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A theory of localized states of linear and branched polymer macromolecules in a medium with 
"quenched" disorder is constructed. The conditions under which short chains are localized in one 
potential well are found, and the size distribution of such wells is obtained. It is shown that it is 
more energetically favorable for long chains to be distributed over several wells. The free energy 
and the sizes of macromolecules situated in a random medium in the presence of two-particle 
interaction between their links are calculated, as are the same quantities in the case of three- 
particle and long-range interactions. The reasons why these results differ from the results 
obtained previously in the framework of a variation approach are discussed. Characteristics of the 
disorder of polymer networks are calculated, and the dependence of the anisotropic deformation 
of macromolecules placed in them on the degree of stretching of the network is studied. The 
correlation functions of such macromolecules of a polymer solvent are also calculated, and it is 
shown that the results obtained are in agreement with the experimental data. 

1. INTRODUCTION 

The theory of polymers situated in random media1-' 
has numerous applications. Polymer chains adsorbed on a 
rough surface constitute a typical two-dimensional situa- 
tion. Polymer chains or porous media with chains inserted in 
them can serve as a physical realization of a three-dimen- 
sional system. Recently, various biological systems consist- 
ing of molecules interacting with impenetrable particles 
have also been studied intensively. 

The simplest model of a polymer in a random medium is 
a Gaussian chain situated in a random lattice of impenetra- 
ble obstacles. Such a system was first studied in computer 
 experiment^,^ in which it was demonstrated that the size of a 
sufficiently long chain is asymptotically independent of its 
length. These results provided the impetus for a subsequent 
anaytical examination of the influence of quenched impuri- 
ties with a given concentration v on the statistics of the poly- 
mer chain." It was shown that in space of dimensionality 
d = 2 or d = 3 a sufficiently long chain is localized over a 
scale R,,, - v - - d ,  . 

In Refs. 1 1 and 12 the influence of the interaction of the 
monomer links of the chain on the possibility of its localiza- 
tion in a medium with quenched impurities was studied. By 
means of variational estimates it was shown that impurities 
screen the two-particle interaction, leading to Gaussian sta- 
tistics of the chains. With further increase of the concentra- 
tion of impurities localization of the chains on the scale R,,, 
is predicted. In the case of three-particle interaction a com- 
pact state of the chain was obtained, with a density of mon- 
omer links that is independent of its length.'' It was also 
stated that, in the presence of long-range interaction, an in- 
termediate, "native" state of the chain should be formed. '' 

An approach substantially different from that of Refs. 
10-12 was used in Ref. 13 to construct a theory of localized 
states of polymer chains. A more detailed examination of 
localized states of linear and branched polymer molecules is 
given in Secs. 2 and 3 of this article. On the basis of this 
approach, in Sec. 4 we find the average size of a chain in a 
random medium. The interest in this quantity is due to the 
fact that this is the quantity that was calculated in Refs. 11 

and 12. The results that we obtain do not agree with the 
results of these papers. Therefore, first and foremost, the 
question of the applicability of the corresponding ap- 
proaches arises. 

In contrast to the variational estimates of Refs. 10-12, 
the method that we use is a regular expansion in a small 
parameter, which we find in Sec. 3. The reason for the differ- 
ences under discussion is buried in the specific physical fea- 
tures of the problem under consideration. A large number of 
potential wells with a broad distribution of sizes cannot be 
simulated by a single-well potential in the framework of a 
variational approach. 

From the experimental point of view, the most interest- 
ing realization of the systems under consideration here is 
provided by chains immersed in a polymer network. The 
theory of small-angle neutron scattering by these chains in 
such a polymer system was constructed in Refs. 5 and 6,  and 
below we shall give a brief review of the corresponding ex- 
perimental data. 

In Refs. 14 and 15 a study was made of the influence of 
the degree of crosslinking X of the network (as judged from 
the degree of equilibrium swelling of the network) on the 
intensity of small-angle neutron scattering by free deuterat- 
ed chains situated in the network. For small values of X the 
intensity turns out to be the same as in the case of a mixture 
of deuterated chains with uncrosslinked network chains of 
the same density. Under uniaxial deformation of the 
network the signal increases strongly in the direction paral- 
lel to the stretching, but remains unchanged in the perpen- 
dicular direction (see Fig. la) .  

In the case of intermediate values of X the scattering in 
the swollen state of the network is greater than that by a 
mixture of uncrosslinked chains. Upon stretching, the signal 
increases in the direction parallel to the stretching and de- 
creases in the perpendicular direction, returning, with in- 
crease of the stretching, to its value for the mixture (Fig. 
lb) .  

In the case of large values of X the scattering in the 
swollen state is considerably greater than the scattering by a 
mixture of uncrosslinked chains. In the direction parallel to 
the stretching the signal does not change with increase of the 
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FIG. 1.  Experimentally observed depend- 
enceL4." of the intensity I, of the scattering 
of neutrons by chains of a polymer solvent on 
the magnitude q of the wave vector. The solid 
curve is the signal from a mixture of solvent 

C L L - chains with ;ncrosslinked chains of the 
4 4 network. The thick solid curve is the signal 

from chains placed in a polymer network. 
The arrows show its variation under uniaxial 
stretching of the network, in the direction 
parallel to the stretching (11) and in a direc- 
tion perpendicular to the stretching (I). Fig- 
ure (a) corresponds to a small degree X of 
crosslinking of the chains of the network, 
(b)  corresponds to intermediate values of X, --- and (c)  corresponds to large values of X. 

stretching, while in the direction perpendicular to the 
stretching it decreases, but does not reach its value for the 
mixture (Fig. lc). 

The puzzling features described here find a natural ex- 
planation in terms of the theory we propose, which takes into 
account the distortion of the shape of the potential wells as a 
consequence of the deformation of the random medium- 
the polymer network. 

2. THE OPTIMAL-FLUCTUATION METHOD 

take the normalization condition (4) into account by intro- 
ducing a Lagrange multiplier p. The minimization of the 
functional (4) leads to an equation of the Schrodinger type 
for the function $(x) = c'" (x),  with eigenvalues ~ { u )  = p: 

and the free energy (4)  of the chain takes the form 

a) General theory 
The minimum of Fo (6)  is reached when E = E, is the small- 

1n this section we construct the theory of the localized est eigenvalue of ~ q .  ( 3  ), corresponding to the eigenfunc- 
states of Gaussian noninteracting polymer chains consisting tion 9 = $w 
of 1 lines of length a. The random Gaussian field u (x)  acting The key to the solution of the problem under considera- 
on the links of the chains in d-dimensional space is charac- tion is provided by going over from the random field (x )  to 
terized by the correlators an abbreviated description of the disorder in terms of the 

where the bar denotes averaging over the random realiza- 
tions of the field u (x) .  The probability measure of the distri- 
bution of such a field has the form 

W(u(x)) = const exp [-S{u(x))] , 

s{u(x)) = 112JdxJdx~~(x - x~)u(x)u(x~), (2) 

where the kernel B(x) is related directly to the correlation 
function ( 1 ) : 

J d x ~ ~ ~ ( x  - xfl)u(rJ1 - XI) = d(x - XI). ( 3 )  

In a weakly fluctuating localized state the free energy of 
such a chain with a given density c(x)  of links is determined 
by the Lifshits expressionI6 

The equilibrium value of the density c(x) is found from the 
condition for the minimum of the functional (I). We shall 

variable E~{u), which is given implicitly by Eq. (5). Typical 
realizations of the potential u(x)  have the form of rather 
deep potential wells, randomly distributed in the sample. 
The probability of finding a well with a given value 
E = E~{u)  is given by the expression 

where V is the volume of the system. 
In the framework of the optimal-fluctuation method" 

the problem of calculating p ( ~ )  - e  - with exponential ac- 
curacy reduces to that of the determination of the minimum 
of the functional S{u) (2) under the condition 

Taking this condition into account with the aid of a La- 
grange multiplier A, from the condition for the minimum of 
the functional S{u) with respect to u(x)  we find an expres- 
sion for the optimal fluctuation of the field u(x)  in terms of 
the function 1Cl,(x): 

632 JETP 76 (4). April 1993 S. V. Panyukov 632 



Substituting the expression ( 9 )  into the equality (8) to de- 
termine the parameter A, we represent the exponent S  on the 
optimum fluctuation in the form 

b) Various type of dlsorder 

The explicit form of the function S ( E )  depends on the 
relative magnitudes of the localization length R  and the 
characteristic correlation length rc of the correlation func- 
tion ( I ) .  In the case R  < rc , by expanding the correlator ( I )  in 
powers of x up to the quadratic terms: 

from the condition for the minimum of the functional ( 10) 
we find 

Substituting the expression ( 12) into ( l o ) ,  with exponential 
accuracy we find for the concentration of wells with a given 
size R < r ,  the results c ( R )  -e-S'R' , where" 

The most interesting case is that when the localization 
length R  is large in comparison with the correlation length rc 
of the disorder. In this case the correlator u ( x )  can be repre- 
sented in the form 

V ( X )  = v~(x), v = Jdxv(x), ( 1 4 )  

and the function $,(x) is equal to 

The dimensionless function ~ ( t )  is found by solving the 
equation 

It was found in Ref. 19 by numerical solution of Eq. ( 1 6 ) .  
Substituting the expression ( 15) into ( l o ) ,  we obtain 

We now find the distribution function of the potential 
wells with respect to their sizes R .  According to the defini- 
tion (7) of the probability p ( ~ ) ,  the concentration of wells 
with size smaller than or equal to R  is given by the expression 

where we have also made use of the expression obtained in 
Ref. 20 for the pre-exponential factor in p ( ~ ) .  

In terms of the variable R  ( 15) the free energy ( 6 )  of 
the chain is equal to 

Therefore, the condition IF,I ) T for the existence of the so- 
lution under consideration can be represented in the form 
I ,Imi ,  = ( R  / a ) 2 .  Sufficiently short chains with 1 < I m i ,  have 
Gaussian size R  = a1 ' I 2 .  

c) Localization of branched polymers 

To conclude this section we shall consider the localized 
state of a randomly branched molecule that has a fixed struc- 
ture of the tree type and consists of n  elementary chains. The 
average number N of links of such a chain is related to the 
degree 1 of polymerization of the molecule by the obvious 
relation N = 1 /n .  To find the free energy of this branched 
polymer localized in a potential well of size R, we must sub- 
tract from the expression ( 19) the contribution of the trans- 
lational entropy of its elementary chains: 

The logarithmic term in ( 2 0 )  describes the change of en- 
tropy of an elementary chain when it is localized from the 
free state, in which is occupied volume ( a N  ' I 2 )  3, down to the 
volume R  3. 

The relation ( 2 0 )  was first obtained by us in the frame- 
work of the replica f~rmalism,~'  but, because of the transpar- 
ency of its physical meaning, there is no need to give a rigor- 
ous derivation of it here. 

3. FREE ENERGY OF A POLYMER CHAIN 

a) Localization of a chain in one potential well 

The Gaussian-chain model considered in the previous 
section is convenient for computer calculations, but is better 
regarded as a touchstone for a more realistic theory that 
should take the interaction of the monomer links of the chain 
into account. In the presence of two-particle interaction the 
free energy of the polymer is equal to 

where w, is the second virial coefficient. Following the meth- 
od of Ref. 22, we expand the desired solution that minimizes 
the free-energy functional ( 2 1 )  in the eigenfunctions of Eq. 
(3) :  

The coefficients c ,  are found by substituting the expan- 
sion ( 2 2 )  into the functional (21 ) and minimizing the re- 
sulting expression with respect to the c,.  Below, we show 
that in the localized region it is sufficient to confine ourselves 
to taking into account the single term with k = 0 .  In this 
approximation we find for the coefficient c, the expression 

The Lagrange multiplierp is found by substituting the solu- 
tion obtained for p(x) into the second equality (4): 
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p  = lei - ~ ~ w , l a - ~ l e l ~ l ~ ,  B;' = 2Ad(l - d/412. ( 2 4 )  

With allowance for ( 2 3 )  and ( 2 4 )  the free energy ( 2 1 )  of a 
polymer localized on a scale R  = a l ~ I  - ' I 2  takes the form 

F(R) = FO(R) + Fi,tt(R), Fin,(R) = T B ~ W ~ ~ ~ I ~ R ~ ,  ( 2 5 )  

where the function F,(R ) is defined by the expression ( 19).  
The conditions F <  0  and IF I ) T for the existence of 

such a solution can be represented in the form 

a 2 w z 1 ~ d - 2  = 1- > I > Imin =  la)'. ( 2 6 )  

The inequality R  4 ( a 4 / w 2 )  - d' [which follows from 
( 2 6 )  1, together with R  < R,,, = ( Q ~ / V ) " ( ~ -  d' ( 17),  de- 
termines the maximum localization length for the polymer. 

We now discuss the possibility of neglecting the higher 
harmonics in the expansion ( 2 2 ) .  The coefficients ck ( k  # O )  
of this expansion can be taken into account in perturbation 
theory. Taking into account that E ,  - E -  I E I  for k  $0,  for 
the small parameter of perturbation theory it is not difficult 
to obtain the estimate 

1 - pllel = 111-, ( 2 7 )  

where we have made use of the expression ( 2 4 )  for the pa- 
rameter~ .  Thus, the expressions ( 2 5 )  and ( 1 9 )  fully deter- 
mine the free energy of a chain for which the number I of 
links lies in the interval ( 2 6 ) .  Chains with I< I,,, have 
Gaussian statistics (the free energy IF I -- T ,  and the size 
R = a1 ' I 2 ) .  

b) Localization of a chain in several potential wells 

We consider now the behavior of long chains with 
I )  I,,, in space of dimensionality d = 3. In the case of weak 
disorder ( v  < w , ) ,  potential wells with size R  < a4/w2 are ex- 
ponentially rare [see ( 18) ]. Since the loss of energy of the 
chain outside the wells substantially exceeds the energy gain 
( 2 5 )  in the wells, the tension of the chain pulls it from the 
potential wells. In the case of strong disorder ( v )  w , ) ,  such 
chains consist of a large number of localized blobs, the most 
probable size of which is R,,, (see Fig. 2 ) .  According to 
(181, the deeper potential wells with size R  (R,,, are ex- 
ponentially rare, and unimportant in the study of the statis- 
tics of long chains. With neglect of the contribution of such 
wells the average number g,  of links of the globular blobs is 
found by minimizing the free energy of the chain 

with respect to g ,  and the number g2 of links of the chain 
fragment between neighboring wells, the average distance 
between which is L = c-'I3 (R,,, ) ( 18).  Such a fragment is 
situated in an effective tube of diameter D z R , , , ,  created by 
the random field u ( x ) .  Since for w2 4 v  the interaction of the 
links within a tube is unimportant, the free energy of this 
fragment is the sum of the energy of stretching of the chain 
along the tube ( TL ' / a2g2)  and the energy of its compression 
in the perpendicular direction ( Ta2g2/D ' ) .  Minimization of 
the expression ( 2 8 )  with respect t o g ,  and g2 gives 

gl = ;:112a6/w~12$12, g2 = L D I Q ~  << g l ,  ( 2 9 )  

where the dimensionless parameter x  = L / D  2 1. The quan- 

FIG. 2. Typical conformation of a chain with 1,1,,,,, links in a random 
medium. The fragment of the chain between neighboring potential wells 
of size R zR,,, is situated in an effective tube of diameter DzR,,, and 
length L = xD. 

tity g ,  < I,,, for v  > xw,, as a consequence of the above-indi- 
cated effect of partial expulsion of the chain from the poten- 
tials wells. Thus, the perturbation-theory parameter g,/l,,, 
( 2 7 )  is indeed small. The results ( 2 9 )  also make it possible 
to convince oneself that the interaction of the monomer links 
inside a tube is small. In fact, the corresponding perturba- 
tion-theory parameter16 

is small for v >  xw,. This condition also guarantees fulfil- 
ment of the inequality F, < 0 .  

4. AVERAGE SIZE OF A POLYMER CHAIN 

To find the size of a chain in the localized state we must 
distinguish the cases of unpinned chains and the chains with 
one fixed end. Chains with a fixed end are localized in the 
nearest potential well with size - R,,, . It is this case which 
is realized in the numerical experiments of Ref. 9.  Free 
chains find the sparsely located [see ( 18) ] but deeper ener- 
gy minima with R  (R,, ,  . 

The probability that a chain is localized in a well with a 
given size R  is proportional to exp[ - F ( R ) / T ] .  The con- 
centration c ( R )  of such wells was calculated in ( 18).  Thus, 
the mean square size of a chain in a localized state is given by 
the expression 

a) Three-particle interaction (the 0-conditions) 

In the absence of two-particle interaction between the 
links the dependence F , ( R )  is given by ( 1 9 )  and the main 
contribution to the integrals ( 3  1 ) is made by small values of 
R .  In this compact state we must take into account the three- 
particle interaction of the chain links that is described by the 
third virial coefficient w,. In analogy with the derivation of 
Eq. ( 2 5 )  for the free energy of such a chain ford = 3  it is not 
difficult to obtain the expression 
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Calculating the integrals in (3  1 ) and (32) by the method of 
steepest descent, we find 

Chains with I > I,,, are distributed over I /g potential 
wells of size R,,, za4/u. For the numberg of monomer links 
of these wells, in analogy with (29) we can obtain the expres- 
sion 

Regarding such blobs as the structural units of the chain, we 
easily find the average size of the chain: 

Thus, in the localized state the chain is more compact than a 
Gaussian chain in the absence of disorder, but its size has the 
same scaling dependence p- I. The results (33) and (35) 
obviously cannot be obtained in the framework of the vari- 
ational approach of Refs. 10-12, which does not take ac- 
count of the presence of the large number of potential wells 
with a broad distribution ( 18) of sizes. 

b) Two-particle interaction 

We now find the average size of a chain with excluded 
volume in the case when it is localized in one potential well. 
Substituting into ( 3  1 ) the expression (25) obtained above 
for F ( R )  and calculating the integral over R by the method 
of steepest descent, we find for d = 3 and u > w, 

Equation (36) demonstrates the difference between statisti- 
cal (quenched) averaging and the ordinary Gibbs (an- 
nealed) average. In the latter case the dependence R - I im- 
plies that the chain is stretched out into a string. In reality, it 
finds sparsely located potential wells with size (36), which 
have, on the average, the shape of a sphere. 

In the case of weak disorder ( u  < w,) there is no extre- 
ma1 point and the size of the chain is determined by the con- 
tribution of the delocalized states [which were not included 
in the definition ( 3 1 ) 1 : 

In this case the localized states make only an exponentially 
small contribution to the average (37). 

As shown in the preceding section, for u> xw, suffi- 
ciently long chains with I ~ I , , ,  consist of I/g, localized 
blobs of size R,,,. It is not difficult to show that configura- 
tions in which the polymer chain visits a given potential well 
several times are not favored: The energy losses amount to 
xT for each ring. Therefore, the size of the chain is deter- 
mined by the formula 

which describes a random walk without self-intersections, 
each step of which is equal to L z Rmax . In (38) the param- 

h 
eter w, = ~ ~ ' ~ v - " ~  < w,. Thus, on scales large compared 
with R,,,, impurities effectively screen the interaction of 
the monomer links of the chain, but do not change the scal- 
ing dependence p- 1 6'5. 

c) Long-range interaction 

To conclude this section we shall consider the influence 
of long-range interaction of the Coulomb type, with poten- 
tial Tw/lxl, on the statistics of a chain situated in a disor- 
dered medium. The free energy of such a chain, localized in a 
well of size R, is equal to 

The principal contribution to the integral (3  1 ) is made by 
small values of R, at which the contribution of the long- 
range interaction is small in comparison with the contribu- 
tion of ordinary short-range interactions. Therefore, the 
quantity R is given by the expression (36). However, the 
condition u > w, for the existence of a saddle-point solution 
changes, and, with allowance for the long-range interaction, 
takes the form 

Besides the inequality (36), this condition also imposes a 
restriction on the maximum number I,,, of links of a chain 
localized in one potential well. 

We now consider long chains (with 1% I,,, links) that 
cannot be localized in one well. The free energy of such a 
chain is determined by an expression analogous to (28): 

In contrast to (28), the term - w in (41) takes into account 
not only the interaction of the links within one well but also 
the long-range interaction of the links in different wells. This 
interaction leads to renormalization [in comparison with 
the one-well case (39) ] of the numerical coefficient Cmulti- 
plying w. Since the quantity C depends in an essential way on 
the characteristic conformations of the chain, we shall find 
this coefficient at the end of the calculations. 

The expression (41 ) has a minimum with respect to the 
variables g, and g,: 

g1 = x1/2a2/~1'2w1/2v112, g2 = LD/a2 < gl (42) 

in the case of sufficiently strong disorder 

In the case of weak disorder ( u  < u, ) the tension of the chains 
pulls them completely out of the potential wells. With ne- 
glect of disorder effects, the size of such chains for u < u, is 
equal toz3 
- 
R~ = a4/391312, i > ( a ~ w ) ~ ~ ~ .  (44) 

Since the potential energy per localized blob for u > u, is of 
the order of 

on scales large in comparison with the size R,,, of a blob the 
chain is stretched out into a strong under the action of the 
long-range interaction, and its size is equal to 

Summing the contributuions of the interactions between the 
I /g, potential wells threaded onto such a string, for the pa- 
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rameter C we find the expression 

The logarithmic term in (46) leads to "ultra-stretching out" 
of the chain in comparison with the case (44). This effect is 
due to the partial pulling out of the links of the chain [see 
(39) ] from the potential wells under the action of the long- 
range interaction. 

d) Connection with the variational approach 

The results obtained in this section differ substantially 
from the results of the variational approach.12 In order to 
understand the physical reason for this difference, we shall 
compare the problem considered here with the problem 
(studied in Ref. 22) of the condensation of a Bose field in a 
random potential. In this problem the chemical potentialp is 
fixed and the condensate fills all the energy wells with e <p .  
The free energy of such a system is equal to the sum of the 
contributuions of the different wells, and, therefore, is a self- 
averaged quantity: 

The polymer analog of this problem is a system of chains that 
are in chemical equilibrium with respect to the formation 
and breaking of their bonds. 

In the problem of the behavior of an isolated chain the 
length I of the chain is fixed and, for I < I,,, , the chain can 
occupy only one energy well. The quantum analog of this 
problem is a system with a continuous spectrum of energy 
levels F(R)  and with Vdc(R) states in the interval dR. The 
partition function of such a system is given by the expression 

Thus, in this problem what is averaged over the sizes R 
of the wells is not the free energy but the partition function. 
Therefore, the formal use of the method of  replica^'^-'^ in a 
problem in which only a small fraction of the disorder con- 
figurations is accessible leads to erroneous results. This dis- 
tinctive feature of polymer systems is due to the fact that the 
number I of particles in them is finite (I  < I,,, ). In the limit 
I-. w the chain visits a large number of wells and its free 
energy becomes a self-averaging quantity. Therefore, to de- 
termine it we can use the standard method of replicas. The 
principal contribution in this limit is made by many-well 
configurations, allowance for which lies beyond the scope of 
the single-well variational approach proposed in Refs. 10- 
12. 

5. THERMODYNAMICSOFCHAINS IN A POLYMER NETWORK 

In our study of the phenomenon of localization of 
chains immersed in a polymer network we shall confine our- 
selves to the consideration of networks obtained under con- 
ditions of equilibrium with respect to the formation and 
breaking of the chemical crosslinks between their chains. 
The conditions in which real experiments are per- 
formed14, 15.24 can differ substantially from those in the ideal- 

ized model that we have used. Nevertheless, as will be shown 
in this and the next section, even this very simple model 
makes it possible to given an adequate description of the 

changes that have been observed in a conformational set of 
chains of a polymer solvent in modern neutron experi- 
ments. 14.15.24 

In the approximation of incompressibility the density 
p ( x )  of the links of the network and the density c(x)  of the 
links of the chains are related to each other by the condition 
p (x )  + C ( X )  = p,,, = const. This condition is also the most 
interesting from the point of view of the experiments of Refs. 
14 and 15, in which a semidilute fluctuational regime is real- 
ized. Expressing the lengths of the chains and the density of 
their links in units of blobs,25 each of which consists of 
g=: (p,0,a3) -514 monomer links, in this case too we arrive at 
an incompressible system. The free energy of such a system is 
composed of the entropy contributions of the network and 
the polymer chains. We shall not study the first of these in 
more detail. 

a) Relationship between physical and chemical networks 

In statistical physics we consider two types of disor- 
dered systems-those with mobile (annealed) disorder and 
those with frozen (quenched) disorder. In correspondence 
with this classification we consider two types of polymer 
networks-physical and chemical. The topological (chemi- 
cal) structure of physical networks is annealed, and the for- 
mation and breaking of the chemical crosslinks between the 
chains of such a network is described by the condition of 
chemical equilibrium. The topological structure r of chemi- 
cal networks is fixed by the conditions of the synthesis. The 
physical properties of the two types of networks are substan- 
tially different: Physical networks are liquid, whereas chem- 
ical networks are solid. At the same time, as will be shown 
below, the characteristics of these networks turn out to be 
closely related to each other. 

We shall denote by SPh b) and Sh @,A) the entropies 
of a physical and a chemical network, respectively, with a 
given density p (x )  of links: 

Here, a, is the volume of the configuration-space region 
occupied by a network with topology l-' and density distribu- 
t i o n ~ ( ~ ) .  The quantities A, in (47) are equal to the coeffi- 
cients of expansion of the network along the axes p = x ,  y, z 
relative to the network in the conditions of synthesis. Since a 
physical network is a liquid, the functional SPh depends on 
the coefficients A, only through the combination A,A,;1,. 

As a consequence of defects of the topological structure 
of a chemical network the entropy of the network reaches a 
maximum on a spatially nonuniform density distribution 
n (x) ,  which depends only on the topology l-' of the network. 
Expanding the entropy functional (47) in powers of the cor- 
responding densities up to terms of second order, we obtain 

Substituting the expressions (48) and (49) into (47) and 
going over, in the last of Eqs. (47), from the summation over 
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r to integration over the distribution n (x) ,  we find a rela- 
tionship between the parameters of physical and chemical 
networks: 

The function x has been calculated in Refs. 26 and 27 by 
the replica method for networks obtained by equilibrium 
crosslinking of long chains. In the long-wavelength limit 
q -0 they have the form 

Here, Nis the average length of a chain between neighboring 
crosslinks. Here and below, the notation Rq is used for the 
vector with components A, q, . 

b) Characteristics of the disorder of polymer networks 

Substituting the expression (50) obtained above for the 
parameter t into (49) and adding the contribution of the 
entropy of the free chains, we obtain for the free energy of a 
polymer system the expression 

where we have used the incompressibility condition 
p, = - c, , and S, ( A )  is the form factor of the system of 
free chains: 

Here and below, the superscript (0)  indicates that the core- 
sponding quantity pertains to the conditions of synthesis. 

The quantities u, and B, appearing in (52) have the 
form 

Comparing the expressions (4) and (52) we find that u, has 
the meaning of a Fourier component of the random field 
acting on the monomer links of the free chains. 

Henceforth we shall consider networks obtained under 
conditions of chemical equilibrium. The probability of syn- 
thesis of such a network with a given topological structure r 
is proportional to its partition function: 

Substituting the expression (52) and (55) and calculating 
the Gaussian integrals, for the probability distribution of the 
density dO'(x) of spatial nonuniformities of the network in 
the conditions of synthesis we find the expression 

wn(O)) = const .exp 

The function G r' in (56) has the meaning of the correlation 

function of fluctuations of the density of the links of the free 
chains: 

The relationship between the distributions n (x)  and dO'(x) 
can be found if we note that large-scale nonuniformities are 
deformed affinely with the network: 

Here we again use the notation R -'x that we have adopted 
for the vector with components R; 'x,. Performing the 
average of the random field (54), (58) with the probability 
(56), we find the correlation function of the disorder: 

6. ORIENTATIONAL ORDER OF CHAINS IN DEFORMED 
NETWORKS 

a) Isolated chains 

The mechanism of the deformation of polymer chains 
under stretching of the medium is conveniently studied first 
for the example of an isolated chain localized in one potential 
well. To describe the change of its dimensions R, under the 
action of an anisotropic stretching A, = R ( 1 + E, ) of the 
network we substitute into the functional ( 10) the variation- 
al function 

Minimizing the resulting expression with respect to R,,  in 
first order in the parameters E, we find R, = R ( 1 - 2-5, / 
5), where the size R of the undeformed chain is defined in 
( 15). Thus, in the localized state the chain contracts in the 
direction of stretching of the network and is stretched in the 
direction of contraction of the network. 

b) Polymer solvent 

We now find the correlation function of the fluctuations 
of the density of the links of a polymer solvent that consists 
of free chains placed in a network: 

We substitute into (61 ) the expression (56) for the probabil- 
ity and the expression (52) for the free energy. The Gaussian 
integrals in (6 1 ) are calculated by going over to the Fourier 
representation: 

Here, G, has the meaning of the correlation function of ther- 
modynamic (temporal) fluctuations of the density of mon- 
omer links, and C, is the correlation function of statistical 
(spatial) fluctuations of the density. The magnitude of the 
latter fluctuations can also be found from the condition for 
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the minimum of the free energy (52) with respect to c, : 

The quantity I, (62) that we have calculated is propor- 
tional to the intensity of the small-angle scattering of neu- 
trons by deuterated chains. Substituting into (62) the 
expression (56) for v, and making use of the expression 
(51) for the functions x ,  we find that, depending on the 
relative magnitudes of A (the degree of swelling of the lat- 
tice) and the parameter X = cl / pN  < 1, three basic regions 
must be distinguished: 

a )  The case A < X - ' I 4  can be realized for small X. Un- 
der uniaxial stretching of such networks the intensity I, 
(62) of scattering by free chains behaves in accordance with 
Fig. la. 

b)  The case X - ' I 4  <A < X - ' I 2  occurs for intermediate 
values ofX. The dependence of the intensity I, on the degree 
of uniaxial extension of the network is found in accordance 
with Fig. lb. 

c )  The Case A > X - ' I 2  is realized for sufficiently large 
X. The intensity I, depends on the degree of extension of the 
network in accordance with Fig. lc. 

c) Partially deuterated chains 

In Ref. 15 the case in which only a fraction @ of the free 
chains is deuterated was studied. We denote the density of 
their links by c t .  The entropy of the free chains of such a 
system is equal to 

Substituting the expression (64) into the free energy (52) in 
place of the corresponding contribution of the linear chains, 
we find without difficulty the following expression: 

for the correlation function of the fluctuations of the density 
of the deuterated chains. Thus, with decrease of the fraction 
@ of such chains the signal (65) becomes isotropic, in agree- 
ment with the experimental data.15 

Thus, we have shown that allowance for the spatial non- 
uniformities of polymer networks makes it possible to under- 
stand the unusual data of Refs. 14 and 15 on the small-angle 
neutron scattering. 

7. PRINCIPAL CONCLUSIONS 

In this paper we 3ave constructed a statistical theory of 
polymers situated in a random medium. The quantum ana- 
log of this problem is the well known problem of the localiza- 
tion of an electron in a random external field. This analogy 
has enabled us to carry over methods developed in the theory 
of solids to the description of a polymer system. The results 
obtained differ substantially from the results obtained pre- 
viously in the framework of the variational approach of Refs. 
11 and 12, which is found to be inadequate to the physical 
picture of the localization. 

We have shown that the localization of sufficiently 
short chains with I < I,,, links occurs in randomly posi- 
tioned regions with sizes R < R,,, . Chains that are fixed at 

one end are localized in the nearest region with the size R,,, . 
Free chains are localized in sparsely located but deeper ener- 
gy wells. Because of the presence of the repulsive interaction, 
it is energetically more favorable to distribute chains with 
I > I,,, over several wells. 

An important application of the theory developed here 
is to a system of linear chains placed in a polymer network. 
We have shown that the correlation function u characteriz- 
ing the disorder in such a random medium can be expressed 
directly in terms of correlation functions of the polymer net- 
works. The latter have been found previously in Refs. 26 and 
27. In the case of isotropic stretching of the network by a 
factor ofA we obtained u = 5A 'w2 /3 .  Thus, the relation be- 
tween the effective interaction parameter w2 and the disor- 
der u can be changed by stretching the network, thereby 
scanning in a single sample all the localization regimes pre- 
dicted above. In this sense polymer networks are an ideal 
object for the study of localization of polymers. 

The physical picture of the localization of isolated 
chains differs substantially from the picture of the ordering 
of the overlapping chains of a polymer solvent. In the former 
case improbable fluctuations of the random field correspond 
to localized states, while in the latter case only typical values 
of this field are important. 

We have shown that isolated chains that are localized in 
one potential well are ordered in a direction perpendicular to 
the direction of stretching of the elementary chains of the 
network during uniaxial stretching of the network, this ef- 
fect being anomalously strong: AR / R  =. - M /A. At the 
same time, according to the expression (65) for @ +O, the 
individual chains of a polymer solvent experience practically 
no orientational ordering. The experimentally observed ani- 
sotropy of the scattering is due to the collective effect of the 
interaction of the totality of these chains with nonuniformi- 
ties of the polymer network. We have shown that the theory 
proposed by us for the anisotropic scattering is in good 
agreement with the experimental data discussed in the Intro- 
duction. 

The author expresses his gratitude to J. Bastide and F. 
Boue for the opportunity to become acquainted with the ex- 
perimental data of Ref. 15 and for discussion of some the 
results of the present paper. 
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