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The problem of emission of surface electromagnetic waves (SEWs) by a dipole located near the 
boundary between a uniform medium and a semi-infinite superlattice is solved. The conditions 
under which SEWs exist and the dependence of the intensity of the emitted SEW on the 
frequency, the superlattice parameters, and the position of the dipole is found. It is shown that 
interference suppression of SEW radiation is possible. 

In the last few years progress in the experimental tech- 
niques of molecular-beam epitaxy has led to rapid growth of 
investigations of superlattices (SLs), whose optical and 
electronic properties already have wide practical applica- 
tions. 

Cossel' predicted, on the basis of the similarity between 
the wave equation and the Schroedinger equation, that me- 
dia with spatially periodic dielectric permittivity should ex- 
hibit a number of optical phenomena which are analogous to 
the properties of electrons in crystals. Interest in this idea 
has increased rapidly in the last few years because possibili- 
ties for observing these effects experimentally have ap- 
peared. The most striking effect is the appearnce of band 
structure for optical waves in isotropic media with three- 
dimensional 

Another, less obvious, effect is the existence of surface 
electromagnetic waves (SEWs) analogous to Tamm surface 
 state^.^ These SEWs become localized at the boundary be- 
tween periodic and uniform media due to Bragg diffraction 
in the periodic medium and the total internal reflection in 
the uniform medium. 

These SEWs have been observed experimentally in the 
superlattice GaAs/Al0., Ga, ,As with excitation from the 
end of the sample.6 These SEWs can also be generated in 
other optical processes: luminescence and Rayleigh and Ra- 
man scattering. Theoretical study of these processes leads to 
the problem of radiation from a point dipole in a superlat- 
tice. The solution of this problem is the subject of this paper. 

1. CONDITIONS FOR EXISTENCE OF SEWs IN A 
SUPERLATTICE 

Consider a semi-infinite superlattice consisting of alter- 
nating transparent isotropic slabs with thicknesses d l  and d, 
and dielectric permittivities E, and E,. Let the thickness 2 of 
the slab closest to the boundary be different from the other 
slabs, i.e., let this slab be "defective." Then the index of re- 
fraction has the following spatial dependence: 

I E,,' Z < 0 
El, o < z < a  

&(z) = 
E2, I", - d2 < Z < I", ' 

l m < z < l m + d 2  

I boexpCuz), z < O  
ii exp(iklz) + a exp(-ik,z), O < z < a  

E(9,z) = 
(ai exp [iGl(z - [,)I 

+ b, exp [-ikr(z - I,)] )exp [iKD(m - I)], z > a 

HereP2=q2-A:, kf =il,?-q2, Af = E , W ~ / C ~ ,  and K is 
the Bloch wave vector, satisfying the equation 

where u, = k,/k, for TE waves with nonzero components 
( 8 , )  and uM = ~ , k , / ~ , k ,  for TM waves 
( r v , 8 c , g z ) .  

The &pz coordinate system is tied to q (q110g). 
The condition for SEWs to be localized near the bound- 

ary of the superlattice [Im(K) > 0] is satisfied in the Bragg 
reflection zones, where KD = mn + ix, where m is the order 
of Bragg reflection. It is convenient to represent the localiza- 
tion parameters xgM for TE and TM waves in these forbid- 
den bonds in the form 

where as q increases in the zone the phase PE,, changes from 
0 to a or from a to 2a, so that x > 0. It is obvious that we have 
x = 0 for a )  p = 0, at the zone boundary; b)  k,d, = nn, 
interference bleaching; and c)  u = 1, which is possible only 
for TM waves and corresponds to Brewster's angle. In the 
last two cases the wave should be observed to "collapse" 
inside the forbidden band. 

The condition for the existence of SEWs is found from 
the equations of continuity at the boundaries of the defective 
slab (z = 0,d) .  For TE waves these equations 

a o = i i + b ,  
- 

pao = i.kl(ii - b), 

(1)  5 = rE ii exp(2ikla 

have a solution for 

Here I, = 2 - d l  + mD, where D = d l  + d, is the period of A, = F p p ( - 2 i a E )  - 1 = 0 ,  (7)  
the superlattice and m = 1,2, ... is the period number. where a, = tan-' (p/k, ) and I., = rEexp(2ik,2). Inside 

The solution of Maxwell's equations for SEWs can be 
found in the form 

the forbidden band the reflection coefficient at the boundary 
(Z  = 2) is rE = exp[i(P - k'd,)], and for this reason Eq. 

E(R) = exp[i(qP - at)lE(q, z) , (2)  (7) reduces to the condition 
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FIG. 1 .  TE-SEW localization coefficient as a function of the dimension- % 
less frequency = [w(dl + d2)/c] [ (&, + &?)/2] 'I2. Superlattice pa- 
rameters: E] = 3.0, E~ y 2.5, d2/dl = 1.5. The curves correspond to differ- FIG. 2. TM-SEW localization coefficient versus the dimensionless fre- 
ent values of the ratio d/d,: 0.8 (1  ), 1.0 (2), 1.4 (3),  1.6 (4 ) ,  1.8 (5),  1.2 quency 51. Superlattice parameters: E, = 3.0, E ~ =  2.5, dZ/dl = 1.5. The 
(61, 1.4 (71, and 1.6 (8) .  The solid and dashed lines correspond to first- curvescorrespond todifferent valuesoftheratiod/dI: 1.8 (1),2.0 (21.0.8 
and second-order Bragg reflection, respectively. (3), 1.0 (4),  1.2 ( 3 ,  1.4 (d) ,  1.8 (7), and2.0 (8).Thesolidanddashed 

lines correspond to first- and second-order Bragg reflection, respectively. 

which for fixed thicknesses of the slabs and frequency o de- 
termines in each admissible forbidden band one possible val- 
ue of q,, and the corresponding phase BE must satisfy the 
condition x, > 0 [Eq. (5)  1. 

Figure 1 displays the frequency dependences of the TE- 
SEW localization coefficient x, for the characteristic pa- 
rameters of the superlattice and different thicknesses of the 
defective slab. As expected, SEWS do not exist for all 2, since 
the value of x, found from Eqs. (5)  and (8) must be posi- 
tive. For each order of Bragg reflection these exists a lower 
limiting frequency a,, determined by the condition of total 
internal reflection in the uniform medium. Surface electro- 
magnetic waves of first (solid curves) and second (dashed 
curves) orders exist in the frequency interval shown in the 
figure. The frequency dispersion of x, is due mainly to the 
change in phase of BE ( 5 ), which determines the position of 
the SEW frequency in the forbidden band and depends on 
the dispersion of a and k,. Since a increases with o and the 
sign of the change in x, is determined by the sign of@,, the 
dispersion of x can be monotonic (curves 1,2,6-8) or non- 
monotonic (curves 3-5) (Fig. 1 ). 

For TM waves the equations of continuity at the boun- 
daries of the defective slab 

have an analogous solution [Eqs. (7) and (8 ) ]  with 

aM = arctg(slplegk,) . 

somewhat smaller than x, and the TM curves have pro- 
nounced features at the frequencies o,, and o,, corre- 
sponding to the Brewster angles for Bragg reflection of first 
and second orders. 

2. DIPOLE RADIATION IN THE SUPERLATTICE 

Consider a dipole p, located at the point R, = (O,O,zo) 
of the defective slab and emitting radiation at the frequency 
a. In order to solve the wave equation we employ the Fourier 
transform 

and we analyze the contributions of the TE and TM harmon- 
ics separately. For TE waves the solution in the defective 
slab has the form 

where 

iw2 P,, = - 
k 1 2  pq 

(6a) 
and O ( x )  is the Heaviside step function. 

It follows from Eqs. ( 10) that 8, can be represented in 
the form 

Figure 2 displays the frequency dependence of the TM- For this reason, returning to the coordinate representation, 
SEW localization coefficient x, . The overall behavior of the it is convenient to transform to a cylindrical coordinate sys- 
curves is similar to that of the TE curves (Fig. 1 ), but x, is tem (p,q5,z) 
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where the contour L is shown in Fig. 3. In order to perform 
the integration we employ the following equality for cylin- 
drical functions 

switch to the integration contour L + L,, and close the con- 
tour (Fig. 3), taking into account the singularity of the inte- 
grand and the radiation condition (no sources at infinity7). 
It follows from Eqs. (3),  (4), and ( 11) that the branch 
points are 4 and q: , corresponding to the edges of the k th 
forbidden band, and when the condition of existence of 
SEWS (8) is satisfied the corresponding value of q, is a pole. 
It can be shown that the SEW field is determined by the 
residue of the pole q = q,, and the integrals along the edges 
of the cuts determine the radiation intensity of internal 
waves, which will not be calculated here. 

3.TE-SEW RADIATION INTENSITY 

The field of the emitted SEW is described by the residue 
of the pole q = q,, which, using Eq. ( 1 1 ), gives the expres- 
sion 

where 

It  follows from the last formulas that E, -p-312 as 
p+ UJ and does not contribute to the SEW intensity. For this 

FIG. 3. Contour of integration L + L,. Branch points: q, =A,, 
q2 = A, ,  q, = A,, and q, and q., are the limits of the first allowed zone; 
9,-pole corresponding to a surface wave. 

reason, the Poynting vector has a single nonzero component 
S,, in the far zone; to calculate it we must find 

Using the asymptotic expression for the Hankel func- 
tions 

the TE-SEW intensity can be written in the form 

where 

So, 3, and S,, are, respectively, the radiation flux densities in 
the uniform medium, the defective slab, and the superlattice 
and are normalized to the integrated intensity of dipole radi- 
ation in the uniform medium with E = E ~ :  

where 
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4. PROPERTIES OF TM WAVES 

For TM harmonics the solution of the inhomogeneous 
wave equation has the form 

where P ,  = (2W2i/c2)p, and = (2qw2//2,c2)p5. 
As in the case of TE waves, the E and H fields can be 

expressed in terms of integrals along the contour L,  + L, 
(Fig. 3). Since FY, can be represented in the form 

the TM-SEW fields are described by the formulas 

Next, using the asymptotic expansions of the Hankel func- 
tions, the TM-SEW intensity is likewise given by the formu- 
la ( 14), where 

a elk1 a 
r = COST - i-sin-. 

e2k2 

5. COMPUTATIONAL RESULTS AND DISCUSSION 

First, we note that the contributions of TE and TM har- 
monics to the SEW intensity can be studied independently, 
since the polarizations of these harmonics are mutually or- 
thogonal [Eqs. (12) and (17)l.  

Figure 4 displays the frequency dependence of the nor- 
malized integrated intensity of TE-SEW radiation when the 
dipole lies at the center of the defective slab and is oriented 
parallel to the slabs. The parameters of the superlattice and 
the thicknesses of the defective slab correspond to Fig. 1. 
The SEW intensity as a function of the dipole position is 
described by the interference factor cos2(k,zo - a ) ,  which 
also depends on the frequency because of the frequency dis- 
persion of k, and a. 

At low frequencies, close to a , ,  the main SEW radi- 
ation flux propagates in the uniform medium and is de- 
scribed by the formula 

As the frequency increases, the flux So becomes small 
compared with S,, , since in this casep 4%. Then the factors 
A; and cos2(k,z0 - a)  make the main contribution to the 
dispersion of the intensity. 

As a rule, the difference between the dielectric permit- 
tivities of the constituent semiconductors of the superlattice 
is small, I&, - < E ,  + E ~ ,  and in this case the main radi- 
ation flux propagates in the superlattice and 

Since in this case, due to the narrowness of the forbidden 
band, the scan rate over the band ( -dp/dq) will be quite 
high. This makes is possible to find the approximate depend- 
ence of the SEW intensity on the localization coefficient x 
[see Eq. (5)] ,  since the cofactor d(co$)/dq is virtually 
independent of the position of the SEW in the forbidden 

FIG. 4. Intensity of TE waves versus the frequency a. All parameters are 
the same as in Fig. 1. 

674 JETP 76 (4), April 1993 S. V. Shiyanovskii and S. A. Yatskevich 674 



FIG. 5. Intensity of the anisotropic component of aTM wave as a function 
of the frequency 0. All parameters correspond to Fig. 2. 

band: P 

Thus, far from o, the frequency dependence of the in- 
tensity, as a rule, repeats the frequency dependence of the 
localization coefficient x (see curves I, 2, 4, and 68). The 
reason for the dip at R -- 5.6 in curve 5 is that the interference 
cofactor vanishes (interference suppression of SEW radi- 
ation). 

The expression for the intensity of TM waves is more 
complicated due to the presence of an isotropic contribution 
from the perpendicular component (p, ) and the anisotropic 
contribution from the parallel (p, ) component of the dipole. 
Since the contributions to the field for these components are 
shifted by 77/2 [Eq. ( 17) 1, the cross term in the formula for 
the intensity is absent, and the inteference factors add con- 
structively ( 18). 

Figures 5 and 6 display the frequency dependence of the 
intensity of the isotropic and anisotropic TM-SEW compo- 
nents. The intensity of the anisotropic component decreases 
with increasing frequency, since waves undergoing Bragg 
diffraction are emitted almost parallel to the axis of the di- 
pole. 

The remaining behavior of the curves is similar to that 
for TE waves (Fig. 4), but the intensities are somewhat low- 
er than for TE waves and have pronouned features at a,, 
and a,,, corresponding to Brewster's angle for Bragg re- 
flection of first and second orders. 

6. CONCLUSIONS 

In this paper we have derived expressions for the elec- 
tromagnetic radiation field of a point dipole located in the 
defective slabe of a superlattice near the boundary with a 
uniform medium [Eqs. ( 1 1 ) and ( 16) 1. 

The obtained expression made is possible to calculate 
the radiation intensity of TE and TM surface waves [Eqs. 
( 15) and ( 18) 1 existing when the conditions (8)  are satis- 
fied. 

FIG. 6. Intensity ofthe isotropic component ofa TM wave as a function of 
the frequency R. All parameters correspond to Fig. 2. 

The dependence of the SEW intensity on the position of 
the dipole is determined by the inteference factor [see Eqs. 
( 15) and ( 18) 1, which can give rise to complete suppression 
of T 5 S E W  radiation. For TM-SEW complete suppression 
is possible only in a direction perpendicular to the dipole, or 
in cases when the dipole is perpendicular or parallel to the 
slabs of the superlattice. 

The frequency dependence of the SEW intensity has a 
complicated resonance behavior, which is determined by 
both interference in the slabs of the superlattice and scan- 
ning of SEW over the forbidden band. For each order of 
Bragg reflection there exists a lower cutoff frequency w , ,  
determined by the condition of total internal reflection in the 
uniform medium. At low frequencies, close to w,,  the main 
SEW flux propagates in the uniform medium and is de- 
scribed by Eq. ( 19 ). At high frequencies the main flux is 
localized in the superlattice and increases with increasing x 
[Eq. (2011. 

The formulas obtained can be used to find the intensity 
of luminescence and Rayleigh and Raman scattering by add- 
ing together the fields of separate emitters, taking into ac- 
count the corresponding averaging over the coordinates of 
the emitting and scattering centers. The calculation of these 
relations is a problem for future investigations. 

We thank V. A. Belyakov, I. Yu. Golinei, and V. I. 
Sugakov for a helpful discussion of the results. 
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