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An infinite-dimensional dynamical system is constructed and its central manifold Mo (of 
dimension ,<4) is found within thelinear theory ofelectrodynamic (EHD) instability in a 
uniaxial nematic liquid crystal in a low-frequency electric field. It is shown that the essential 
parameters of the problem are the strengths of the electric E and magnetic H fields, the thickness 
L of the liquid-crystal slab, and the anisotropy parameter (ua /uE), where ua /uand E, /E are, 
respectively, the relative anisotropies of the electric conductivity u and the permittivity E of the 
nematic. Two types of local bifurcations of codimension 94, which are possible at the threshold of 
the EHD effect, are described taking into account the FrCedericksz effect and its influence of the 
EHD effect in a uniaxial nematic in the region where these two effects have the same threshold 
fields. For known nematics with planar orientation local bifurcations with codimension (3 are 
allowed, while for nematics with homeotropic orientation local bifurcations with codimension (2 
are allowed. In an dielectrically isotropic nematic in the absence of an additional magnetic field 
only codimension- 1 local bifurcations are allowed at the threshold of the EHD effect, 
irrrespective of the type of boundary orientation of the liquid crystal. 

INTRODUCTION 

The last ten years in the physics of liquid crystals ( LCs) 
have been marked by intensive investigations of the nonlin- 
ear electrohydrodynamics (EHD) of uniaxial nematic LCs. 
The intense interest in this problem stems from the need to 
systematize diverse experimental nonlinear EHD results for 
NLCs,'s2 which are beyond the scope of the linear theory of 
dynamical phenomena.' Moreover, experiments have 
shown that there is a deep analogy between the development 
of the nonlinear EHD effect in NLCs and transcritical Ray- 
leigh-BCnard thermal convection in an isotropic l i q ~ i d , ~  and 
the fact that NLCs have a wider variety of physical param- 
eters than an isotropic liquid suggests that quite unusual 
types of instabilities, rarely or not at all encountered in other 
model problems, could be observed in uniaxial nematics. 
These include the oscillational EHD instability, predicted in 
Refs. 5 and 6 but not yet observed experimentally. This in- 
stability, together with the stationary EHD instability (Wil- 
liams domains) and the orientational instability FrCederiksz 
effect) exhaust, from the standpoint of the theory of dynami- 
cal systems, the list of local codimension-1 bifurcations for 
the boundary-value problem of the theory of the EHD effect 
in a uniaxial n e m a t i ~ . ~  Bifurcations with codimension >2 in 
the EHD effect, which correspond to multicritical singulari- 
ties in the theory of phase transitions, have not been dis- 
cussed in the literature, though in Ref. 7 it was pointed out 
that such bifurcations can exist in a phenomenon related to 
the EHD effect-thermal convection of an NLC in a mag- 
netic field. 

The linear part of a dynamical system is not sufficient 
for studying the stability of the new branched-off (bifurcat- 
ed) motion, but with the help of the linear part it is not 
difficult to establish the limits on the existence of high-di- 
mension bifurcations in model problems. The sparsity of the 
parameter set of the model precludes all local bifurcations 
with codimension >2, which are engendered by the linear 
part of the dynamical system, in the existing three-dimen- 
sional models: Lorenz's thermal convection of an isotropic 
liquid,' Ricitake's for the magnetohydrodynamics of the 

earth's dynamo,' Rossler's for spiral chaos, lo and Belousov- 
Zhabotinskii's for chemical oscillatory reactions" with one 
essential parameter. However, this does not forbid the exis- 
tence of local bifurcations with codimension 22, engendered 
from codimension-1 bifurcations in these models by the lin- 
ear part of the dynamical system due to degeneracy of some 
nonlinear terms. Bifurcations with codimension 2 2  can be 
found by increasing the number of significant parameters in 
the model. In Ref. 12 Brand et al., investigating thermal 
convection in a binary liquid slab, arrived at the conclusion 
that in an equivalent three-dimensional dynamical system 
with two essential parameters there exists a nonlocal codi- 
mension-2 bifurcation associated with the creation of a sep- 
aratrix contour and a stable limit cycle.'' 

The many-parameter model of the EHD effect in a un- 
iaxial nematic differs advantageously from the models listed 
above in that it allows the existence of several types of bifur- 
cations with codimension >2. Separation of such bifurca- 
tions means that the infinite-dimensional dynamical system 
obtained with the help of Galerkin approximations in the 
boundary-value problem of the theory of the EHD effect is 
reduced to a finite-dimensional central manifold Mo. In non- 
linear dynamical systems the manifold M,, is, generally 
speaking, a very complicated, sometimes multisheet (in con- 
nection with the strange-attractor structureI4) hypersurface 
in phase space. However, even the nondegenerate linear part 
of the dynamical system can give the dimension of the 
smooth central manifold and in addition the possible types 
of bifurcations of the phase portrait of the dynamical system 
on Mo. lS 

The object of this work is to find the central manifold of 
the dynamical system for the EHD effect and to describe 
some possible bifurcations of high codimension at the 
threshold of the EHD effect. 

LINEAR DYNAMICAL SYSTEM 

In this section we give a brief exposition of the linear 
theory of the low-frequency EHD effect in an NLC with 
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planar (p) and homeotropic (h)  orientation. We neglect 
second- and higher-order infinitesimals in the variations of 
the electro- and hydrodynamic variables and we confine our 
attention to the two-dimensional model of the EHD effect (a  
more detailed discussion is given in Refs. 6 and 16). 

Consider an infinite plane-parallel slab of an NLC with 
thickness L and free boundaries. Nonstationary flow of the 
liquid-crystal medium is described by a system of four differ- 
ential equations: 

1 ) equation of continuity for an incompressible liquid; 
2) equation of conservation of volume charge; 
3) Navier-Stokes equation in the NLC; and, 
4) equation of motion of the director n, neglecting the 

small specific moment of inertia of the nematic liq- 
uid. 

These equations are supplemented by free boundary condi- 
tions at the surface of the liquid crystal layer. The functions 
sought are: the components v, and v, of the velocity vector v 
of points of the liquid-crystal medium; the tilt angle 8 = non 
of the director n away from its unperturbed position no; the 
deviation $ of the potential of the electric field in the NLC 
from the uniform distribution Ez. The electric E and mag- 
netic H field vectors lie in the same planexz as no; the z axis is 
directed along the electric field and the x axis is parallel to 
the plane of the liquid-crystal slab; the origin of the coordi- 
nate system is placed at the center of the plane-parallel slab. 
There are four types of possible mutual orientations of the 
vectors no, E, and h for which the breakdown of the undis- 
turbed structure of the liquid crystal exhibits a threshold:" 
in p-NLC (q,  = 0) and h-NLC (q,  = n-/2)-EllH (A = r /  
2) and E l H  (A = 0), where q, and A are the tilt angles of the 
director no and the magnetic field with respct to the plane of 
the cell, respectively. 

Solving the system of equations with the help of the 
Fourier transform leads to separation of the spatial modes. 
We choose for the basis functions for the electro- and hydro- 
dynamic variables u = (v,,O,T) the planar harmonics 

where k = f 1, + 2, ...; q, is the wave number of the sur- 
face-modulated structure of the NLC, described by the spa- 
tial mode ulk'; the unmodulated structure in the FrCeder- 
icksz effect is described by the mode uhk'. Eliminating the 
spatial modes for v, from the system with the help of the 
equation of continuity, we obtain an infinite-dimensional 
linear dynamical system that decomposes into independent 
sets of three equations for the modes ulk' and independent 
equations for the components of the modes uhk': 

In Eqs. (2) and (3) we introduce the following notation: 

B1 = alcos2p(cos2p - 2 sin2p) 

1 + 7 [a, + (a3 + a6 + 2a5)cos2p - (a2 + a5)sin2p] , 

1 B2 = 2 [a4 + (a3 + a,Jcos2p + (a5 - a2)sin2p] , 

1 Bj = j: [a4 + (a3 + a6)sin2p + (a5 - a2)cos2p] , 

B, = alsin2p(sin2p - 2 cos2p) 

1 + - [a + (a3 + a6 + 2a5)sin2p - (a2 + a5 )~o~2p]  , 2 4 

= - e l ,  xa = X I  - x I ,  aa = - a,, 

E ~ ,  X I , ,  x i ,  a l l ,  and a, are the principal values of the 
diagonalized tensors of permittivity E, diamagnetic suscepti- 
bility X, and electric conductivity a; Ki are Frank's elastic 
constants; ai are the Leslie coefficients of viscosity; and, p is 
the density of the NLC. 

The equations (2) contain complex coefficients. This is 
because the real basis functions constructed with the help of 
Eq. ( 1 ) have different symmetry. For example, the single- 
mode approximation has the formla (taking into account the 
boundary conditions) 
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vx a sin qZz sin q p ,  8 a cos q,z sin q? , 06,) = ~ ~ ( q :  + k 2 q ~ ) ( x a s ~ k )  - q&k)qk)) - qk)r(k))T(,k) , 
( 5 )  

vz a cos qzz cos q p ,  ry a cos qzz cos q g  . 4,) = xE2(q; + k2q:) [; qk) + + k2q:) + 4,) , I 
E 

It is no accident that the equations (3)  of the Frteder- 4 k )  = X E ~  %p(q: + k2q:12 + 4,) , ( 9 )  
icksz effect are included in the general dynamical system of 
the EHD effect in the NLC when studying the degenerate 
states of the system which are associated with the existence DSk) = - Y ~ P ~ ( , ~ ) ( <  + k2q:), 
of high-dimension bifurcations. As a rule, the Frtedericksz 

1 effect in NLCs is considered as an independent model effect q) = - (,gL - a,oa)qxcos 2p , irrespective of competing electrohydrodynamic processes. 4n 
This is valid when the threshold fields (bifurcation values of 
the parameters) of the Frtedericksz effect EF and the EHD 4,) = ck)(~k)2 - y , q k ) )  - r i k ) [ q k ) q k )  + pQk) (6  + k2q:)], 
effect (E, for the stationary effect or E, for the oscillation 
effect) are significantly different: d$k) = q@)' - y 1 q k ) )  - p(q: + k2q:)(Qk)qk) + ylQk)) . 

~ E F  - ES.01 
g = 

E F  

In the region where these fields are close (g< 1 ), however, 
this approach may turn out to be incorrect because of the 
nonlinear character of,both of these effects. Indeed, it can be 
shown18 that when the nonlinear terms are retained in Eqs. 
(2)  and (3)  the modes uAk' and ulk) start to mix with one 
another, and the systems of equations ( 2 )  and ( 3 )  are no 
longer independent. The situation is similar to including, in 
the basis of the solutions of Lorenz's nonlinear three-dimen- 
sional model of thermal convection of an isotropic liquid, a Z 
mode not modulated by the surface,14 and with which it is 
impossible to describe the evolution of the dynamical system 
through a cascade of bifurcations to a strange attractor. 

The possibility cannot be excluded that the system of 
equations (3)  will be partially independent of the modes 
urk', namely, nonlinear terms associated only with @ A k '  will 
enter into the equation of dynamics of the Frtedericksz ef- 
fect [the first equation in the system (3) 1. Then the Frteder- 
icksz effect can indeed be regarded an an independent effect, 
even in the region g <  1. 

The system of equations (3)  describes the relaxation of 
the director n in the Frtedericksz effect and Maxwellian re- 
laxation of the volume charge in the absence of macroscopic 
hydrodynamic flows. This system engenders in the complex 
plane of the decrement p of small disturbances 
[ u ( ~ )  azexP(p(,) . t ) ]  an infinite ordered sequence of real 
roots 

and one infinitely degenerate real root 

Each mode ulk' engenders in thep plane three roots of the 
characteristic equation of the dynamical system (2)  

where 

We note that all coefficients D;~ '  of the cubic equation (8) 
have the even Dj ( k  ') on k, i.e., the spatial modes ulk' can be 
enumerated with positive integers. 

Depending on the sign of the discriminant A, of the 
characteristic polynomial from Eq. (8)  

the roots pjk', j = 1,2, 3, of the equation lie in the complex 
plane: 

A, < &three real roots; 
A, = &two real roots, one of which is doubly degen- 

erate; 
A, > k n e  real root and two complex-conjugate 

roots. 
The further approach in studying threshold phenomena 

of the EHD effect consists of applying the general methods 
of the theory of dynamical systems. From this standpoint the 
trivial state u = 0 of the system is replaced by one of the 
nontrivial types of motion when the essential parameters of 
the problem2' reach bifurcation values. In the absence of E 
and H fields, whose values are significant parameters, all 
roots of the infinite-dimensional dynamical system, includ- 
ing pkk' (6),  p, ( 7 ) ,  and pjk' from Eq. (8),  lie in the left- 
hand half-plane of the decrement p .  This is easily verified, 
keeping in mind the facts that y ,  > 0, D ik' < 0, and Tlk' > 0 
with H = 0 and also the inequality 

proved in Refs. 6 and 18 for p- and h-NLCs. As the electric 
and magnetic fields increase, the rootp, remains stationary 
while the other roots move in the complex plane. For some 
values of the fields E = E. and H = H, one of the roots pkk' 
orpjk', j = 1,2,3, from the infinite set of real roots or a pair 
of complex-conjugate roots dk', pjk) from an infinite set of 
pairs will fall on the imaginary axis Im p ,  while among all 
other roots of the dynamical system n- roots will lie in the 
left-hand half-plane ( R e p  < 0)  and n + roots will lie in the 
right-hand half-plane (Re ,u > 0 ) .  If the parametric space of 
the problem is sufficiently rich, then in fields E = E, and 
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H = H, for some set of functionally related parameters (a  
so-called system of nongeneral position) n, real roots and n, 
complex-conjugate pairs of roots will lie at the same time on 
the I m p  axis. It turns out that in this case Shoshitaishvili's 
"theorem about the suspension of a saddle3' over a real cen- 
tral manifold of dimension n, + 2ncW  hold^:'^.^^ Near the 
bifurcation values E., H, of the parameters E, H the initial 
nonlinear dynamical system is split into three independent 
dynamical systems with the help of a continuous nonlinear 
transformation: 1 ) n --dimensional system, describing 
damped modes; 2) n+-dimensional system, describing 
growing modes; and, 3) n, + 2nc -dimensional system, de- 
scribing the nontrivial behavior of phase trajectories, includ- 
ing new stationary states and limit cycles. In other words, 
the infinite-dimensional phase space of the dynamical sys- 
tem reduces to a real finite-dimensional central manifold of 
dimension n, + 2nc. 

In the next section we investigate the central manifold 
Mo of an infinite-dimensional dynamical system describing 
the transition from the trivial state u = 0, corresponding to 
n + = 0, n - = co . For this reason, in the present situation it 
is topologically more appropriate to talk about the suspen- 
sion of not a "saddle" but rather an infinite-dimensional 
"cap" over the manifold Mo. 

CENTRAL MANIFOLD OF A DYNAMICAL SYSTEM 

From the technical standpoint, the application of the 
theorem about the central manifold consists of two steps. 
First, the central manifold Mo itself is found with the re- 
quired accuracy. Next, the system of differential equations 
which describes the behavior of phase trajectories on Mo is 
put into normal form. The second step is important for non- 
linear dynamical problems. In the present paper we focus 
our attention on the first step of the problem. In order to 
investigate this step it is sufficient to consider the linear part 
of the dynamical system. 

In the present section we show that with increasing 
electric and magnetic fields the first roots to appear on the 
imaginary axis of the complexp plane are p;' (6)  and p;", 
j = 1, 2, 3, from Eq. (8),  corresponding to the single-mode 
approximation. No other roots pkk' and pjk' with k > 1 can 
appear together withpkl' andpju'  on the Imp  axis. Since the 
degeneracy of the three roots is unrestricted, on the basis of 
what was said above the dimension of the central manifold 
M, of the dynamical system of the boundary-value problem 
of the theory of the EHD effect will not exceed four. We note 
that for a dielectrically isotropic ( x  = 0) NLC in the ab- 
sence of a magnetic field (H = 0) the root pkk' becomes sta- 
tionary as a function of the electric field E; this reduces the 
upper limit of dim M, to three, though, in reality, as will be 
shown below, even this number overestimates n, + 2nc un- 
der the chosen conditions. 

We construct a proof of the assertion formulated above 
in several steps, with no restrictions on the parameters of the 
NLC and the electric and magnetic fields. First, it is easy to 
show that the infinite sequence of roots pkk' is ordered as 
follows: 

so that no two roots from this sequence can coincide, and the 
root p$' is the first one to land on the I m p  axis. 

We now consider Eq. (8)  and show that if the real root 
pjl' of the first mode lies on the I m p  axis, then all real roots 
of the other modes with k > 1 lie in the region p < 0. The 
position of the real root pik' on the imaginary axis is deter- 
mined by the condition 

D&k' = 0 , (12) 

which gives a spectrum of the threshold field E jk' (q, , q, ) of 
the stationary instability for the corresponding mode plk) .  
Since the functions Dlk'  from Eq. (9) and the initial position 
of all roots pjk' in the region Re p < 0 are continuous, the 
real root corresponding to the mode pCllk' for which the con- 
dition (12) is satisfied first, in other words, the mode for 
which the threshold field E kk' is minimum, will be the first 
root to land on the imaginary axis as the electric and magnet- 
ic fields increase. Using the results of Refs. 6 and 16 for the 
threshold fields E ik' of the corresponding modulated EHD 
structures it is easy to show forp- and h-NLCs (see Appen- 
dix) that 

Gk) = cl(k2 + c, ) "~,  (13) 

where Ci are constants (C, > 0)  which depend only on the 
properties of the NLC. Minimizing E kk' with respect to k 
gives k = 1, i.e., i f p p  = 0, then pjk' <O for k >  1. 

We now consider the complex-conjugate pair of roots of 
Eq. (8).  We shall show that if the pair of complex-conjugate 
roots,ut',,Zp corresponding to the first mode lies on the Im 
p axis, then all complex-conjugate roots of the higher-order 
modes with k > 1 lie in the region Re p < 0. The position of 
the imaginary pair of roots pg' and pr '  on the I m p  axis is 
determined by the condition 

which gives a spectrum of two threshold fields E hk' (q, , q, ) 

of the oscillatory EHD instability for the corresponding 
mode ulk'. In Ref. 16 it is shown that only the lower branch 
of the oscillatory EHD effect can be observed in practice. 
Repeating the arguments for the real roots, we obtain that as 
the electric and magnetic fields increase, the pair of com- 
plex-conjugate roots of the mode plk' for which the condi- 
tion ( 14) is satisfied first, i.e., for which the threshold field 
E Ak' is lowest, will arrive first on the imaginary axis. Using 
the results for the threshold fields E hk' obtained in Refs. 6 
and 16 for the corresponding modulated EHD structures it 
is easy to show forp- and h-NLCs (see Appendix) that 

where Ci are constants (C3 > 0) which depend on the prop- 
erties of the NLC. Minimizing E ik' with respect to k gives 
k = 1, i.e., i f R e p p  = 1, then ~ep,!"<O for k >  1. 

In order to complete the proof of our assertion, it re- 
mains to show that the roots of the first- (k  = 1 ) and higher- 
order (k  > 1 ) modes cannot arrive first on the imaginary Im 
p axis simultaneously in the following combinations: 1 ) ', . - 

pjk'; 2) p;', d k ) ,  pjk'; 3) py',p;k); 4) p(I', pjk),  pjk'; 5) 
pj l ) ,  p,?) , pkk'; 6) Clj''',.,Zj1', pjk'. Indeed, as shown above, 
the first roots from the set of real roots pkk' and pi' '' to arrive 
on the I m p  axis as the electric and magnetic fields increase 
are the rootspkl' andp,!", and the first roots to arrive on the 
Im p axis from the set of complex-conjugate pairs of roots 
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dk' and ,iijk) are also the roots corresponding to the first 
mode. For this reason, the roots corresponding to the first- 
and higher-order modes cannot arrive first on the imaginary 
axis simultaneously in the combinations enumerated above. 

Thus, recognizing that the infinitely degenerate root 
,urn remains stationary as the electric and magnetic fields 
increase, we find that the smooth central manifold Mo of the 
infinite-dimensional dynamical system of the boundary-val- 
ue problem of the theory of the EHD effect can be construct- 
ed on the basis of the ( 6  ;", $;", vi:), 6 ;'))-eigenvectors of 
the linear differential operator 3, defined by the right-hand 
side ofthe first four equations of the system (2) and (3)  with 
k = 1. The dimension of Mo does not exceed four, which 
corresponds to the cases pkl) = p:') = 0, pi,\) = + iu and 
pk" = pj" = 0, j = 1,2, 3. It is obvious that near the origin 
of the coordinates the manifold M, is homeomorphic to Eu- 
clidean ~pace .~ '  If, as mentioned above, the equation of the 
FrCedericksz effect for 0 A'' can be studied independently of 
the other modes 6 :", $I1), 9 ::', then M, decomposes into a 
direct sum of a one-dimensional space MI, associated with 
the equation of the Frterdericksz effect, and the central 
manifold M2 of the rest of the dynamical system, and the 
simultaneous presence of the roots pk" and p,!" on the I m p  
axis is not critical for the dynamics of the system. The di- 
mension of M2 in this case does not exceed three. 

BIFURCATIONS OF HIGHER CODIMENSIONS 

A dynamical system of nongeneral position is charac- 
terized by the fact that some number c of bifurcation condi- 
tions (equations which the parameters satisfy) and some 
conditions of nondegeneracy (inequalities) are satisfied. 
The bifurcation conditions separate in the parameter space a 
manifold of codimension = c, and the nondegeneracy condi- 
tions separate regions on this manifold. The bifurcation dia- 
gram at all points of this region is said to be a point of bifur- 
cation of codimension c. 

We now consider the degenerate states of the dynamical 
system for the EHD effect in a uniaxial nematic. We shall 
find the behavior of the roots p,!" of the characteristic poly- 
nomial from Eq. (8 )  with the help of the Routh-Hurwitz 
criterion. When the essential parameters of the problem 
reach their bifurcation values, the roots p;'' and p,!':", j = 1, 
2,3,  can arrive on the imaginary axis from the left half of the 
p plane as follows: 
codimension = I 
1. Orientational Frtedericksz effect 

= O  ~ e , u ) ' ) < O ,  j = 1 , 2 , 3 ,  

E2 = x-'Gk), 4') < 0, D{') < 0, 

D $ ~ ) < o ,  D(,~)D?)< D(')D$,~). (16) 

2. Stationary EHD effect 

pi1) = 0, p$) < 0, Rep$,!J < 0 ,  

06') = 0, D(') < 0, Di') < 0, E' < x-'T$,') . 
(17) 

3. Oscillatory EHD effect 

codimension = 2 
4. Orientational-stationary EHD effect 

p f )  = pi') = 0, RepYi < 0 ,  

~2 = x-'q), 061) = 0, 1 )  < 0, ~ $ 1 )  < 0 .  

(19) 

5.Orientational-oscillatory EHD effect 

6. Stationary-oscillatory EHD effect 

,u(fi = + i (D( ' ) /~f)) ' /~,  p f )  4 0, pp) < 0 ,  

6') = ~ f )  = 0, 4') < 0, I,? < x-lG1). 

(21 

This type of bifurcation is engendered only by the threshold 
field E, and the wave number q,, of the stationary EHD 
instability. The corresponding characteristics of the oscilla- 
tory instability E, and q,, are simply absent, since the dis- 
persion relation ( 14) engendering them becomes an identity 
in this case. 
7. Doubly degenerate stationary EHD effect 

p\tJ = 0, pi1) < 0, < 0 ,  

06') = 4') = 0, D$') < 0, ,F2 < x - ' $ ' ) .  (22) 

codimension = 3 
8. Orientational-stationary-oscillatory EHD effect 

9. Orientational-doubly degenerate stationary EHD effect 

p = p = 0 p$') < 0 ,  

E* = x-lT$'), 06') = D$') = 0, D$') < 0 .  (24) 

10. Triply degenerate stationary EHD effect 
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codimension = 4 
11. Orientational-triply degenerate stationary EHD effect 

The cases ( 16)-(26) above complete the list of local bifurca- 
tions with codimension>2 that can be engendered by the 
linear part of the four-dimensional dynamical system on Mo. 
The nonlinear part of the system supplements these cases 
with nonlocal and local bifurcations by means of the degen- 
eracy of some nonlinear terms,'3,21 which can only increase 
the codimension of the bifurcation. 

As mentioned in the preceding section, in the case when 
in the dynamical system (2) and (3)  the Frtedericksz effect 
equation is separated into an equation that is independent of 
the other modes uj", the dimension of the central manifold 
M, of the remaining dynamical system does not exceed three 
and the number of different types of bifurcations with codi- 
mension >2 decreases to three: 
codimension = 2 
1.  Stationary-oscillatory EHD effect 
2. Doubly degenerate stationary EHD effect 
codimension = 3 
3. Triply degenerate stationary EHD effect 
As before, the three types of codimension-1 bifurcations en- 
umerated in Eqs. ( 16)-( 18) remain. 

As shown in Refs. 6 and 16, the development of the 
EHD effect inp- and h-NLCs exhibits characteristics which 
are peculiar to each type of crystal. For example, h-NLCs 
are convenient for observing EHD oscillations and the low 
threshold Es of the stationary EHD effect makes p-NLCs 
convenient for observing Williams domains. For this reason, 
it makes sense to find separately the necessary conditions for 
the existence of bifurcations (19)-(26) at the threshold of 
the EHD effect in planar and homeotropic uniaxial nematics 
with the help of Eq. (9),  using the expressions derived in 
Ref. 16 for the threshold fields E F ,  Es, and Eo. We introduce 
the following notation to be employed below: 

Lo and yare, respectively, the characteristic thickness of the 
NLC slab and the smallness parameter which were intro- 
duced in Ref. 6, and HF is the Frtedericksz threshold in a 
magnetic field. 

PLANAR NEMATIC 

Orientational-stationary EHD effect 

( 1 9 ~ )  

Orientational-oscillatory EHD effect 

Stationary-oscillatory EHD effect 

Doubly degenerate stationary EHD effect 

-- P(1 + B/a2) 
OaE - 1 + 

12(1 + a2 /B)  + K3/K1 + 1 + m2cos U ' 

( 2 2 ~ )  

Orientational-stationary-oscillatory EHD effect 

Orientational-doubly degenerate stationary EHD ef- 
fect 

Triply degenerate stationary EHD effect 
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Orientational-triply degenerate stationary EHD effect 

The physical conditions of the problem (12>0)  impose 
stringent conditions on the Leslie coefficients of viscosity, 
following from Eq. (26p) 

assuming that for the known nematics a, <O. We do not 
know of any NLCs whose parameters satisfy the condition 
(28). For all NLCs described in the literature B >  la21, i.e., 
local codimension-4 bifurcations of the type (26p) cannot be 
observed. On the other hand, the five independent Leslie 
coefficients of viscosity ai appearing in Eqs. (27) and (28) 
can, in principle, ensure that the conditions (28) are satis- 
fied. 

In the parametric space (o, &/at., ,m2,1 2, the relations 
(19p)-(22p) define a surface (codimension = 2), the rela- 
tions (23p)-(25p) define a line (codimension = 3) ,  and the 
relation (26p) defines a point (codimension = 4). We note 
that in order for the conditions ( 19)-(26) to be satisfied it is 
essential to include in the model of the EHD effect the dielec- 
tric anisotropy E, and the magnetic field H, i.e., these pa- 
rameters, together with the magnitude E of the electric field 
and the reduced thickness I of the liquid crystal slab, are 
essential parameters. For a dielectrically isotropic NLC, in 
the absence of a magnetic field, as follows from the relations 
(19p)-(26p), all bifurcations with codim)2 are forbidden 
for all known uniaxial nematics. 

HOMEOTROPIC NEMATIC 

Orientational-stationary EHD effect 

UoE B~ B~ a2/a3 - m2cos U --  - - I + - + -  ( 19/11 
OEa a2 a3 I - m2cos U ' 

Orientational-oscillatory EHD effect 

Stationary-oscillatory EHD effect 

Doubly degenerate stationary EHD effect 
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Orientational-stationary-oscillatory EHD effect 

Orientational-doubly degenerate stationary EHD ef- 
fect 

- OaE = -1 + - + -  B3 
B3 a2/a3 - m2cos U 

OEa a2 I -m2cosU ' (24h) 

Triply degenerate stationary EHD effect 

This bifurcation in an h-NLC is also ensured by the very 
unusual condition 

The last condition is excluded in the traditional rod-shaped 
uniaxial nematic, but it is apparently satisfied in an exotic 
disk-shaped uniaxial nematic.22y23 

Orientational-triply degenerate stationary EHD effect 

The requirement 1 > 0 excludes from the list ( 19h)-(26h) 
ofbifurcations at the threshold ofthe EHD effect in a h-NLC 
all bifurcations with codimension) 3. In the parameter space 
(U,E/VE, ,m2,1 2, the relations ( 19h)-(22h) define nonin- 
tersecting (in the region I > 0) surfaces (codimension = 2). 
Just as in ap-NLC, in a dielectrically isotropic h-NLC in the 
absence of a magnetic field all bifurcations (19h)-(26h) 
with codimension )2 are forbidden for all known nematics 
with realistic values of the parameters. 

The next step, after the degeneracy conditions (16)- 
(26) of the linear part of the dynamical system have been 
determined, is to study the restructuring of the phase por- 
trait of the dynamical system near the position of equilibri- 
um. For codimension-2 bifurcations the use of the typical 
bifurcation diagrams given in Ref. 13 for the types ( 19) and 
(22) and in Ref. 24 for the types (20) and (21) greatly sim- 
plify the problem. Codimension-3 and -4 bifurcations were 
discussed in Ref. 25. The results obtained in Ref. 21 for the 
critical exponents also are relevant here-the maximum ex- 
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TABLE I. 

ponents 7- of hard loss of stability (creation of an unstable 
limit cycle with radius r a pgr , where B is the supercritica- 
lity of the bifurcation parameter, near the position of equilib- 
rium) of the positions of equilibrium considered. Table I 
gives the exponents 7- for all critical cases with codimen- 
sion (3. The numbering of the entries follows the list of 
bifurcations ( 16)-(25). Soft loss of stability (creation of a 
stable limit cycle) from all cases ( 16)-(25) considered 
above is possible only for the oscillatory EHD effect with the 
corresponding exponent 17 + = 0.5. In all other cases soft loss 
of stability is impossible, but it happens when the nonlinear 
part of the dynamical system is degenerate. The critical ex- 
ponents ? + - were not calculated for codimension-4 bifurca- 
tions. 

CONCLUSION 

An infinite-dimensional dynamical system was con- 
structed on the basis of the linear theory of EHD instability 
of a uniaxial nematic in a low-frequency electric field and the 
central manifold Mo of the system was found. It was shown 
that the dimension of the smooth manifold Mo does not ex- 
ceed four, i.e., a four-dimensional phase space, constructed 
on the basis of the single-mode approximation, is sufficient 
for investigating the nonlinear properties of the electrohy- 
drodynamics of a uniaxial NLC near the threshold of the 
EHD effect. From the physical standpoint, this determines 
the order in which the spatial modes of the EHD instability 
in a uniaxial nematic are excited at a transition to turbu- 
lence. The parameter space of the problem is four-dimen- 
sional. The essential parameters of the problem-the inten- 
sities of the electric and magnetic fields, the reduced 
thickness I of the NLC slab, and the anisotropy parameter 
oa E/OE, --can be chosen as the generators of this space. 

Two types of local bifurcations with codimension (4, 
which are possible at the threshold of the EHD effect, were 
described taking into account the FrCedericksz effect and its 
influence on the EHD effect in an NLC in the region where 
the threshold fields of these two effects are close to one an- 
other. The nonlinear part of the dynamical system expands 
this list due to nonlocal and local bifurcations via the degen- 
eracy of some nonlinear terms which increase the codimen- 
sion of the bifurcation. The orientation of a uniaxial nematic 
at the boundaries of the liquid-crystal slab is important for 
observing different types of bifurcations at the threshold of 
the EHD effect. For known NLCs with the planar orienta- 
tion local bifurcations with codimension (3 are allowed, 
while in NLCs with homeotropic orientation local bifurca- 
tions with codimension (2 are allowed. The dielectric ani- 
sotropy of NLCs and the presence of a magnetic field are 
essential for observing high-dimensional bifurcations at the 
threshold of the EHD effect. The absence of these two fac- 
tors in the problem reduces significantly the list of degener- 
ate states--only codimension-1 local bifurcations are al- 
lowed, irrespective of the type of boundary orientation of the 
uniaxial nematic. For the types of bifurcations found in this 
work, the critical exponents v, of instability of the equilib- 
rium position accompanying the creation of a limit cycle 

near this equilibrium position was presented. 
This work is the preparatory stage for constructing a 

nonlinear theory of EHD phenomena in a uniaxial nematic. 
I am deeply grateful to E. I. Kats for his interest in this 

work and for discussing it. 

APPENDIX 

We present below expressions for the threshold fields 
E jk' and E Lk' of the corresponding modulated EHD struc- 
tures for the p and h orientations of a uniaxial nematic liquid 
crystal. Without loss of generality, we confine our attention 
to the case of dielectric i ~ o t r o p y . ~ , ' ~  For stationary EHD 
instability 

where the characteristic Maxwell relaxation time 7, , hydro- 
dynamic relaxation time ?,, and elasto-orientational relaxa- 
tion time T, of the director n in the NLC are defined as 

All other parameters are defined in the text. As follows from 
Eqs. (A1 ) and (A2), these expressions can be put into the 
form Eq. (13). 

For the oscillatory type of EHD instability we have 

It is easy to show that Eqs. (A3) and (A4) can also be put 
into the form ( 15). When the permittivity anisotropy of the 
NLC is taken into account, the form of the expressions for 
E(k' in Eqs. ( 12) and ( 14) remains the same but the con- 
stants Ci are normalized. 

"It is interesting that this bifurcation accompanies the codimension-4 bi- 
furcation which has not been noticed in Ref. 12 and corresponds to the 
doubly degenerate stationary type with additional degeneracy of two 
quadratic terms, which can be easily verified by comparing the ampli- 
tudeequation obtained in Ref. 12 to the typical dynamical system for the 
bifurcation mentioned [see Eqs. (2.16) and (2.25) in Ref. 131. 

"Among the twelve numerical parameters describing the development of 
EHD instability in a uniaxial nematic,19 some parameters, for example, 
the anisotropy of the elastic properties of the nematic K,/K,, are not 
important. 
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3'The signature of the metric of the ( n ,  + n-)-dimensional surface of 
this saddle includes n + positive and n - negative signs. 

4'The component 6; ')  of the vector uil) is required to be cyclical 
6 I" + ~r-13 i". For this reason, on thewhole, Mncan be homeomorphic 
to a piece of a cylindrical surface. 
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