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The relatively low-threshold four-wave interactions of electromagnetic radiation in an 
electron-positron vacuum are analyzed. The efficiency with which three synchronized pump 
waves with frequencies wl, w2, and m3 produce the combination mode with frequency 
m1+m2-m3 is shown. The nonlinear phase shifts of the interacting radiation pulses are 
determined. Transverse effects associated with the interaction of radiation beams 
(decay instability, mutual channeling, and mutual focusing) are considered. It is shown that 
vacuum polarization effects can be observed in laser experiments, including phase 
conjugation. 

1. INTRODUCTION. INITIAL EQUATIONS 

Progress in obtaining laser radiation with high lumi- 
nance, and in particular, ultrashort (femtosecond) laser 
pulses with peak radiation of up to w/cm2 (Ref. 1 ) is 
the motivation for studying quantum-electrodynamic phe- 
nomena in strong light fields. Among these phenomena the 
polarization of the vacuum has a fundamental significance. 
Although the critical value of the laser intensity at which 
electron-positron pairs are efficiently produced 
(Ic,=2.5 . w/cm2) will not be achieved anytime soon, 
the use of lasers in this field is promising for the following 
reasons. If we are interested in the changes in the proper- 
ties of the laser radiation itself due to vacuum polarization, 
then they can be detected significantly below the critical 
intensity level because of changes accumulated along the 
path of the beam (propagation effects) and the high accu- 
racy with which weak changes in the radiation properties 
can be measured. In addition, accumulated nonlinear dis- 
tortions of the laser radiation can significantly enhance its 
local intensity, since, e.g., when radiation undergoes self- 
focusing in ordinary (focusing) media its peak intensity 
increases many  time^.^'^ 

The analysis carried out by Aleksandrov et U I . ~  showed 
that vacuum polarization effects can realistically be ob- 
served in specially designed laser experiments, although 
this demands the attainment of exceptional accuracy in the 
optical measurements when powerful ultrashort laser 
pulses are used. The question of possible competing non- 
linear effects such as, e.g., the decay instability, has re- 

div B =0, rot E=  -dB/&, rot H =aD/at, 
(1.1) 

div D=O, 

We use the relativistic system of units, in which we set 
Planck's constant fi= 1 and the velocity of light c= 1. The 
specific properties of the vacuum are expressed in the form 
of "constituent equations." For relatively low-frequency 
electric and magnetic fields E and B the vectors P and M 
of the electric and magnetic polarization of the vacuum are 
expressed in terms of the radiative correction to the La- 
grangia~l density (see, e.g., Ref. 5; a more complete expres- 
sion is given in Refs. 6 and 7). Since we will be interested 
in the effects with the lowest thresholds, it suffices to retain 
the terms which have the lowest powers of the fields. Then 

In (1.3) we have written F= ( B ~ - E ~ ) / ~ ,  G=E B, and m 
and e are the electron mass and charge, respectively (in our 
units e2= 1/137). The vacuum is transparent (the proba- 
bility of producing actual electron-positron pairs is negli- 
gibly small). Note that Eqs. (2.1 ) and (2.2) have the semi- 
classical form8 which is usual for nonlinear optics (the 
form of the constituent equations is determined from quan- 
tum theory, after which the electromagnetic field is de- 
scribed classically). The limits of applicability of this sys- 
tem according to Refs. 5 and 6 assume the form 

mained open. In the present work we analyze and compare 
Here ~ , , = r n ~ / e  is the critical value of the electric field 

the achievability of a number of other four-wave nonlinear strength corresponding to the value I,,, the intensity at 
optical phenomena in vacuum, in which the synchroniza- which electron-positron pairs are produced. 
tion conditions necessary for the effect to accumulate spa- In contrast with the usual problems of nonlinear 
tially can be satisfied. optics,8 the vacuum is characterized by both the electric 

We start with Maxwell's equation, including the and the magnetic nonlinear polarizations simultaneously. 
Heisenberg-Euler radiation corrections caused by vacuum For a plane electromagnetic wave the contributions of the 
polarization. In the notation of Berestetskii et alO5 they electromagnetic components mutually annihilate (the in- 
have the same form as the equations for the electrodynarn- variants satisfy F=G=O) and there are no radiative cor- 
ics of continuous media: rections. The corrections appear when external fields are 
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included; e.g., in a static magnetic field magnetic anisot- 
ropy of the vacuum5 and other effects which are important 
for astrophysics o c ~ u r . ~ - ' ~  Under laboratory conditions 
higher field strengths are produced in ultrashort laser 
pulses. Consequently, here we will consider only manifes- 
tations of vacuum polarization in the field of several 
crossed laser beams. 

2. FOUR-WAVE INTERACTIONS OF PLANE WAVES 

2.1. Reduced equations 

We represent the field in the form of a set of plane 
waves: 

If we neglect vacuum polarization ( P  =M=O) the in- 
dividual plane waves do not interact with one another. 
Then their complex amplitudes Ef and Bf are constant. 
For them, and also for the wave vectors k and frequencies 
u f ,  it follows from the Maxwell equations that 

Substituting (2.1 ) in ( 1.2) yields the electric and mag- 
netic polarizations of the vacuum in the form 

If the fields are represented by a given set of wave 
vectors and frequencies, then for the polarization a larger 
set of these quantities would be required. Substitution of 
the polarizations P and M in Eq. ( 1.1 ) shows that com- 
ponents with new (combination) wave vectors and fre- 
quencies arise systematically. However, they are produced 
effectively only when the synchronization conditions hold, 
namely 

Moreover, when the region where the different beams over- 
lap is small, the amplitude of the combination mode is also 
small (see below). In the representation of the field and the 
vacuum polarization we can therefore restrict ourselves to 
a finite (and small) set of plane waves. 

In treating the interaction of waves in vacuum we re- 
gard the amplitude E,, B,, Pi, and Mi as slowly varying 
(on the scale of the radiation wavelength A,) functions of 
the coordinate z (for simplicity we choose the z axis in the 
direction of the wave vector kj and assume that all waves 
are monochromatic). Then, taking into account (2.4), the 
reduced equations for the amplitude components assume 
the form 

FIG. 1. Diagram of the wave vectors satisfying the synchronization con- 
dition. 

dB,,/dz=iSjBjY-2?riq(Pjx+MjY). 

Note that from (2.5) we can deduce the conservation of 
the quantities 

The longitudinal components of the field are quantities of 
higher order. For nonmonochromatic (pulsed) radiation 
we must substitute d/dz-. d/az+a/at in the left-hand sides 
of Eqs. (2.5). 

2.2. Generation of combination modes 

Since in this approximation the polarization ( 1.3 ) is of 
third order in the field (in the terminology of nonlinear 
optics the vacuum is a cubic medium), it suffices to follow 
the generation of a combination mode by three initial 
pump waves. We write the subscripts of these waves in Eq. 
(2.1) as j = l ,2,  and 3. Note that for a wave with the sum 
frequency u j  = u1 + u2  + u3 the synchronization condition 
is satisfied only when all pump waves are coparallel, 
k = u p z ,  where ez is the unit vector in the z direction. But 
the total field of these waves is a plane wave, for which the 
nonlinearity of the vacuum disappears. Hence it is effec- 
tively impossible to generate combination modes with the 
sum frequency in vacuum (see also Ref. 4). 

Consider the generation of a combination mode of the 
form 

We will show that the synchronization conditions hold for 
this scheme. For example, assume that the frequencies of 
all the pump waves and the directions of the first two 
waves (i.e., u1,2,3 and kl,2) are given. The definition of k3 
(and k,) satisfying the synchronization condition S,=O is 
illustrated by the scheme of Fig. 1. Here we write the 
vector 0 1 0 2 = k l  +k2, where the spheres with center at O1 
and O2 have radii of u l  +uz-u3, and u3, respectively. The 
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spheres intersect on the circle C. The wave vectors kj  and 
k3 act as generatrices for the cones with base C and vertices 
O1 and 02. 

In calculating the components of the vacuum polariza- 
tion that enter in (2.5) we can assume that relations (2.2) 
are satisfied. Thus, for an arbitrary direction of propaga- 
tion and polarization states of the waves 1,2, and 4 we find 

/ 0 

The expressions for the other field components have a 
similar form. 

1 

2.3. Phase conjugatlon 

2 FIG. 2. Diagram of wavefront conjugation for degenerate four-wave - interaction. 

An important special case of the generation of combi- 
nation waves studied above is the scheme for wavefront 
conjugation in degenerate four-wave interactions. ').I4 Here 
all waves have the same frequencies ( a j  = w1 = w2= w3 
=w), and the wave vectors satisfy the relation (Fig. 2) 

k2= -kl, kj= -k3. (2.13) 
X [ [ E I B ~ + E ~ B I  I (E3y+ &I*+ [EiB: 

For simplicity we choose the polarization of all waves 
+E:BiI (Ezy+B2x) + [E2B:+EfBzl to be such that their magnetic field is directed perpendic- 

ular to kl and k3 (Bj= Bjey , where ey is the unit vector in 
X (Ely+ BlX) 11, (2.8) the y direction, perpendicular to the plane of Fig. 2). As 

Pjy-Mjx= ( e 4 / 1 8 0 d m 4 ) { [ ~ 1 ~ 2 - ~ 1 ~ 2 1  (E3y+ B3x)* before the z axis is directed parallel to the vector kj. Then, 
using relations (2.2) to calculate the component of the 

+ [ElES-BlBfI (Ez,+ Bh)  + [E&j (2.8), we find 

-BIB:] (Ely+ B1x) -(7/4) dEj/dz=i(e4w/45nm4) (3+cos2 8)E1E2@. (2.14) 
If we assume that the field (2.12) is known for z=I we 
have 

x (Elx- BlY) 1). The amplitude Ej of the new (combination) mode 

The formal solution of (2.5) takes the form with wave vector k j  = - k3 is proportional to the length I of 
the wave interaction region (the effect builds up over a 

Assuming that the field is given8 amounts to ignoring the 
longitudinal variation of the pump wave amplitudes in 
evaluating the integral in (2.9). We take the quantity 
Pjx+Mjy outside the integral, replacing the pump wave 
amplitudes [see (2.8)] appearing there by their original 
values (at the entrance to the beam intersection region): 

The deviation from the exact synchronization condition is 
negligible if 

)6,Jz41. (2.11) 

Then taking this condition to hold and assuming that the 
original amplitude (at z=0) of the combination mode sat- 
isfies Ejx(0) =O we find 

- 
long trajectory), and also to the complex conjugate ampli- 
tude of wave 3. If the result is generalized by replacing 
plane waves with beams having a smooth transverse vari- 
ation of the amplitude this implies that the radiation of the 
combination mode has a reversed (relative to pump wave 
3) wave front, i.e., that phase conjugation occurs. 

2.4. Blretringence 

Another case in which the synchronization conditions 
are satisfied exactly corresponds to the interaction of two 
(rather than three) waves: 

Choosing the z axis parallel to the direction kl ,  we can 
write Eqs. (2.5) in the form 

dEll /dz=iwlSnEll , dBll /dz=iw1SnBlL . (2.17) 

This corresponds to optical anisotropy of the vacuum and 
the presence of two intrinsic polarization states of wave 1 

993 JETP 76 (6), June 1993 N. N. Rozanov 993 



with different indices of refraction (birefringence of the 
vacuum in the field of a strong electromagnetic wave4) : 

Sn=n-1=(kl/wl)-1=n21~o12. (2.19) 

Then from (2.8) and (2.16) it follows that 

*3 1 (EO~-BO,)~+ (Eo,-~o,)~I3. (2.20) 

The two signs in (2.20) correspond to two different 
(linear and mutually orthogonal) intrinsic polarization 
states of wave 1. When wave 0 is linearly polarized we find 
for the polarization states p= 1, 2 of wave 1 

Here 8 is the angle between the propagation directions of 
the two waves (between their wave vectors) and we have 
q,=7 or 4. The nonlinearity coefficient n2 is largest for 
oppositely directed waves ( 8 = ~ ;  this case was treated pre- 
viously in Ref. 4). For small values of 8 it satisfies n2- 84. 
The description of the change in an arbitrary polarization 
state of a test wave 1 reduces to the above relations after 
the field is expanded in a basis of the intrinsic polarization 
states. 

To generalize to the case of pulsed radiation, instead of 
(2.17) we use the transport equations in the following 
form (for simplicity we consider the case of oppositely 
directed waves and two polarization states in which 
E= Ee, , B = Be,) holds: 

We identify the real amplitudes and phases of the waves: 
E,=Ajexp(i@,), I,=A;. For these it follows from (2.22) 
that 

ar,/az+a~,/at=o, -ar2/az+ ar2/at =o, (2.23) 

The solution (2.23) corresponds to transport of the pulse 
intensity profiles without any distortion: 

The wave phases undergo nonlinear shifts: 

3. TRANSVERSE EFFECTS 

Thus far we have disregarded the transverse variation 
of the amplitudes of the interacting waves, assuming them 

to be planar. In "ordinary" nonlinear media it is important 
to treat the transverse structure, mainly for the following 
reasons. First, the propagation of a plane wave in a non- 
linear medium may be accompanied by the decay instabil- 
ity (small-scale self-focusing), which leads to filamenta- 
tion: the beam radiation decays into separate filaments.15 
Second, the transverse variation of the beam intensity can 
give rise to effective nonlinear lenses in the medium (large- 
scale s e l f - f ~ c u s i n ~ ) . ~ ' ~ h e  sharp rise in the radiation in- 
tensity at a nonlinear focus leads to a variety of nonlinear 
phenomena, all the way to breakdown of the medium. 

In vacuum these effects have a somewhat different 
character. Thus, the decay instability is absent for a plane 
wave, but can occur for several intersecting waves (trans- 
verse instabilities of oppositely directed waves in "ordi- 
nary" nonlinear media were studied in Ref. 16 and in many 
subsequent publications). The large-scale self-focusing of a 
single beam in vacuum is also impossible. We can, how- 
ever, speak of mutual focusing, e.g., of two beams (see also 
Ref. 2 and the references cited there); for pulses each beam 
induces a propagating distributed lens for the other beam. 

For simplicity we will consider the interaction in vac- 
uum of two oppositely directed beams in a quasisteady 
regime (long radiation pulses). Neglecting the weak vari- 
ations in the radiation polarization (see Ref. 4), we can 
describe the transverse effects by coupled scalar quasiopti- 
cal equations for the slowly varying amplitudes of the op- 
positely directed waves3 

Here A, = #/ax2 + @/a? is the transverse Laplacian, w is 
the wave frequency, and n2 is the nonlinearity coefficient 
[see Eqs. (2.19) and (2.21)]. Neglecting the diffraction 
(A, E1,,=O) we can convert Eqs. (3.1) into the transport 
Eqs. (2.5) used in the previous sections. 

3.1. Decay instability 

We begin by considering the propagation of two oppo- 
sitely directed waves whose amplitudes in some initial 
cross section z=0 are equal to El, and EzO. Weak pertur- 
bations of the transverse structure are described by the 
relative variations SEl ,2 (~ ,y ,~ ) ,  I S E ~ , ~  1 g 1 of the ampli- 
tudes: 

where M1 = w2n2 1 E2, 1 2, M~ = w2n2 I E10 1 2. We linearize 
(3.1) with respect to SEi.2: 

The perturbations are easily expanded in a Fourier in- 
tegral in the transverse coordinates rl = (x,y). For the 
component of the perturbations with spatial frequency q 
we have 
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Substituting (3.4) in (3.3) we find a homogeneous system 
of linear algebraic equations for the coefficients alP2 and 
bl,> From the condition that the determinant of this sys- 
tem vanish it follows that 

For moderately large spatial frequencies q2 > 2& the 
values of y are pure imaginary, so that the perturbations do 
not grow exponentially. But for q2 < 2& weak perturba- 
tions grow exponentially due to parametric amplification 
and the energy pumped into them from the main (under- 
perturbed) waves. The growth rate y is largest at q2=q;, 
where y,,,=&/2w. Thus, when oppositely directed plane 
waves propagate in vacuum the decay instability develops, 
causing them to undergo filamentation (small-scale mutual 
focusing). This circumstance must be taken into account 
when we describe real radiation in the plane-wave approx- 
imation. 

3.2. Mutual channeling and large-scale self-focusing 

Analysis of the beam interaction using Eqs. (3.1) is 
considerably more difficult. We will treat the symmetric 
case in which the oppositely directed beams 1 and 2 differ 
only in their direction of propagation. An estimate for the 
focusing conditions of one beam under the action of the 
other takes the form 

Here ed=il/d is the diffraction angular divergence of the 
radiation beams and d is their transverse dimension. From 
(3.6) it follows that there is a critical power 

PC,= I E 1 2d2 d 2 / n 2 .  (3.7) 

The critical power can also be closely estimated from (3.5) 
by equating the typical spatial frequency q= l/d to the 
spatial frequency q, of the fastest growing perturbation. 

When the power satisfies P> PC, the nonlinear focusing 
dominates the diffractive spreading and the beam under- 
goes compression. For P=Pcr these two processes cancel 
out one another, which gives rise to mutual channeling of 
the oppositely directed beams. In this regime the transverse 
intensity profile of each beam remains constant as a func- 
tion of z: 

Hence (3.1 ) reduces to a single equation 

Equation (3.9), together with the requirement that the 
field vanish sufficiently rapidly in the transverse direction, 
determines the spectrum of the eigenvalues M and the cor- 
responding eigenfunctions R (r, ). We need not solve it, 
since it is the same (except for notation) as the equation 
describing self-channeling of a single beam in a medium 

FIG. 3. Ray paths for the interaction between oppositely directed waves. 

with a Kerr nonlinearity.'' The lower eigenvalue corre- 
sponds to a smooth (not oscillating in the radial direction) 
axisymmetric intensity profile; the corresponding critical 
power differs from the estimate (3.7) only by a factor of 
order unity. 

When the power is in excess of the critical value we 
should expect marked mutual focusing of the beams. Con- 
sider, e.g., the propagation of two oppositely directed 
beams with the linear foci F1 and F2 located as shown in 
Fig. 3 (at low intensities). As the power increases the non- 
linear foci of these two beams approach one another, and 
for some value (depending on the original defocusing 
F1F2) of the power these foci merge (broken trace in Fig. 
3). The radiation intensity in a general nonlinear focus can 
be considerably larger than the maximum intensity at the 
focus of single beams. This would tend to enhance nonlin- 
ear effects in vacuum. In the general case in self-focusing 
there is a mechanism limiting the power at the nonlinear 
foci, related to divergence (the decrease in the intersection 
region) of the interacting beams due to their focusing. For 
a given beam power level the conditions are optimized by 
appropriate choice of the defocusing F1F2 (in the case of 
oppositely directed radiation pulses the effect increases for 
an appropriate adjustment of the defocusing as a function 
of time). Hysteresis effects18 are also possible for quasi- 
steady oppositely directed beams. 

4. NUMERICAL CALCULATIONS AND DISCUSSION OF THE 
RESULTS 

In this section we compare the possibilities for exper- 
imental observation of the nonlinear optical phenomena 
discussed above under laboratory conditions. 

The efficiency of transverse nonlinear effects is deter- 
mined by the ratio of the laser radiation power to the crit- 
ical value (3.7), which can be estimated as PC,- 10~1,il~. 
If the wavelength is A= 1 pm the power is PC,-2.5 . 
W, which is many orders of magnitude greater than that 
achieved thus far. Consequently, there is no point in ex- 
pecting any pronounced mutual focusing of laser beams. It 
is even less likely that the decay instability (filamentation) 
of laser radiation will be observed; it would require a power 
P) PC,. The situation may change as a result of progress in 
constructing wide-aperture short-wavelength lasers (as the 
angular divergence il/d decreases), or due to high-current 
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detection of the nonlinear shift in the focus of one of the 
beams under the action of the other in the subthreshold 
regime. 

Let us now consider the generation of combination 
modes. It is possible to obtain fairly complete overlapping 
of the focal regions of the laser beams in a scheme which is 
close to collinear. For this purpose in (2.15) we set 824 1, 
I=CT (here c is the velocity of light and T is the pulse 
length) and I1 =; 1 2 d 3 ,  and transform from intensities to 
energies in the pulse according to W=IST (here S is the 
area of the transverse laser beam cross section in the focal 
region). Then for the pulse energy produced by the non- 
linear interaction of three pump waves 1-3 we find the 
combination mode from (2.15) 

It is noteworthy that the laser pulse lengths do not appear 
in (4.1 ) so that when T decreases not only does the inten- 
sity I grow but the overlap length I of the pulses also 
decreases. Consequently, going to ultrashort pulses is not 
necessary here. 

We set A= 1 pm and S= cm2. The laser pulse can 
be detected fairly accurately when it has an energy - 100 
photons. To obtain this energy Wj= 102tiwj=2 lo-'' ac- 
cording to (4.1) we need a pump beam of energy 
W1-2.7. lo3 J, i.e., the total energy of the pump pulses is 
W- 3 W1 - 8 kJ. Note that laser pulses have already been 
obtained at Livermore Laboratory (USA) with an energy 
greater than 100 kJ, and a facility with energies 1-2 MJ is 
now being designed.I9 

The most serious difficulty in the experiment is secur- 
ing the necessary signal-to-noise ratio. Scattering of pump 
beam radiation in the signal channel (in the direction kj) 
may be reduced by choice of the polarizations. The in- 
crease in the frequency mismatch is limited by the synchro- 
nization. The property of wave conjugation of the detected 
radiation with respect to the pump beam 3, described 
above, affords additional possibilities. According to the es- 
timate of Ref. 4, the pressure of the residual gas can be 
chosen to be -lo-" torr. 

In another type of experiment the birefringence of the 
vacuum is used in a scheme with oppositely directed laser 
pulses.4 The ratios (2.26) yield the following estimates for 
the nonlinear phase shifts (which can be converted into a 
change in the polarization of the radiation): 

For A=1 pm, S = ~ O - ~  cm2, and W=104 J we find 
S+ - lo-'' rad. These values can be measured using laser 
polarimeters.4 In order to choose between this type of ex- 
periment and the other it is necessary to take into account 
the properties of high-energy laser facilities already in ex- 
istence. 

Thus, this treatment shows that in vacuum there exists 
a broad range of relatively low-threshold nonlinear optical 
phenomena. Manifestations of vacuum polarization can be 
observed in laser facilities now in existence, where both 
wave front combination approaches and extremely sensi- 
tive laser polarimeters appear to be promising. 

I am grateful to E. V. Aleksandrov for useful discus- 
sions. 
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