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The propagation of squeezed light through a crystal with a quadratic nonlinearity is 
analyzed. Squeezed light with suppressed noise can be doubled in frequency or converted into 
a subharmonic with no changes in statistical properties. The analysis is carried out by 
the Langevin approach. 

INTRODUCTION 

The development of macroscopic sources of squeezed 
lightlp2 opens the door to experiments on the interaction of 
nonclassical electromagnetic fields with media. For exam- 
ple, the capabilities of a spectroscopy with a sensitivity 
better than the standard quantum limit, based on a tunable 
parametric generator of squeezed light, have been 
demon~trated.~ A light source with a suitable spectral 
range is of interest for spectroscopic measurements, among 
others. In the present paper we discuss some conventional 
parametric systems in the role of frequency converters for 
squeezed light. We analyze the interaction of nonclassical 
states of the field in the examples of second-harmonic gen- 
eration or frequency doubling and subharmonic generation 
or frequency division. 

Parametric systems based on second-harmonic gener- 
ation and subharmonic generation have been discussed 
widely in the l i terat~re.~ These systems are usually re- 
garded as sources of nonclassical fields in layouts with op- 
tical re~onators.'.~ Some of these subharmonic-generation 
systems have been implemented e x p e r i ~ n e n t a l l ~ . ~ ~ ~ ~  Exper- 
iments on second-harmonic generation were carried out in 
Refs. 11 and 12. Pereira et aL l1 detected light with sub- 
Poisson photon statistics at the fundamental frequency. 
This light exhibited a noise suppression 13% below the 
level of the standard quantum limit. Sizmann et al. l2 have 
detected light with a 40% suppression of the amplitude 
noise at the frequency of the second harmonic. It was 
shown in Refs. 13 and 14 that parametric resonator sys- 
tems can be efficient converters of squeezed light. 

In the present paper we examine a resonator-free ver- 
sion of harmonic generation, as shown schematically in 
Fig. 1. This would appear to be the simplest optical system 
from the experimental standpoint. We are particularly in- 
terested in situations with a high conversion coefficient and 
a pronounced pump depletion. Analysis shows that just in 
such situations is squeezed light converted from one fre- 
quency to another without a disruption of the nonclassical 
statistics. Because of certain physical aspects of harmonic- 
generation processes, light which is squeezed in amplitude 
is converted efficiently during second-harmonic generation, 
while light which is squeezed in phase is converted effi- 
ciently in the course of subharmonic generation. There is 
the interesting possibility of converting amplitude- 
squeezed light in the course of subharmonic generation. A 

mechanism operates to smooth out phase fluctuations in 
this case, while amplitude fluctuations or intensity fluctu- 
ations simply grow. The subharmonic light at the exit from 
the system is nevertheless in an amplitude-squeezed state if 
this was the state of the pump wave at the entrance. 

The characteristics of the fields in these situations can- 
not be calculated through a small number of iterations of 
the equations of motion, as is customary in efforts to ana- 
lyze resonator-free schemes.4p15 For our description we 
adopt the transport theory developed by ~ o l u b e v ' ~  to solve 
the space-time problem of the interaction of a quantized 
field with a medium. In Sec. 1 of this paper we use that 
equation to derive a starting equation for the density ma- 
trix of the electromagnetic field. To calculate observables 
we take the Langevin approach, which was formulated in 
Ref. 5 for space-time problems. The Langevin equations 
are given in Sec. 2. In Sec. 3 we determine the harmonic- 
generation regimes for a long crystal, in which high con- 
version coefficients can be achieved. In Secs. 4 and 5 we 
calculate the correlation functions for the intensity and 
phase fluctuations. We also calculate the noise spectra in 
the approximation of small fluctuations. The conversion of 
squeezed light in a long crystal is analyzed in Sec. 6 for the 
second-harmonic-generation case and in Secs. 7 and 8 for 
the subharmonic-generation case. 

1. INITIAL EQUATIONS 

Figure 1 shows the optical layout for harmonic gener- 
ation. Light with frequencies wl and w2 and intensities 11, 
and I% is incident on the transparent nonlinear crystal. 
After passing through a filter with a bandwidth Aw at the 
frequencies wl and w2, the light reaches a measurement 
system. Here the light is received by a homodyne or het- 
erodyne method, and the the photocurrent spectrum or the 
noise spectrum ily (z,fi) is measured. 

To describe the propagation of the light in the medium 
we use a transport theory in which the evolution of the 
statistical properties can be found from the space-time 
equation for the density matrix of the electromagnetic 
field:16 

The right side of this equation is determined by the inter- 
action with the medium. The operators a+ and a are local 
operators which create and annihilate photons at the point 
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z of the coarse spatial scale, with a length scale 1 of the 
spatial cell. This localization arises if the operators a+ and 
a are defined as packets of modes of the normalization 
volume with wave vectors in the interval Ak=2?rl-'. Such 
packets have a spectral width A ~ = C ~ T Z - ' .  

If a parametric interaction of light with a medium is 
modeled by a standard effective Hamiltonian, the right side 
of ( 1 ) takes the usual form 

Nonlinear 
crystal a,, w2 filter Measurement 

w* 

Here x is the nonlinearity of the medium, and al and a2 are 
boson operators of modes [of wave packets with frequen- 
cies wl and wz] and wave vectors k(wl) and k(w2). In Eq. 
(2) we are assuming that the frequencies and wave vectors 
are related by 

The quantity V in Eq. (2) is the mode propagation veloc- 
ity. 

When there is a wave detuning, the characteristics of 
the fields at the exit acquire a fa~tor""~ 

- ) (  FIG. 1. optical layout. 12,, 
7_ 

sin (Ak1,/2) 

""g 4*)(z ,  a) 

% 

where la is the length of the crystal. For large detunings 
(Akl,) 1) the generation process is thus inefficient. By set- 
ting Ak= 0 we are implicitly assuming Akla( 1. 

Our starting equation, (2), describes the interaction of 
only two modes. It is not intuitively obvious that these two 
modes will be singled out in this resonator-free layout. 
Furthermore, in the case of subharmonic generation a con- 
tinuum of modes arises at the frequencies wl + E, wl -&, 

and w2 = (ol + E) + (wl - E) . These modes interact in the 
nonlinear medium. These modes may have a substantial 
effect if their wave detunings, which can be written in the 
form 

are small. In this case the relation 

determines the frequency band SE in which all modes with 
frequencies wl *E, E <, 6 ~ ,  must be taken into consideration 
in the description of the interaction. We thus need a mul- 
timode model. 

However, our modes at wl and w2 are wave packets of 
width Aw =2?rc/L. We set Aw =SE. The description of 
harmonic generation by Eq. (2) then becomes valid again. 

Using a diagonal representation of the intensity matrix, 
we write Eq. (2) for the Glauber quasiprobability: 

Specifying the statistics of the light at the entrance to the 
medium by means of (3 ) ,  we can determine all the field 
characteristics at the exit, in particular, the noise spectrum 
i:? (z,fl). The basic approximation which we will use is 
our condition that the fluctuations are small. Introducing 
the polar coordinates a, = & exp{iq,), s= 1,2, we thus 
assume that the fluctuations of the intensity E, and of the 
difference phase p around their semiclassical values I, and 
Y are small: 

Condition (4) makes it possible to simplify Eq. (3) by 
linearizing it. 

2. LANGEVIN EQUATIONS 

For the dimensionless intensities I, and difference 
phase Y we find from (3) a familiar systems of equations: 

These equations have the two integrals 
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For simplicity we are assuming that the intensities at the 
entrance, I%, s= 1, 2, and the difference phase Yo are in- 
dependent of t. 

We restrict the analysis to the case 

It can be seen from (6) that this phase difference does not 
change as the light propagates through a medium if the 
intensities are nonzero. The amplitude and phase fluctua- 
tions become independent and can be treated separately. 

Introducing the variables zr =z, I3= t -z/V, and 
switching to the new dimensionless coordinate 

y= -- fv J: dzrIl (zt) dm, 
we can put the linearized equation for the quasiprobability 
in the form 

Here the phase variable q=Aq2+ Bql is identical to ql if 
A =O and B= 1, while it is identical to q2 if A = 1 and 
B=O. The small-fluctuation condition is not necessary for 
the phases q1 and q2 separately. 

Diffusion matrix (7) is not positive definite. We can 
nevertheless write corresponding Langevin equations, as 
was shown in Ref. 19. In the case at hand, these equations 
are 

where the matrices AI and A, are defined by 

and the nonvanishing elements of diffusion matrices Dl 
and D, are 

Since we are examining the evolution of light as it propa- 
gates, there are some features in the formulation of the 
Langevin approach which stem from. the specification of 
the random sources 7(y,I3). As was shown in Ref. 5, the 
correlation functions of the random sources should be 
taken in the form 

The quantity ~S,(T) in (9)  represents a large-scale dimen- 
sionless &-function; it is introduced in the transport theory 
by the relation16 16,(~) =sin x/x, x =  2~c/l .  

The matrices A and D in the Langevin equations [and, 
correspondingly, the coefficients in (7)]  depend on the co- 
ordinates through dimensionless intensities. In an analysis 
of time evolution these quantities are constants. Explicit 
expressions for I,(z) can be found from system (5), which 
takes the following simple form in the case at hand: 

3. GENERATION REGIMES 

If the conditions 

hold for the light intensities and the difference phase at the 
entrance, then the intensity of the wave at the frequency w2 
will grow in the medium. This is second-harmonic gener- 
ation. Under the conditions 

subharmonic generation arises, and the intensity of the 
wave at ol increases. To describe these situations we intro- 
duce the parameters 

where the intensities I1,,=Il,,(z) are determined by the 
solution of (5). The quantities I, in ( 12) can be expressed 
in terms of the dimensional intensities or power levels of 
the fields. The parameters po and p then take on a simple 
meaning and can easily be found from experimental data. 
In the case of second-harmonic generation, for example, 
the quantity p is the ordinary coefficient of conversion into 
the second harmonic in terms of the intensity or the power. 

We are interested primarily in situations in which the 
conversion coefficients are large, and the depletion of the 
pump wave must be taken into account. We denote by z, 
the length of a medium which is such that the conversion 
coefficients are large. The length z, depends primarily on 
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the geometric length; it also depends on the nonlinearity of 
the crystal and the entrance intensities. This length can be 
found from the condition 

in the case of second-harmonic generation or from the con- 
dition 

in the case of subharmonic generation. We say that a crys- 
tal of length z, is "long." Let us formulate conditions (10) 
and ( 1 1 ) for a long crystal. In the case of second-harmonic 
generation, for example, we have 

In the case of subharmonic generation we have 

The situations described by ( 15) and ( 16) are known18 
to be stable, by virtue of the boundary conditions which 
have been selected. These situations are moreover easy to 
realize experimentally. For the case of second-harmonic 
generation, for example, the crystal is illuminated by only 
the light at the frequency 02. Light at the frequency of the 
second harmonic arises in the medium, since the difference 
phase with Co= 1 is stable. 

4. CALCULATION OF NOISE SPECTRA 

We introduce normally ordered correlation functions 
of the intensity fluctuations, 

and of the phase fluctuations, 

where s= 1, 2 for the waves at o l ,  02. If the fluctuations 
are small, the measured photocurrent spectra or noise 
spectra i (2 ) (~ , f l )  in the case of direct (homodyne) detec- 
tion are [see ( 17 )] 

"2' (z ,a)  = 1 +ql- IS d r  exp{iCl~)E,(z,r). ( 19) 

In the case of heterodyne detection we have 

i:2)(~,ll) = 1 +$-I d r  exp{ifi~)@,(z,~). (20) 1:, 
Here q and g are the quantum efficiencies of the photode- 
tectors; the normalization for i(2) (z,a)  has been chosen in 
such a way that the level of the shot noise or the quantum 
limit corresponds to one. 

To calculate the correlation functions we can use the 
Langevin equations. Here we need to specify the statistics 
of the light at a boundary, i.e., the quantities ES(0,r) and 
@,(O,T), which are determined by the sources. In order to 
analyze the physical states of the field, we restrict the dis- 
cussion to resonator sources which emit light in a phase- or 
amplitude-squeezed state. There are some well-known the- 

oretical  model^^^*^' for such sources; several of these mod- 
els have been realized experimentally.172 For such sources 
we have 

where the parameter ((0) of the statistics at the boundary 
of the medium, is related by ((0) = Cl( to the intraresona- 
tor parameter 5, which is usually involved in theoretical 
de~cr i~t ions .~  Here C is the resonator width, and r is the 
width of the spectrum of amplitude fluctuations. Here we 
have (2- 1/2. In the case (<0, the light from such a 
source is squeezed in amplitude and has a sub-Poissonian 
photon statistics. Its noise spectrum is 

In the case &= - 1/2 and C= T, there is almost no noise at 
all in the low-frequency region (a =0). 

We take the correlation function @(O,T) in the form 

This approach corresponds to a source with small phase 
fluctuations. The meaning of the quantities c(0 )  and 6 is 
analogous to that of ((0) and (. For our model we have 
C) - 1/2. The case g < 0 corresponds to a phase-squeezed 
state with a noise spectrum as in (21 ): 

Here y is the spectral width of the phase fluctuations. 
Solving the Langevin equations, we find that the cor- 

relation functions at the exit from the medium can be writ- 
ten in the form 

where all the entrance cross-correlation functions have 
been set equal to zero. The propagators W and U in (23) 
describe the conversion of the incoherent component of the 
light. For coherent light we have @(O,r) = E ( ~ , T )  =O. For 
the light at the frequency wl we have 
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- (1-PO) &(I-p)-'12, 

where po and p are defined in ( 12), and 

~ = ( l -  & ) ( I -  & ) [ ( I +  & ) ( I +  &)]-I. 

At the entrance to the crystal, i.e., at z=0, we havep=po, 
WI2= U12=0, and Wll = UI1 = 1. For the light at the fre- 
quency w2 we have 

w 21-8(1-~0)(1-p)~[ ln~-2 -A &(l-p)-' 

Note that these equations were derived from the Langevin 
equations in which the random sources were set equal to 
zero. In other words, only a semiclassical approach is re- 
quired for calculating them. 

The propagators D and F in (23) represent the noise 
due to the medium itself; it is 6-correlated in time. To 
calculate this noise, we must use quantum theory. For the 
light at o l ,  for example, we find 

For the light at w2 we find 

~ 2 = - f p ( 1 - - p o ) + ( 1 - - p ) { & - f  (1-p)po 

These expressions are valid for any medium, in particular, 
a long crystal. The basic approximation here is the require- 
ment that the fluctuations be small. 

5. FLUCTUATIONS OF THE DIFFERENCE PHASE 

At the exit from the medium, the correlation function 
of the difference phase, 

M(z,T) = (p(z,t)p(z,t+r) ), 

is given by an expression like (23): 

where 

~ o = p o ( l  -PO)~[P( 1 -pI2l-' 

is found from the solution of the semiclassical problem, 
while the propagator 

is found from a quantum analysis. 
If the harmonic generation is to be a stable process, the 

fluctuations in the medium must remain small: Ro(z)(l, 
I R (z) 1 ( 1. The situation with p=O or p =  1 is a critical 
one. This case cannot be dealt with under the approxima- 
tions which we have been using. Analysis shows that the 
inequalities which are necessary can be satisfied for the 
cases of generation in a long crystal described by (17) and 
(18) in Sec. 3 of this paper. A necessary condition here is 
that the dimensionless intensities at the entrance be large: 

Analysis of the correlation function M(z,r) with 
M(0,r) =0 shows that it may be negative in the case 
p<po. The meaning here is that the difference phase and 
the phases of the fields are squeezed separately in the case 
of subharmonic generation. 

6. CONVERSION OF AMPLITUDE-SQUEEZED LIGHT 
TOTHEDOUBLEDFREQUENCY 

Let us examine second-harmonic generation in a long 
crystal. Setting pozO and p z  1 (in the sense that we have 
po(l and po4p < 1), we find from (23) 

The fluctuations at the exit will be small if 

This condition is satisfied if the dimensionless intensity at 
the entrance is large, in accordance with (24): 
Ilo) ( 1 -p) -I. The noise spectra corresponding to (25) 
for the waves at wl and m2 are 

where the noise spectrum of the fundamental light (that at 
the frequency ml)  at the entrance to the medium has been 
taken in the form in (21). If we assume that the funda- 
mental light at the entrance was in an amplitude-squeezed 
state with suppressed noise, i.e., if we assume cl= - 1/2 
and C1 = I?], then the expression for il2) (z, , a )  becomes 
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FIG. 2. Conversion of amplitude-squeezed light in the 
course of second-harmonic generation (SHG). 

I 

c I SZ h R C, A"J n 

I L Y I  
Figure 2 shows the noise spectra for this case. 

Two circumstances associated with these results de- 
serve comment. First, the fundamental light at the exit is 
squeezed regardless of its statistics at the entrance. That 
this is true becomes obvious when we note that this light 
undergoes an absorption as it propagates through the me- 
dium. For ideal photodetection (q= 1 ), we conclude from 
(26) and (27) that the noise of the fundamental light and 
that of the second harmonic are completely suppressed 
over the broad frequency band Ao. The band Ao may be 
considerably broader than the width of the noise spectrum 
at the entrance, which is determined by rl. Second, 
squeezing in the second harmonic arises not only because 
of the nonlinear medium but also because of the squeezing 
of the fundamental light. If follows from (27) that 
squeezed light with suppressed noise in a long crystal is 
converted to the doubled frequency without a disruption of 
the statistics. At the exit from a lohg crystal the fundamen- 
tal light is of low intensity and is squeezed. This state is 
called an "amplitude-squeezed vacuum." A squeezed vac- 
uum is of interest from the practical standpoint, since its 
use in a system of heterodyne detection increases the sen- 
sitivity of the photodetection. 

7. CONVERSION OF PHASE-SQUEEZED LIGHT 
TOTHEHALVEDFREQUENCY 

Let us examine subharmonic generation. For a long 
crystal, under the conditions p o z  1 and pzO, i.e., under 
the assumptions p< 1 and p 4 p o  < 1, we find from (23 ) 

@l(z, ST)= -f I~ , (T)  +f @2(0,~), 
(28) 

Q2(zm , r )  = -I~,(T). 

The condition that the fluctuations be small, which is re- 
quired in this case so that the noise spectrum can be writ- 
ten as in (20), reduces to the requirement 

These inequalities hold if the dimensionless intensities at 
the entrance are again assumed to be large in accordance 
with (24). For the light at 02,  with the entrance correla- 
tion function as in (22), the noise spectra in the case of 
heterodyne detection at the exit from a long crystal are 

Expressions (29) have the same structure as the noise 
spectra in the course of second-harmonic generation ac- 
cording to (26). The conversion of phase squeezing there- 
fore proceeds in a manner analogous to the conversion of 
amplitude squeezing in the case of second-harmonic gen- 
eration. In a long crystal, phase-squeezed light with sup- 
pressed noise is thus converted to the subharmonic fre- 
quency without a disruption of the statistics. At the 
frequency wl, a state with a small dimensionless intensity 
arises at the exit from a long crystal. This is a phase- 
squeezed state: a squeezed vacuum. 

8. CONVERSION OF AMPLITUDE-SQUEEZED LIGHT 
TO A SUBHARMONIC FREQUENCY 

Under conditions corresponding to subharmonic gen- 
eration, a physical mechanism operates to smooth out 
phase fluctuations. This mechanism stems from nonlinear 
phase locking. In this case, intensity fluctuations should 
grow. For subharmonic generation in a long crystal we find 
the following expressions for the correlation functions of 
the intensity-fluctuations from (23) : 

The requirement that the fluctuations be small, which in 
the case at hand means 

can be satisfied if we require, in accordance with (24), that 
the dimensionless intensity at the entrance, I%, be large: 
1% ) [ p ( l  - po)]-4 It follows from (25) and (26) that, 
for example, in the case E2(0,7) =0, with coherent light 
incident at the entrance, the crystal simply increases the 
intensity fluctuations. However, the fluctuations at the exit 
depend on the statistics at the entrance. Specifying the 
entrance statistics as in (21), we find, for the light at a , ,  

It follows from (31) that if the pump light at the entrance 
is amplitude-squeezed with suppressed noise in the low- 
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FIG. 3. Conversion of amplitude-squeezed light during 
subharmonic generation (SG) . 

frequency region, i.e., if &= - 1/2 and C2=r2 ,  then the 
subharmonic light has the same properties in the frequency 
band n4c2: 

Outside this band, R>C2, however, the noise is nearly 
twice as high as the shot noise. The reason is that the 
crystal generates a high intensity noise, which is "white" in 
the Aw observation band according to (30). The nature of 
the spectra in this case is illustrated in Fig. 3. 

In the case of subharmonic generation, light which is 
amplitude-squeezed with suppressed noise is converted to 
the halved frequency, with no changes in the properties of 
the noise in the low-frequency region. This result follows 
from simply an analysis of the process by which the light 
propagates through the medium. 

Let us consider the uncertainty relations for the case of 
the conversion of amplitude-squeezed light under 
subharmonic-generation conditions. We introduce the 
usual quadrature operators 

for which the uncertainty relations 

hold. Here 

and the index N corresponds to a normally ordered oper- 
ator. Under the assumption that the fluctuations are small, 
the normal variances of the quadratures can easily be re- 
lated to the correlation functions of the intensity and the 
phase which were introduced in Sec. 4: 

As a result, (32) becomes 

where the subscript 1 means that the correlation functions 
correspond to the light at wl. From (30) and (28) we have 

We then find 

The product of uncertainties at the entrance for the light at 
w2 is thus reproduced precisely at the exit from a long 
crystal for the light at w l  . 

CONCLUSION 

Transport theory has been used to analyze resonator- 
free parametric systems in the role of frequency converters 
of nonclassical states of light. We have focused on second- 
harmonic generation and subharmonic generation with 
high conversion coefficients. These cases cannot be ana- 
lyzed by the customary iterative calculation methods. The 
results derived here demonstrate the promising outlook for 
the use of optical systems of this sort for frequency con- 
version of squeezed light. 

Amplitude-squeezed light with suppressed noise in the 
low-frequency region can be converted to the doubled fre- 
quency under conditions corresponding to second- 
harmonic generation, or to the halved frequency under 
conditions corresponding to subharmonic generation, with 
no changes in properties. 

Phase-squeezed light can be converted in the same 
way, but only to the halved frequency in subharmonic gen- 
eration. 

We wish to thank A. S. Troshin and, especially, Yu. 
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