at the point of observation. In that frequency 
range the energy density is thus independent of the dis- 
tance from the boundary and is the same as the energy 
density of the electromagnetic field at the boundary. The 
transition to the second frequency region when the fre- 
quency increases is characterized by the fact that the qua- 
sistationary field in the point considered here is determined 
not by all quasistationary fields which are present near the 
boundary but only by those which satisfy the condition 
kl < k, < kqs(w) where the quantity kqs(o) < k2, which de- 
pends on the distance from the boundary, decreases when 
the frequency increases. As a result the normalized level of 
the energy density is lowered when the frequency increases 
down to unity when in the point considered all quasista- 
tionary fields which are present in the first medium are 
damped exponentially. A further increase in the frequency 
does not change the Planck distribution u( ' ) " (~ ,T)  
which describes the energy density in the third (short- 
wavelength) frequency region. Moving away from the 
boundary is accompanied by a narrowing of the first fre- 
quency region which is well illustrated by the similar 
curves 2 to 4 in Fig. la. 

In the optically denser medium (Fig. Ib) there are no 
quasistationary fields and, in accordance with Eq. ( 18), 
the energy density is completely determined by the quan- 
tity L!:)(z,w). Since the quantity L!:) for z=0  is indepen- 
dent of the frequency the presence of the first medium 
leads to a decrease in the Planck distribution u ( ~ ) ~ ' ( ~ , T )  
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105 lo7 lo9 10" lot3 ' 10" 1017 lo" WFIG. 1. Frequency distributions of normalized energy densities 
of the electromagnetic field in the first (a)  and the second (b) 

U(2)P1(z, o, T ) / U ( ~ ) ~ ' ( U J ,  T )  transparent media for the case of a system in thermodynamic 
equilibrium ( I ) :  z=0; 2: z=O.Ol pm; (3):  z= 1 pm; (4): z= 100 

1,s y pm). 

by approximately a factor two (curve I ) .  Here, as in the 4) the ratio U(~)~ ' (Z ,W,  T) /U(~)~ ' (W,T)  1 + L:;' ( f 2)  is 
first medium, at non-zero distances z from the boundary constant and independent of the distance from the bound- 
one can distinguish three frequency bands: the long- ary. When the frequency increases the quantity b2 reaches 
wavelength one, for b,(l, the short-wavelength one, for values for which the quantity ( L!;)(z,o) ( starts to de- 
b2%l, and the interval corresponding to intermediate fre- crease which is accompanied by an increase in 
quencies. In the long-wavelength range, which narrows ~ ( ~ ) " ( z , o ,  T ) / U ( ~ ) ~ ' ( O ,  T) . The damped oscillations of 
when we go away from the boundary surface (curves 2 to the energy density near the Planck level u(*)"(~,T) are 
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caused by the asymptotical oscillating behavior (21 ) of the 
quantity L!?)(z,w) in the short-wavelength region. 

The calculations show that in the case of a system far 
from equilibrium the energy density is practically com- 
pletely determined by the temperature of the second me- 
dium in complete agreement with Eqs. (45). It turns out 
that for the given parameters L!,2)(g2) is very approxi- 
mately 0.02 and the contribution from the term L:;) 
X (c2) U:;)~'(W, T2, T I ) ,  which takes into account the fact 
that the system is not in equilibrium, to the energy density 
U(~)~ ' (Z ,W,T~,T, )  can thus be neglected in the whole of 
the frequency range even for a ratio T1/T2=0.3 of the 
temperatures of the media. The fact that the system is not 
in equilibrium therefore hardly affects the energy density in 
the second medium and the required distributions 
U ( ~ ) ~ ' ( Z , W , T ~ , T ~ )  are determined by the same results as in 
the case of an inhomogeneous system at thermodynamic 
equilibrium at a temperature T2 (Fig. lb) .  In the first 
medium (Fig. 2) taking into account that the system is not 
in equilibrium is accompanied by a lowering of the maxi- 
mum value of the normalized density to 6.51 from 
the value 6.79 in the equilibrium case. Otherwise 
the nature of the behavior of the quantity 
U(')~'(Z,~,T~,T~)/U(~)~'(W,T~) is similar to that of the 
normalized energy density in the first medium in the case 
of a system in thermodynamic equilibrium but with a 

smoother reaching of the asymptotic value which lies be- 
low the Planck level and is equal to ~ : i ) ( l , )  =0.32. 
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