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The angular distribution of fast charged particles passing through oriented crystals is calculated 
using an equilibrium microcanonical ensemble in phase space. It is shown that such angular 
distributions can be used to reconstruct the phase-space distribution with high accuracy. Detailed 
calculations are carried out for ultrarelativistic electrons, and the influence of electromagnetic 
radiation on the angular distributions is studied in detail. It is shown that in a number of cases 
radiation-induced self-focusing of the beam can take place. 

1. INTRODUCTION 

The angular distribution of fast charged particles re- 
sulting from their passage through a disordered medium is a 
result of a large number of uncorrelated deflections by indi- 
vidual atoms. The corresponding theory for this process is 
rather well developed, especially for the case of small-angle 
scattering (see the review' by Scott). However, when a beam 
with a certain initial angular divergence A < 9, (where 9, is 
the Linhard critical angle) is incident on the crystal parallel 
to an atomic chain (or plane), the successive correlated 
small-angle deflections that determine the transverse trajec- 
tory of the particle become important. In order to describe 
this type of scattering, Linhard2 introduced a continuous 
potential for an atomic chain (plane) that depends only on 
the coordinates transverse to the chain (plane). In this case, 
the motion of the particle is determined by coherent scatter- 
ing from the continuous potential, which preserves the 
transverse energy, and by incoherent scattering from indi- 
vidual atoms. Theoretical analysis  show^^-^ that the first 
type of scattering leads to the appearance of "rings" (i.e., 
"doughnut scattering") in the angular distributions. These 
ring-like angular distributions, which are easy to observe 
e ~ ~ e r i m e n t a l l ~ , " ~  appear when the beam of particles is inci- 
dent on the crystal at an angle 92% to the atomic chain. 
Multiple scattering leads to additional smearing of the rings. 
When the beam penetrates sufficiently far into the crystal 
the angular distribution of output electrons becomes azi- 
muthally symmetric; the subsequent evolution of this distri- 
bution as a function of depth is determined only by incoher- 
ent scattering, which changes the transverse energy. 

The topic of this paper is the analysis of the distinctive 
features in the angular distribution when the beam incident 
on the crystal has a given angular divergence possessing azi- 
muthal symmetry with respect to the atomic axis. It is this 
case that is most often encountered in practice. As will be 
shown below, the effect of the continuous potential on such a 
beam is substantial, even when the thickness of the crystal 
considerably exceeds the characteristic dechannelization 
depth z,. For order-of-magnitude purposes, the quantity z, 
for electrons can be defined as the depth at which the mean 
square of the angle for multiple scattering in the amorphous 
medium 

#=-I 2 
L E '  ji l 2  

is comparable to the square of the Linhard critical angle 9 i, 
where 

Here E is the electron energy, L is the radiation length, 
E, ~ 2 1  MeV, Z is the atomic number of the crystal, d is the 
spacing between atoms in the chain, and z is the depth. 

Three factors cause the angular distributions of elec- 
trons in oriented crystals to differ from those of amorphous 
media: (a )  the influence of the continuous potential of the 
axis (or plane); (b )  the fact that the cross section for inco- 
herent scattering by an individual atom in the channel is 
~S,/S(E) times larger than in an amorphous medium, 
where S(E) is the transverse area available to an electron 
with transverse energy E and S, is the area required by a 
single chain; and (c) the influence of photon radiation dur- 
ing the motion. We will discuss all of these factors in turn in 
what follows. Our investigation is based on the concept of 
statistical equilibrium.' We will assume that at a given depth 
z particles with fixed transverse energy E are uniformly dis- 
tributed in the transverse phase space; this corresponds to a 
microcanonical ensemble. The questions of how long it takes 
to establish statistical eq~ i l i b r i um~ ,~  and how the angular 
distribution evolves during this time will not be discussed in 
this paper. This time is considerably shorter for electrons 
than for positively charged particles, due to anharmonic 
terms in the potential and strong multiple scattering, and 
corresponds roughly to a single period of oscillations of the 
transverse motion. 

2. PLANAR CASE 

If a particle is incident on the crystal at a small angle 9, 
to a crystallographic plane, the corresponding distribution 
in the transverse phase space at the surface of the crystal is 

where x is the transverse coordinate perpendicular to the 
plane, p, is the projection of the momentum on the x axis, 
and m = m,( 1 - u'/c2) - "' is the relativistic mass of the 
particle. After reaching statistical equilibrium the distribu- 
tion (3  ) becomes a microcanonical distribution 
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where U(x) is the continuous potential of the plane. It can be 
shown that the density of states R (E)  in (4) coincides with 
the period of transverse motion, i.e., a(&) = T(E). Integra- 
tion of Eq. (4)  with respect to momentum gives the well- 
known result for the spatial distribution with respect to co- 
ordinates x (see Ref. 2).  

The spatial distribution of ions is the subject of the re- 
view Ref. 8. For the planar case, this particular question was 
investigated in detail in Refs. 9 and 10, and also in Ref. 11, 
taking into account multiple scattering. The theory devel- 
oped in Ref. 12 allows us to trace the evolution of the angular 
distribution at small depths in a parabolic potential before 
the system reaches statistical equilibrium. 

If we average (4)  using the particle distribution func- 
tion with respect to transverse energy F(E,z), we obtain the 
distribution in the transverse phase space at a depth z: 

where K, = p2/2m is the transverse kinetic energy. 
Integrating (5)  over the transverse coordinate deter- 

mines the distribution with respect to angle if, relative to the 
plane, i.e., p, = mv9,. 

3. AXIAL CASE 

The microcanonical distribution for particles with fixed 
transverse energy has the following form in the four-dimen- 
sional transverse phase space: 

p2 drdp 
f(r, P, ~)drdp = 6(& - - U(r)) hrns(&) 9 

(6)  

where r = (x,y), p = (p, ,p, ) are the transverse coordinates 
and momenta; a ( & )  = 2.rrmS(~), where S(E) is the trans- 
verse area available to a particle; U(r) is the total continuous 
potential of the atomic chains; and drdp is the four-dimen- 
sional element of phase-space volume. For the above-barrier 
particles the area is S(E) = So, i.e., the area required by one 
chain. 

Integrating (6)  with respect to momentum leads to the 
well-known result of Linhard2 for a distribution of particles 
that is uniform with respect to the coordinates within an 
allowed region. On the other hand, integrating (6) with re- 
spect to position gives us the distribution with respect to 
momentum for particles with a fixed transverse energy. 
When the field U(r) of the chain is azimuthally symmetric, 
this distribution has the form 

where U ' ( r )  = dU/dr and r = r(&,p) is found from the con- 
dition E = p2/(2m) + U(r). The transverse momentump is 
related to the angle 9 with respect to the chain through the 
equation p = mv9, where 9 = ( 9  2 + 9: ) 

In what follows we will discuss the angular distribu- 
tions of ultrarelativistic electrons in more detail. We will 
assume that particles are channelized when they have nega- 
tive transverse energy - Urn < E < 0, where Urn is the depth 
of the potential well of the chain. At the periphery of the 
channel the potential has a complex topology, which is de- 

termined by contributions from many neighboring chains. 
For this case, the corresponding equilibrium distribution 
with respect to momentum will differ somewhat from the 
azimuthally symmetric distribution (7). Furthermore, the 
definition of a channelized particle given above will not be 
entirely unambiguous. In view of this, it is reasonable to as- 
sume that an electron is channelized once the transverse re- 
gion available to it is smaller than the area occupied by a 
single chain, i.e., S(E) <S,. However, we will limit ourselves 
to the single-chain approximation, and will consider only 
azimuthally symmetric angular distributions of the form 
(7).  

For a parabolic potential U(r) a ? the distribution 
with respect to transverse momentum (7)  is uniform within 
the available region in momentum space. That is, there is 
complete symmetry between the spatial and angular distri- 
butions in this case (i.e., the coordinates and momentum 
enter into the Hamiltonian in the same way ). However, for 
negative particles the real potential of the atomic chain is far 
from parabolic and the corresponding angular distribution 
(7)  has a sharp maximum when 9 = 0. Electrons moving 
close to the chain have a large transverse kinetic energy, and 
consequently their paths make a large angle with respect to 
the axis. The region available to an electron with transverse 
energy E in the space of angle is determined by the inequality 
8 < 9 < 9 ,  where 9 k,, = 2 ( ~  + Urn )/E, while 
amin = 0 for E < 0 and 9 iin = 2&/E for E > 0, where E is the 
electron energy. 

Under conditions of statistical equilibrium the coordi- 
nates and momenta enter into the distribution function 
f(r,p,z) only in the combination 

In this case, Eq. (6)  implies the r e l a t i ~ n ' ~ " ~  

where F(E,z) is the distribution function with respect to the 
transverse energy. 

Taking into account Eqs. (6)-(8), we can write the 
distribution of particles with respect to transverse momen- 
tum in the form 

where r(&,p) is found from condition (8) .  
The contribution from channelized electrons is deter- 

mined by (10) along with the limits of integration 
- Urn + K(p) < E < 0; here and in what follows 

K(p) =p2/(2m) is the transverse kinetic energy, which for 
channelized particles can vary within the limits 
0 < K(p) < Urn. For above-barrier electrons the limits of in- 
tegration in ( 10) are 

0 < E < K@) fo r  0 < K@) < U,,, 
(11) 

-Urn + K@) < E < K@) f o r  K@) > U,, . 

When all this is taken into account, we find that the total 
distribution with respect to momentum is determined by 
( lo ) ,  along with the limits of integration 
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- Urn +K(p)  <&<K(p) ,  wherenow O<K(p) < m. uniform over a wide range of transverse energies, i.e., 
Taking into account relation (8), Eq. ( 10) can be writ- f ( ~ , z  = 0) = c0nst.A - for - Urn < E  < - U,,, + EA2/2, 

ten in the form and then falls rapidly to zero for 
- Urn + EA2/2 < E < EA2/2. 

' 0  According to (10) and ( 12), the axisymmetric angular 

n(p, Z) = Sf(& = K@) + U(r), d2rrrdr , ( 12) distribution that results when electrons move in the field of 
o atomic chains can be written in the form 

where n (p,z) r d n  (p,z)/2n;adp, r,, = (?rNd) - 'I2 is the 
channel radius, N is the density of atoms in the crystal, and d 
is the spacing between atoms in the chain. 

Equation ( 12) also follows directly from (6); however, 
the considerations discussed previously allow us to write the 
angular distribution in terms of the function F(E,z), and also 
to distinguish the individual contributions to the angular 
distribution from particles with different transverse ener- 
gies. 

For a canonical phase-space distribution of the form 

f ( ~ )  = A exp(-/3~) (13) 

we obtain the following distribution with respect to trans- 
verse momentum: 

' 0  

n@) = A exp (-/3 &) Jexp [ - ~ ~ ( r ) l  k r d r  . 
0 

Thus, if the distribution of particles in the phase space is 
canonical, then the corresponding angular distribution is 
Gaussian, independent of the form of the atomic chain po- 
tential. However, the converse does not hold, i.e., if a beam is 
incident on the crystal along a certain axis with an angular 
distribution that is Gaussian in form, the initial distribution 
in phase space at the crystal surface is not canonical. Never- 
theless, it will be clear from what follows that multiple scat- 
tering redistributes particles in phase space so that the distri- 
bution f ( ~ , z )  may be considered approximately canonical, 
i.e., in the form (13), even for insignificant thicknesses 
z<z,. In this case, the parameters A and depend on the 
depth and type of crystal. 

Another important special case is the uniform distribu- 
tion in phase space of the form 

where f, = const, E' > 0. 
According to ( 12), the angular distribution corre- 

sponding to the function ( 15 ) will have the form 

where r(p) is found from the condition (8)  for E = E,, 
K(p) = p2/(2m). The angular distribution ( 16) is also uni- 
form in the range of angles 0 < 9 < (2e1/E) 

In practice, a uniform phase-space distribution of type 
(15) is realized in the case where the incident beam has a 
large angular divergence A > 9, with a uniform distribu- 
tion. Then the initial distribution in phase space will also be 

F(E = &(if, r), Z )  

a(o. Z) = zm'J s(E = e($, rdr , 

where n (9,z) =dn/2i?dS and ~ ( 8 , r )  = mv29 2/2 + U(r). 
The difference between the angular distribution for an 

oriented crystal and that for an amorphous medium is most 
noticeable in thin crystals, i.e., for z<zd. Here, if a parallel 
beam of electrons is incident on the crystal along an atomic 
chain, then according to ( 17) the angular distribution will 
have a half-width on the order of the critical angle, i.e., 
69,,, -a,, even at depths z-rd9, <zd corresponding to 
the period of a single oscillation; this greatly exceeds the 
same quantity in an amorphous medium. Thus, coherent 
scattering by the continuous potential leads to a significant 
broadening of the angular distribution. 

An electron moving in the field of an atomic chain has 
another integral of motion, i.e., the angular momentum 
about the chainp = xp, - yp, . The corresponding theory of 
dechannelization was discussed in Refs. 15-1 7. In this case, 
the equilibrium microcanonical distribution takes the 
form ' 

where T ( E ~ )  is the period of radial oscillations. Taking 
( 18) into account, the expressions for the angular distribu- 
tions have a considerably more complicated form than ( 17). 
It was shown in Ref. 19 that the distribution in angular mo- 
mentum of electrons with a given transverse energy becomes 
uniform at depths z- (a,/r,)z, <z, (where a, is the screen- 
ing parameter), which allows us to use (61, (7) ,  ( lo) ,  ( 12), 
and ( 17). We will not include the influence of the angular 
momentum in what follows. 

4. NUMERICAL RESULTS 

In order to calculate the angular distributions of elec- 
trons while taking into account multiple scattering, we car- 
ried out a numerical simulation of the process. In Refs. 15- 
17 the problem of axial channelization was investigated in 
the diffusion approximation by the method of kinetic equa- 
tions. There the angular momentum was taken into account. 
The approach we have adopted allows us to take into ac- 
count incoherent large-angle scattering. However, we limit 
ourselves to the approximation of a uniform distribution 
with respect to angular momentum. l9 Furthermore, in treat- 
ing incoherent scattering by individual atoms we limit our- 
selves to the region where the first Born approximation is 
applicable. This is permissible for crystals that are not too 
heavy, for which (see Ref. 20, para. 1.6) 
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Then for the MQller potential the scattering cross section by 
an individual atom has the form 

where a; = 0.1,0.55,0.35, Pi = 6.0, 1.2,0.3 are parameters 
of the MQller potential, and 

is the total scattering cross section for a Coulomb potential 
with exponential screening (i.e., the Yukawa potential). 
The DebyeWaller factor 

strongly limits the probability of small-angle scattering, and 
is associated with our excluding the coherent part of the scat- 
tering from consideration; here 8, = Cic(Ea,) - ' is the 
characteristic scattering angle for an atom, and u is the aver- 
age amplitude of thermal oscillations of nuclei in the crystal. 
The factor D(8)  in (20) decreases the total scattering cross 
section by a factor of 2 to 3. Thus, for misaligned silicon the 
mean free path computed using the exact expression (20) 
comes to I,, z 1 pm, whereas the simple expression (21 ) 
gives lam ~ 0 . 4  pm. 

Coherent scattering by the continuous potential limits 
the transverse region available to an electron with transverse 
energy E. This causes the cross section for scattering by the 
channel to increase by a factor of S,/S(&) in comparison 
with (20). For the middle of the well ( E Z  - 0.5 Urn ) the 
ratio S,/S(E) is 30 to 40. An approach analogous to the one 
described here was used previously by Kunonets and Rya- 
bov21-23 to calculate the multiple scattering of electrons with 
energies in the hundreds of GeV. In our case a more precise 
expression was used for the scattering cross section (20). 
Beloshitskii et a1.24 used the diffusion approximation in their 
numerical simulation, which is apparently justified at high 
energies. As in Refs. 21-24, we used the Doyle-Turner ap- 
proximation as the potential for the atomic chain.25 

In order to calculate the angular distribution it is often 
convenient to use a standard potential2 in the form 

where UL = Ze2/d. 
Equation (8 )  then leads to the following expression for 

the angular distribution of electrons with a fixed transverse 
energy: 

wherex = (U, -&)/UL + 2(9 /9L)2 .  
In Fig. 1 we show the results of a calculation of the 

angular distribution of electrons with energy 1 GeV in ( 1 1 1) 
silicon with a thickness of 20pm. The corresponding distri- 
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FIG. 1 .  Angular distribution of electrons with E = 1 GeV in ( 11 1 )  silicon 
witha thickness of 20pm: A--calculation using the Doyle-Turner poten- 
tia1,25 &for the Linhard potential.*' The solid curve is the Gaussian 
distribution (14) corresponding to the canonical distribution ( 13 ), the 
dashed curve is the contribution to the Gaussian distribution from chan- 
nelized particles. The initial beam divergence is A = 0.28,. The arrow 
corresponds to the critical angle 8, [see ( 2 ) ] .  The angles are given in 
units of 8, = 2 . 9  rad [see ( l ) ] .  

bution function in transverse energy is shown in Fig. 2, 
where the dashed curves show the contribution from elec- 
trons with various trajectory angles. A characteristic feature 
in the angular distribution is the presence of a linear region 
for 9 < a L .  It is clear from Fig. 1 that the choice of the form 
of the atomic chain potential does not strongly affect the 
character of the angular distribution except in the region of 
small angles. The solid curve in Fig. 1 corresponds to a 
Gaussian distribution ( 14) for the canonical distribution 
function in phase space ( 13) with parameters A = 0.57 A,, 
p = 60 eV, where A ; ' = 2n-mS, UL .The parameters of the 
potential (22) for silicon are C =  3.55, r ,  = 0.15 A. It is 
clear from Fig. 1 that the simple expression ( 14) describes 
the shape of the curve n (9,z) adequately. The dashed curve 

FIG. 2. Distribution function with respect to transverse energy &d/Zez 
corresponding to the angular distribution shown in Fig. 1 (triangles). The 
dashed curves I and 2 show the contribution from electrons with depar- 
ture angles 8 <  0.59, and 0.58, < 8 < a,, respectively. 
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in Fig. 1 corresponds to the contribution of channelized par- 
ticles with E < 0, which were calculated using ( 10) and ( 13 ). 

The effect of the continuous potential on the angular 
distribution is important even for relatively thick crystals, 
where z ~ z , .  In Fig. 3 we compare the angular distribution 
of electrons with energies 1 GeV moving along the (1 11) 
axis of silicon (the empty triangles) with the case of an 
amorphous medium. In both cases, the thickness of the tar- 
get was 200 pm. In the neighborhood of the maximum the 
difference is about a factor of 2. The numerical simulation 
for the amorphous medium (the filled triangles) was carried 
out using the cross section (20). The solid curve in Fig. 3 is a 
calculation based on the Mdller theory using expressions 
from Ref. 26. In thinner crystals the difference is more sig- 
nificant." 

Figures 4 and 5 show the angular distribution and cor- 
responding distribution in transverse energy p ( ~ )  in phase 
space for electrons with energies 1 GeV in (1 10) diamond 
with thickness 60pm. Here the dimensionless function P(E)  
is 

The triangular symbols in Figs. 4 and 5 are the result of 
numerical simulation. The solid and dashed curves in Fig. 4 
show the results of calculations using (23) along with the 
simple model distribution shown in Fig. 5 by the solid and 
dashed curves respectively. The latter consists of linear por- 
tions for small transverse energies E < 0.5 U, and an expo- 
nential tail. For these functions the angular distributions 
( lo),  ( 17), (23) are given by simple but cumbersome for- 
mulas. The primary region of transverse energies that deter- 
mines the behavior of the angular distribution for small an- 
gles 6 < 0.59; is the region near E = 0. The behavior of the 
angular distribution n (E,z) is very sensitive to features of the 
distribution function f ( ~ , z )  in the transitional region from 
channelization to quasichannelization (compare the solid 
and dashed curves in Figs. 4 and 5). These examples show 

drr zm 

FIG. 4. Angular distribution of electrons with E = 1 GeV in (1 10) dia- 
mond with a thickness of 60,um. The solid and dashed curves correspond 
to the distribution in phase space represented by the same curves as in Fig. 
5; the triangles are the result of numerical simulation. Here 
8, = 7.7.10 - rad, A = 0.28,. 

how the distribution in transverse energy can be recovered 
from a given angular distribution with a high degree of accu- 
racy. 

The existing theories for the motion of electrons in the 
field of an atomic chain15-'* allow us to calculate the dechan- 
nelization function; however, this is not a directly measura- 
ble quantity. We can determine how many particles there are 
in bound states by measuring the angular distribution. In 
Table I we show the results of a calculation of the number N, 
of electrons with energies 1 GeV that leave various crystals 
at angles relative to the axis less than half of the Linhard 
angle, i.e., N, = N(t9 < 0.5 8, ). In all cases, the initial diver- 
gence of the beam is A = 0.2aL. According to our calcula- 
tions the number N,, of electrons in the (1 10) channel of 
diamond roughly coincides with the number of electrons 
with departure angles 6 <0.58=, i.e., N,, zN,. For (1 11) 
silicon the number is N,, =0.5N1, while for (1 10) germani- 

FIG. 3. Comparison of the angular distribution of electrons with E = 1 
I 
I 

GeV in an oriented crystal with thickness 200,um (empty triangles) and 0 
in an amorphous medium (filled triangles). The solid curve is a calcula- ' 2  - 0 2 3 4 &d/zs 
tion using the Mbller theory.26 Here 8. = 9.3.10 -4rad; the arrow corre- 
sponds to the Linhard angle a,, and the initial beam divergence was FIG. 5. Distribution functions in phase space (24) corresponding to the 
A = 0.28,. angular distributions shown in Fig. 4. 
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um it is N,, z0.25NI. These relations depend weakly on the 
penetration depth of the electrons in the crystal. 

Values of the square root of the mean-square angle of 
deviation 9, = (9 2, are given in Table I. Here 

All the angles in Table I are given in milliradians. For silicon 
we also give values of the square root of the mean-square 
angle of multiple scattering = for the amor- 
phous medium, which we obtained from a numerical simula- 
tion. 

5. THE EFFECT OF ELECTROMAGNETIC RADIATION ON THE 
ANGULAR DISTRIBUTIONS 

It is well-known that the motion of electrons and posi- 
trons in the field of atomic chains and planes is accompanied 
by intense electromagnetic radiation. This is a result of 
quantum transitions between transverse energy levels (the 
Kumakhov effect).28 Let us assume that an electron in an 
initial state with transverse energy E~ (E) makes a transition 
to a  state^^ ( E  - w), where w is the photon energy (here and 
in what follows we set c = fi  = 1 ). The laws of conservation 
of energy and conservation of the projection of the momen- 
tum in the direction of the chain lead to the following expres- 
sion for the change SE in transverse energy due to radiation 
as a function of the flight angle 8, and photon frequency w: 

He reS~(w)=c~(E- -w)  - E ~ ( E ) ,  y =  (1  - u2) is the 
Lorentz factor, and the angle 8, is measured from the direc- 
tion of the atomic chain. 

There are two interesting limiting cases of Eq. (26). In 
the dipole approximation, for which the characteristic radi- 
ation angle is much larger than the critical channelization 
angle, i.e., 9, y 4  1, we may set 8, z y - '  in (26). Then 
- S ~ z w y - ~ .  Averaging this expression with respect to the 

probability of radiation per unit time W(w), we obtain a 
relation between the total and transverse energy losses: 

where 

Analogous results for the dipole case were obtained pre- 
viously in Refs. 29 and 30. 

In the other limiting case of high energies, when 
9, y> 1, wee may assume that a photon radiates strictly in 
the direction of motion of the particle. Then the angle 8, in 
(26) may be replaced by the angle between the velocity vec- 
tor of an electron and the atomic chain 8, -9. At high ener- 
gies, i.e., in the hundreds of GeV, and for frequencies 
w z0.5EO, the first term in (26), which depends only on the 
electron and photon energies, gives a contribution - 1 eV, 
which is much smaller than the contribution of the second 
term. Then in this approximation we have 

i.e., the change in transverse energy now depends on the 
point at which radiation of the photon took place. 

Averaging Eq. (28) with respect to the probability of 
emission per unit time, we obtain 

where the angle brackets denote averaging over a period of 
the transverse motion. Equation (29) is well-known in theo- 
ries of channelization in which energy losses are taken into 
a c ~ o u n t . ~ '  

The approximation (28) was used to in- 
terpret the radiation spectrum of electrons with energies 
150-300 GeV in oriented crystals. Equation (28) can be 
used when the force exerted on an electron by the chain var- 
ies insignificantly over the length in which the radiation is 
generated (the "constant-field approximation") .32,33 In this 
case the expressions for calculating the probability of synch- 
rotron radiation are valid:34 

TABLE I. Number of electrons N, with departure angles 19 <0.58, and the square root of the 
mean square deflection angle 9, (in mrad). The beam energy was 1 GeV, with A = 0.29, .  

penetration depth of electrons into crystal, mm 

0.30 0.345 0.47 0.55 0.69 

Si 0.43 0,30 0.14 0,lO 0.061 

0,324 0.40 0.57 0.68 0.88 
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In what follows we will be interested in the energy dis- 
tribution function F(E,t) for electrons that leave the crystal. 
The probability that the sum of the energies of all the pho- 
tons radiated by a single electron lies between w and w + dw 
is P(w,t)dw = F(E, - w,t)dw, where E, is the initial energy 
of an electron and 

The radiation intensity measured in the experiments will be 

We used numerical simulation to calculate the probability 
distribution P(w,t) using the approximations (28) and 
(30). Figure 6 shows a comparison of our results for the 
quantity (30a) with the experiments of Ref. 35, whose au- 
thors measured the intensity of radiation of electrons having 
energy 150 GeV in crystals of (1 10) silicon with thickness 
165 and 1400pm. In Fig. 6 the quantity w is the total energy 
of all photons radiated by a single electron. In these calcula- 
tions we did not take into account the contributions from 
those electrons for which the total energy of all the radiated 
photons is smaller than 0.01 E,,; this contribution is not im- 
portant for the quantity (30a). It is clear from Fig. 6 that for 
a thin crystal the agreement with experiment is good, where- 
as for thick crystals the approach discussed here gives an 

FIG. 6. Intensity of electromagnetic radiation (in units of the ratio of the 
crystal thickness to the radiation length) for electrons with energies of 150 
GeV in (1 10) silicon. The circles and triangles are experiment3' for thick- 
nesses of 165 and 1400 pm, while the dashed and solid curves are our 
calculations for these same thicknesses. The initial beam divergence was 
A = 7 . 1 0 6  rad. 

underestimate. The intensity of the radiation shown in Fig. 6 
is given in the units of this same quantity for an amorphous 
medium. The latter is defined as the ratio of the crystal thick- 
ness to the radiation length. 

The distributions with respect to total energy for elec- 
trons leaving the crystal at various angles with respect to the 
axis are shown in Fig. 7 for electrons with energy 150 GeV in 
(1 10) Si with a thickness of 1400 pm. The curves in Fig. 7 
correspond to the spectrum of photons shown in Fig. 6 (the 
solid curve). It is clear that the energy distribution is differ- 
ent for particles departing the crystal at different angles: the 
larger the energy an electron loses to radiation, the larger the 
average angle with which it leaves relative to the chain. This 
is associated with an increase in the critical angle for chan- 
nelization, and with enhancement of the role played by mul- 
tiple scattering as the beam energy decreases. 

Angular distributions for electrons with energy 150 
GeV in Si are shown in Fig. 8 for various thicknesses. It is 
clear that there is a certain range of angles within which the 
distribution is almost uniform. Calculations show that this 
same feature is also encountered in other crystals at these 
energies. 

Radiative attenuation of the transverse energy is clearly 
apparent in cases where the initial beam has a large angular 
divergence A - (2-3) 9,. In this case, self-focusing of the 
beam can occur in a small angular region 6 9  < 0.59, (see 
Fig. 9).  For the case illustrated in Fig. 9, the number of 
particles in the channel increases significantly with depth. 
For thicknesses 100, 400, and 600 pm, this number is 1.5, 
2.6, and 3.1% respectively. 

Equation (28) assumes that the photon is radiated 
strictly in the direction of the velocity vector. In this case the 
angle relative to the atomic chain does not change, so that 
the existence of radiative self-focusing is not apriori obvious. 
In order to consider this question in more detail, let us intro- 
duce the electron distribution function F(&,E,t) such that 

FIG. 7. Total energy distribution function for electrons with energy 150 
GeV departing from the crystal at various angles: 1-8 < 0.59, ,2-0.58, 
< 8 < 9 , ,  3-8> 8,. Here 8' = 3.7. rad. The beam divergence at 
the input was A = 7. rad, the crystal thickness was 1400pm. 
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FIG. 8. Angular distribution of electrons with E = 150 GeV in (110) 
silicon with the following thicknesses: 0-100 pm (0.071, *-600 pm 
(0.21), A-1400pm (0.43). Here 8, = 1.6.1O-'rad, A = 7.10-6rad. 
The relative energy losses AE /E ,  are given in brackets. 

Neglecting multiple scattering, we obtain the following 
equation for the function F(&,E,t) ,  taking the variation of 
the total and transverse energies to be smooth: 

aF a E F+-?- ~ ~ 0 ,  x + ( A )  a ,  ( A t )  

where the changes in the total and transverse energies are 
related by ( 2 9 ) .  Equation (31 ) is a limiting case of a more 
general integral equation. In what follows, we will assume 
that the photons are radiated close to the chain, and that the 
energy of an electron varies according to an exponential law, 
i.e., we will take 

0 
I I I 

40 80 120 
3, prad 

FIG. 9. Angular distribution of electrons with E =  150 GeV in (110) 
silicon with the following crystal thicknesses: 0--100pm (0.032), *- 
4M)pm (0.10), A - W p m  (0.14). The divergence of the incident beam 
A = 39,. The dashed curve is the distribution of electrons incident on the 
crystal. In this plot 8, = 1.7.10- rad. 

where 

We showed above that if a beam incident on a crystal 
has a large angle of divergence with a uniform distribution, 
then the corresponding distribution in phase space is also 
close to uniform ( 15). Then the initial distribution in energy 
space will be 

where n-?(c) is the area available to an electron with trans- 
verse energy 5, and& is a certain constant. 

A solution to Eq. ( 3 1 )  with initial condition ( 3 4 )  is 

where E, is determined by Eq. ( 3 3 ) ,  and 

The angular distributions can now be computed using, 
e.g., Eq. ( 2 3 ) :  

The simple increase in the number of electrons in the 
bound state due to radiative damping of the transverse ener- 
gy does not lead to the appearance of a peak superposed on 
the uniform angular distribution if the phase-space distribu- 
tion function f (e ,E, t )  varies smoothly for all E .  The solution 
( 3 5 )  shows that a phase-space distribution that is initially 
uniform can no longer be uniform as the beam penetrates 
into the crystal. A kink in the behavior of the distribution 
f ( ~ , E , t )  as t increases appears at the boundary when E = 0, 
which leads to the appearance of this peak. 

In Fig. 10 we show the results of calculations using Eq. 
(23 1, ( 3 5 ) ,  and ( 3 7 ) ,  for the standard potential ( 2 2 ) .  The 
dashed curve is the distribution of particles in an infinite 
beam with divergence A = 28,.  It is clear that even a slight 
energy loss leads to the appearance of a peak. 

The self-focusing effects predicted by K ~ m a k h o v ~ ~  are 
due to a somewhat different mechanism which applies to 
heavy positive particles. The expressions obtained here are 
also valid for the case where the energy is lost by particles to 
ionization of target atoms. 

6. CONCLUSIONS 

Statistical equilibrium in the transverse phase space al- 
lows us to introduce a microcanonical distribution. Based on 
this distribution, it is easy to calculate the angular distribu- 
tions. Coherent scattering of particles by a continuous po- 
tential with conservation of transverse energy leads to a sig- 
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FIG. 10. Initial angular distribution with a beam divergence A = 29,, 
R = 2.5.10 - pm - ' (arrow ) . Curves I and 2 correspond to thicknesses 
of 100pm (0.025) and 600,um (0.14). The relative energy losses are given 
in brackets. 

nificant increase in the mean square angle of deviation 
compared with an amorphous medium, even in relatively 
thick crystals. 

The canonical phase-space distribution corresponds to 
a Gaussian angular distribution independent of the form of 
the atomic chain potential, on which the half-width of the 
Gaussian distribution depends. If, however, the initial beam 
has a large angular divergence A > &, the corresponding 
phase-space distribution is also close to uniform. 

By measuring the experimental angular distributions, 
we can reproduce the transverse-energy distribution func- 
tion to a high degree of accuracy, and also determine the 
number of electrons found in a bound state. 

Radiation of hard photons has a significant effect on the 
angular distribution for electron energies in the hundreds of 
GeV. If the initial beam is incident along a crystallographic 
axis, then electrons departing the crystal at different angles 
have different distributions in transverse energy. For this 
case, electrons that have lost a larger fraction of their initial 
energy to radiation have on the average a larger departure 
angle with respect to the axis. 

Radiation of photons strictly in the direction of the ve- 
locity vector is not accompanied by a change in the angle 
with respect to the atomic chain; however, due to a decrease 
in the transverse energy, an electron occupies a new position 
in phase space after radiation with a narrower angular distri- 
bution than given by (7) .  This can lead to the effect of radia- 
tive self-focusing, which is manifested as an increase in the 
number of electrons in comparison with its initial value in 
the region of angles I? < 0.59,, if the incident beam has a 
large angular divergence A - (2-3) I?,. 

The author is grateful to Professor J. Linhard, who di- 
rected his attention to the special role of the canonical distri- 
bution, and also to his colleagues in the city of Arhus: I.-U. 

Anderson, V. A. Ryabov, and E. Uggerhoj for useful discus- 
sions of the problem treated here. The author is also grateful 
to Professor Kumakhov for a discussion of the self-focusing 
effect. 
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