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The properties of electromagnetic waves in a crystal in a frequency range where the principal 
values of the dielectric-constant tensor have opposite signs or vanish are studied. It is 
shown that in this range there can exist electromagnetic waves, strongly scattered in the 
medium, with abnormally large wave vectors and with a nonrelativistic phase velocity. 
The range of existence of such waves in uniaxial and biaxial crystals is found. The waves are 
generated by the Cherenkov radiation of a nonrelativistic charge. 

1. INTRODUCTION where 

In anisotropic media without spatial dispersion the dw ' 
principal values &,(a), &,(a), and &,(a) of the dielectric- 
constant tensor are frequency-dependent and vanish, gen- 
erally speaking, at different frequencies R,, R, and R, . For 2 01 

&ORz=- f ofdw'er(o'). frequencies intermediate between these values, e.g., I I r .  n - 
R,;w<R,, the values of E, and E~ may have different 
signs. This leads to peculiar features of the plane waves of If for each principal value E; we introduce its own oscillator 

such frequency, in particular, to abnormally large values of strength 

the wave vector at optical frequencies. Plane waves of fre- 
quency o coinciding with R,, R, or R,, i.e., reducing to 
zero one of the principal values of the dielectric constant, 
also have some characteristic features. In particular, the 
longitudinal waves can propagate only strictly along the 
relevant axis. Thus, the properties of crystal plane waves in 
the frequency range mentioned above are of great interest. 

2. DIELECTRIC CONSTANT OF A TRANSPARENT CRYSTAL 

Consider a crystal in which the imaginary part of the 
dielectric constant vanishes in a wide range of frequencies 
between the values wl and w2>wl. We align the coordinate 
axes with the principal axes of the crystal's dielectric- 
constant tensor cis. Then, for example, the ith component 
Di of the electric induction depends only on the ith com- 
ponent E, of the electric field and, according to the causal- 
ity principle, only on the values of Ei at preceding times. 
Then, similar to the reasoning for an isotropic medium,' 
we can find the Kramers-Kronig dispersion relations for 
the principal values E, = E: + i~:, E, = E; + i~;, and E, 

= E: + i~: of the dielectric-constant tensor, 

E;(w)-1=- dw' ( i=x,y ,z) ,  (1) 

For transparent media and w frequencies satisfying the 
condition 02)w>ol, similar to the case of isotropic media, 
we can find from ( 1 )  and (2) 

then 

It follows from (3) that each principal value E~(o) van- 
ishes at w = Qi if the transparency region is wide enough, 
i.e., wl(w(wZ. Thus, &,(a), &,(a) and &,(w) vanish, gen- 
erally speaking, at different frequencies. 

3. RELATION BETWEEN THE CRYSTAL DIELECTRIC 
CONSTANT AND THE POLARlZABlLlTY OF A SINGLE 
MOLECULE 

As is well-known, the polarizability aik(w) of a single 
molecule is2 

Consider an axially symmetric molecule whose length is 
larger than its width. At frequencies for which the quan- 
tum energy h is small in comparison with the ionization 
potential, the inner electrons make a small contribution to 
aik, since for them the intermediate states with I wnl ( - w 
are occupied by other electrons and only the intermediate 
states with I w,, 1 Bw are available. Therefore the main con- 
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tribution to (7) comes from valence electrons whose wave 
functions pertain simultaneously to several atoms and are, 
therefore, stretched along the molecule axis. 

For such wave functions we can assume that 

if the molecule length is large in comparison with its width. 
If w is far enough from any of the frequencies on,, we can 
rewrite (7 )  in the form 

where we have used the following notation: 

Here e; is a unit vector in the direction of the molecule axis. 
Consider now a crystal consisting of axially symmetric 
molecules whose axes are equally oriented along the vector 
e, forming a uniaxial crystal with the principal optical axis 
along e. 

In macroscopic electrodynamics the crystal is regarded 
as a homogeneous anisotropic medium. This means that 
the spatial distribution of molecules can be considered uni- 
form, i.e., we can neglect the existence of the lattice while 
considering the spatial distribution of the molecule centers 
of inertia. The lattice is allowed for by considering the 
directions of molecule orientation. Therefore we assume 
below that all the molecules are oriented along e and are 
uniformly distributed in space. 

The polarization P of the crystal is proportional to the 
mean local field E'"" acting upon each molecule, so that the 
Fourier-transforms of these quantities obey the relation 

where no is the number of molecules per unit volume. To 
calculate the mean field, consider first the microscopic field 
Emlc acting on the molecule at a point R,. This field is the 
sum of a primary field EO (which has not yet interacted 
with any molecule) and secondary fields created by dipole 
moments of all other molecules, d(Rb,t). Therefore we can 
write for the field ~ourier-transforms3 (Rub r Ra - Rb) : 

where 

Equation (12) becomes integral, if we take it into account 
that 

The mean local field is found from the microscopic one by 
averaging over the coordinates of all molecules except the 
one considered. As noted above, in crystal optics this av- 
eraging can be carried out just as in amorphous media, 
which gives, instead of (12), 

where g(RQb) =no[l - f (Rab)] is the function characteriz- 
ing the molecule distribution on the average relative to the 
molecule considered. Since, on the average, the molecules 
are uniformly distributed, around each of them there is 
some molecule-free space characterized by the function 
f (Rob). Multiplying (15) by noaji(w) and switching to 
Fourier-transforms in coordinates, we find 

where 

Equation ( 16) relates the polarization to the primary field, 
i.e., the field obeying the Maxwell equations in vacuum 
with the same current density as in the Maxwell equations 
in matter for the mean macroscopic field E. This allows us 
to express the primary field EO through E and P: 

Eliminating @ from ( 16) with the help of ( 19), we get an 
equation connecting the mean macroscopic field E with the 
polarization: 

The integral over 1 in (19) is determined by the function 
f (q-1) which is finite only in the region where its argu- 
ment does not exceed n;13 in the order of magnitude. If we 
consider the field in the optical range, then w/c<n;13 and 
I q 1 gn;l3. This allows to set f (q - 1) = f ( - 1) and to ne- 
glect w / ~  in the denominator of ( 13). Thus, we find 
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As mentioned above, the function f (Rob) characterizes the 
molecule-free volume near the molecule considered. In a 
uniaxial crystal this volume should be axially symmetric, 
which is taken into account in (20). If this volume has 
spherical symmetry, we have b=O. Introducing an angle 
6' between 1 and the principal optic axis, we find from 
(20) : 

Multiplying ( 19) by ei and using (8), we can easily find for 
the induction component along e: 

whence 

Denoting the field and polarization components normal to 
the crystal axis by E' and P' respectively, we can write 
the result of multiplying (19) by the tensor (Sik-f?,ek) in 
the form 

whence 

It follows from (23) and (25) that the frequencies ill and 
all which reduce el ( a )  and ell (a) to zero are given by 
the equations 

In the particular case, when f (Rob) is isotropic, we have 
b=O and a=$. For a spherically symmetric molecule, 
a=B. The frequencies and all coincide only when 
a=B and b=0. In a noncubic lattice, even for spherically 
symmetric molecules, the values el and EII , and also a, 
and all do not, generally speaking, coincide. 

4. SLOW EXTRAORDINARY WAVES IN A UNIAXIAL 
CRYSTAL 

Consider extraordinary waves in a uniaxial crystal in 
the frequency range between a, and all , when EL (w) 
and ell (w) have opposite signs. 

The dispersion equation for the extraordinary wave 
has the form 

where 6 is the angle between the wave vector k and the 
principal optical axis of the crystal. For positive uniaxial 
crystals (ell > el , and x > 0) an undamped extraordinary 
wave exists for any 6 if E' > 0, and does not if el < 0. For 
negative uniaxial crystals (ell < E ~  , and x <0)  the un- 
damped extraordinary wave exists for any 6 if el > 0 and 
1x1 < l .  In the case when x=-1x1 <- I ,  for el >O the 
extraordinary wave exists in the angle range 6 > 6 0  and for 
el <O in the range 9 <a0, where 6 0  is defined by the 
relation 

When x -- - 1, the denominator in (27) can be so 
small that the wave vector k becomes abnormally large, 
i.e., k)w/c. The wave phase velocity becomes nonrelativ- 
istic: 

so that it is natural to call such waves slow. 
For macroscopic electrodynamics to be valid, k must 

be small in comparison with the inverse lattice constant 
L-', so that for slow waves the following inequality should 
hold: 

The condition x m  - 1 necessary for the slow wave exist- 
ence can be satisfied, in particular, in the frequency range 
where €11 is negative and small in absolute value and 
E' > 0. This is satisfied for w close to all . 

The inequality (30) holds only in a comparatively nar- 
row angle range, 6 - 8 0  [see (28)]. From (30) we can 
define the range where slow waves exist by the inequality 

The electric field E and induction D in the slow wave, as 
always in the extraordinary wave, are in the plane defined 
by the vectors e and k (the principal cross-section plane) 
and the magnetic field H is normal to this plane. 

The short wavelength of slow waves makes them more 
sensitive to small inhomogeneities and, in particular, to 
scattering. Since slow waves exist only in a narrow angle 
range, the result is that a scattered wave leaves this range 
and becomes an ordinary wave. The slow wave extinction 
coefficient turns out to be much larger than in the case of 
ordinary waves, and the attenuation of the slow-wave in- 
tensity due to scattering goes much faster then usually. The 
fact that the extinction coefficient is proportional to the 
fourth power of the wave vector clearly indicates that scat- 
tering can strongly affect slow wave propagation. 

Small phase velocity of slow waves results in that the 
processes of radiation of such waves differ from those of 
ordinary waves. For example, if the velocity v of a charge 
moving uniformly in a crystal is larger than the slow-wave 
phase velocity vPh but smaller than the phase velocity 
C/ & of an ordinary wave, the Cherenkov radiation of the 
charge consists of slow waves. 
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Such a source radiates only slow waves, while in other 
cases ordinary waves are also emitted. 

One has to bear in mind that for the Cherenkov radi- 
ation of slow waves to arise, the charge velocity direction 
with respect to the crystal should be such as to satisfy the 
inequality (31) for the angle range in which the slow 
waves exist. 

For the Cherenkov radiation to exist, the following 
equations must hold 

where a is the angle between the radiation direction and 
the particle momentum. Introducing the angles 0 and @ 
determining the particle velocity direction, we can write 

cos a = cos 9 cos 0 +sin 9 sin 0 cos(q, - a ) ,  

(q, is the azimuth of the wave-vector k) . Using this relation 
together with (27), we can write the condition of the 
Cherenkov-radiation existence in the form 

-2 tg9A sin 0cos 0cos (9 - -a )  

For a charge moving along the principal axis a = 9 ,  0=0 
and 

this angle is in the range of slow wave existence given by 
(31). 

The emitted energy can be found from an expression 
derived in Ref. 4 for charge energy losses in an arbitrary 
crystal. In the case considered the lost energy goes into 
slow wave formation. Note that using the results of Refs. 4 
and 5, one must start from the exact expression for the 
losses and proceed to the nonrelativistic limit, allowing for 
smallness of the ratio w/ck-vph/c-v/c. The expression 
given in Refs. 4 and 5 for the nonrelativistic case corre- 
sponds to k-w/c and is not applicable to slow waves. 

5. SLOW ELECTROMAGNETIC WAVES IN A BlAXlAL 
CRYSTAL 

Slow plane waves with wave vectors satisfying the con- 
dition l/L)k)w/c in a biaxial crystal can be easily de- 
scribed by neglecting in the Fresnel equation the terms of 
order ( o / ~ k ) ~ .  Then the dispersion equation takes the 
form 

The range where such waves exist is given by the inequality 

The second inequality can be satisfied if the denominator is 
small, i.e., if the principal values E,, E,, and E, of the di- 
electric constant can be positive as well as negative. This is 
possible, in particular, at frequencies w between two zeros 
of these principal values, e.g., for R, < a  < f l y  or 
Rx < w < R, . We assume, for definiteness, that E, > 0, while 
E, and E~ < 0. The denominator in (33) vanishes for the 
angles aO(q)  defined by 

The angles 9 and q, cannot approach the line aO(q)  in the 
9q, plane owing to the left-hand side of inequality (33). On 
the other hand, they cannot move away too far from it 
because of right-hand side of the inequality (33). 

As is well-known, in a biaxial crystal, given the fre- 
quency and the propagation direction, the Fresnel equation 
has two solutions for the absolute value of the wave vector. 

Equation (32) gives only one solution for k2. This 
means that out of two waves with the same propagation 
direction and frequency only one can be turned into a slow 
wave by adjusting the propagation direction. 

The general properties of slow waves in a biaxial crys- 
tal is similar to the properties, considered above, of slow 
extraordinary waves in a uniaxial crystal. 

6.PLANEWAVESOFAFREQUENCYTHATREDUCESTO 
ZERO ONE OF THE PRINCIPAL VALUES OF THE 
DIELECTRIC CONSTANT 

In isotropic media, at a frequency that reduces to zero 
the dielectric constant, there can be no transverse plane 
waves, but there exists a longitudinal wave whose wave 
vector can be found, with allowance for spatial dispersion, 
from the condition ~ ( w , k )  =O. 

That one of the principal values of the crystal dielectric 
constant vanishes does not, generally speaking, disagree 
with plane wave propagation. To prove this, consider a 
plane wave of frequency w = for which &,(a,) =O. The 
Maxwell equations yield 

If the wave propagates along the z axis, then kx=k,=O, 
Ex= Ey=O, and H=O, so that the wave is longitudinal. Its 
wave vector k is parallel to the electric field, and its value 
k is determined, with allowance for spatial diapersion, 
from the equation ~,(w,k) =O. If k deviates from the z axis, 

91 3 JETP 76 (5), May 1993 M. I. Ryazanov 913 



transverse, with respect to k, components of the fields E 
and H arise. The Fresnel dispersion equation has then the 
form 

Since, while deriving (36), we have cancelled out sin2 6, 
this expression is inapplicable at 6=0. 

For 6#0 and positive E, and E, a solution of Eq. (36) 
exists for any q. Let now E, and E, have opposite signs, 
E,=- I E , ~  <O<E,. Then 

and the solution exists only in the angle range 

In a more narrow range 

where qo= arccos[ 1 E, 1 /(E,+E~)] 'I2, the wave becomes 
slow, i.e., we have k)w/c and vPh=o/k(c. 

The fact that no transverse waves can propagate along 
the crystal principal axis for which the principal value of 
the dielectric constant is zero can result in a curious effect 
when light of this frequency is reflected by the crystal. If 
the reflected-wave direction coincides with the direction 
forbidden for transverse waves, then, naturally, total inter- 
nal reflection of an incident transverse wave arises. How- 
ever, even a small deviation of the incident wave ensures 
the existence of a refracted wave carrying away a part of 
the incident-wave energy. This means that the reflection 
coefficient for a plane wave of frequency o = R, (R, or fly) 
versus the angle of incidence must have a sharp maximum 
when the angle of incidence corresponds to the direction in 
which a refracted transverse wave does not exist. For other 
angles the reflection coefficient varies in an ordinary man- 
ner. 

7. DISCUSSION 

It follows from the above results that, at frequencies 
close to the zeros of the dielectric-constant principal val- 
ues, the properties of electromagnetic plane waves in crys- 
tals can differ dramatically from the properties of the 
waves usually considered in crystal optics. For a uniaxial 
crystal, in particular, the range where such waves exist is 
determined by the frequencies R, and all which decrease 
to zero the functions EL ( W )  and E~~ ( a ) .  In order to find 

a, and Rll from (26) we need information about the 
substance structure somewhat more detailed than usually, 
i.e., we need to know the size and shape of the volume 
surrounding a molecule and containing on the average, no 
other molecules. However all the information about this 
volume is given by the parameters a and b in (26). In the 
absence of additional information about the substance 
structure, a and b can be regarded as phenomenological 
parameters on which the dielectric constant depends. Hav- 
ing found the parameters a and b from experiment, we can 
then use them for prediction of other experimental results 
pertaining to the same substance. 

It follows also that at the frequency o that reduces to 
zero one of the principal values of the dielectric constant, 
e.g., E,(w) =0, both longitudinal and transverse waves can 
exist. 

The longitudinal waves can propagate only in one di- 
rection, strictly along the z axis. A fixed direction of lon- 
gitudinal wave propagation in such a crystal creates pecu- 
liar conditions for processes connected with longitudinal 
waves: their intensity strongly depends on the particle ve- 
locity orientation. 

Other principal values, E, and E,, can also vanish, but 
at other frequencies. This means that longitudinal waves 
frequencies of their own can propagate along each axis, but 
there are no longitudinal waves in intermediate directions. 

The most interesting result above is that when the 
principal values of the dielectric constant have different 
signs, we arrive at a conclusion that there must exist slow 
electromagnetic waves with nonrelativistic phase velocity 
and short wavelength, sensitive to substance inhomogene- 
ities. In particular, the range where these waves exist lies 
between the zeros of the uniaxial crystal dielectric con- 
stant, Rl and all . Since we have restricted the discussion 
to the case of real principal values of the dielectric con- 
stant, it is necessary also that the imaginary parts of E,  

and EII be small at frequencies between Rl and RI1 . 
In conclusion, the author thanks D. B. Rogozkin for 

interesting remarks. 
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