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Dicke's model is used to discuss amplitude-phase multistability in a coherently driven cavity for 
the case of high Rabi frequencies and spontaneous decay rate that is low compared with the cavity 
mode decay rate. Quantum and quasiclassical interpretations, based on the Tavis-Cummings 
model, are presented and by regarding the system as a collection of damped harmonic oscillators 
is considered. An analytical solution of the problem is obtained for N = 2. A possible 
experimental arrangement for observing amplitude-phase multistability is examined. 

Collective effects in quantum optics, first studied by 
Dicke in his pioneering work,' continue to be a central prob- 
lem. The initial formulation of the problem' of the decay of 
collectively radiating atoms contained in a volume small 
compared with the cube of the wavelength (Dicke's model) 
has been extended to collective decay (superradiation, su- 
perfluorescence) in extended systems (see, for example, Ref. 
2).  

Resonance fluorescence excited by strong optical radi- 
ation was studied in Dicke's model in Refs. 3-7. In particu- 
lar, it was shown that for a certain value of the external field 
intensity a nonequilibrium phase transition, analogous to a 
second-order thermodynamic phase transition, can oc- 
C U ~ . ~ , ~  When the interatomic interaction between the parti- 
cles of the system is taken into account, this model can exhib- 
it a first-order nonequilibrium phase transition, associated 
with the fact that this system is equivalent to a quantum 
anharmonic oscillator in an external field.' 

On the other hand, as shown in Ref. 8, a system of inde- 
pendently radiating atoms, placed in an optical cavity, mani- 
fests optical bistability of the absorptive type, for which the 
curve of the intracavity field versus the external pumping is 
analogous to a van-der-Waals isotherm describing a first- 
orderliquid-vapor phase transition. It should be noted espe- 
cially that optical bistability does not arise as a result of co- 
operative effects produced when the atoms interact with the 
cavity mode of the field, as was assumed in Ref. 8. This phe- 
nomenon is determined by single-atom nonlinear effects 
arising because the state of the atom depends on the intraca- 
vity field, which consists of the external field and the field 
reradiated by the atom and depends on the state of the atom. 
Thus it has been shown recently9-" that when a single atom 
is placed in a cavity and interacts strongly with the cavity 
mode, such a system can manifest bistable properties. In ad- 
dition, besides the well-known absorption bistability (or bis- 
tability of the real part of the field a m p l i t ~ d e ) , ~  a new effect 
appears: phase optical bi~tability.'~,'' As indicated in Ref. 
10, phase bistability has a simple interpretation based on the 
representation of an atom interacting strongly with the in- 
tracavity field as a single quantum system in an external 
field. 

In the present paper we investigate new effects pro- 
duced by the combination of the collective character of the 
emission of a system of atoms and the nonlinearity of the 

atoms interacting strongly with the intracavity field. For 
this, we extend the single-atom model of quantum  optic^"^'' 
to the case of a large number of two-level atoms in a volume 
which is small compared with the resonance wavelength. 

This collection of atoms is located in a coherently driv- 
en high-Q optical cavity. The intracavity mode excited by 
the external optical field interacts strongly with the collec- 
tion of atoms and decays because the mirrors are partially 
transmitting. The atomic states decay as a result of sponta- 
neous emission into noncavity modes, which in this model 
are treated as free-space modes. 

It is demonstrated below that for this model amplitude- 
phase multistability arises when the components of the reso- 
nance-fluorescence spectrum are widely separated (the Rabi 
frequencies are high)5 and the rate of spontaneous transi- 
tions of the atoms is low compared with the rate of decay of 
the cavity mode. The number of stable points in the phase 
space of the model is analyzed as a function of the ratio of the 
numbers of the particles, and the spontaneous transition 
rates of the atoms and the boundary conditions for the ap- 
pearance of multistability in a multiparticle system are de- 
termined. 

2. THE MODEL 

The system of two-level atoms with resonance frequen- 
cy w in a volume with linear dimensions much shorter than 
the wavelength is described with the help of the Dicke collec- 
tiveoperatorsJ, = B,(T,, , J = B,a,-, J, = B,(T,, ((T,, 

and (T,, are single-atom operators), which satisfy the com- 
mutation relations [J, , J -  ] = 2.7, and [J,,J+ ] = 

f J +  . The action of the operators J+ and J, on the collec- 
tive states I j,m), where j is the maximum value of the "ener- 
gy spin" of the system ( j = N / 2 ,  where N  is the number of 
atoms, and m is the projection of the "energy spin" on the z 
axis, - j<m< j), is determined by the well-known relations: 

J+lj ,m) = d(j  + m + 1)v - m)lj, m + I ) ,  ( l a )  
J - l j ,m)= d ( j+m) ( j -  m + 1) I j , m -  1). ( l b )  

The collective states I j,m) are eigenstates of the opera- 
tor J, and the total "energy spin" operator J 2 :  

J, li, m) = m lj, m), 

J~ 1 j, m) = j(j + 1) 1 j, m). 

The single-mode intracavity field is represented by a har- 
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monic oscillator with frequency w, and boson creation and 
annihilation operators a + and a, respectively. The excita- 
tion of a cavity mode by coherent pumping with amplitude E 
is described by the Hamiltonian ifiE(a + - a ) .  The interac- 
tion of the system of atoms and the field is represented by the 
collective Jaynes-Cummings Hamiltonian in the rotating- 
wave approximation, @(a + J- + aJ+ ). Taking into ac- 
count the decay of the field and the atoms, the corresponding 
quantum-mechanical description of this model in terms of 
the reduced density matrix in the interaction representation 
has the form 

p = E[U+ - a, p] - iAa[Jz, p] - i g [ a + ~ -  + d + ,  p] 

where A o  = w - o, is the detuning between the resonance 
transition of a two-level atom and the field, g is the interac- 
tion constant between the field and a separate atom, y is the 
rate of spontaneous emission into field modes different from 
the cavity mode, k = IT/FT, is the decay rate of the field in 
the cavity, 7, = 2L /c is the round-trip passage time of the 
radiation in the cavity, L is the cavity length, and F is the 
sharpness of the cavity. 

It is easy to show that for the model (3) the squared 
total "energy spin" is conserved: 

We note that in the absence of atoms (g = y = 0)  in the 
cavity, the steady state of the intracavity field will be a coher- 
ent state with amplitude E /k. It is convenient to separate 
this state explicitly from the density matrix p by operating 
with the amplitude displacement operator D(E/k)  
= exp(E(a+ - a) /k) :  

The resulting equation for the transformed matrix? assumes 
the form 

(6)  
where the first term describes the change in p under the ac- 
tion of the classical field E /k (6 = gE /k is the Rabi frequen- 
cy ), and the term E [a + - a,p], corresponding to excita- 
tion of the intracavity field [see Eq. (3)  1, is absent. 

We note that operators describing the system of atoms 
and a single two-level system realize different irreducible 
representations of the same group SU(2) and hence satisfy 
the same commutation relations. Therefore, the same ca- 
nonical transformations as in Ref. 8 can be applied to the 
multiparticle model, and this yields transformations of the 
operators and equations for the density matrix p which are 
analogous to the single-particle model to within a substitu- 
tion of the Pauli spin operators a,, a. for the Dicke collec- 
tive operators J,, J, . 

3. HIGH RABl FREQUENCIES 

The equation (6)  derived above can be solved approxi- 
mately in the case when the generalized Rabi frequency 

R = J(26)' + (ha)' is sufficiently high. In order to obtain 
this solution we perform a rotation in the space of the vectors 
(Jx,Jy,J,) 

around the y axis through an angle p such that 
s = sin p = 26 /a  and c = cos p = Aw/Q. Then the eigen- 
states I j,ml) of the operator J: can be expressed as a linear 
superposition of the old basis states I j,m): 

where d',,. (p) = (ml exp( - ipJy ) Im') is the Wigner d- 
function.12 Assuming 0 - ' is the shortest characteristic time 
of the problem-shorter than the collective decay time 
(Ny) - ' of the atoms, the decay time k - ' of the field in the 
cavity, and the period ( N  /2) (g2/k) ) - ' of the Rabi oscilla- 
tions induced by the reradiated field, 

-we can transform to the "dressed state" representation for 
the density matrix p': 

with the time dependence of the operators Ji ( t )  given by 

and average the corresponding equation for the matrix p' 
over the fast Rabi oscillations. Like Eq. (3) above, the equa- 
tion obtained as a result of such averaging, 

where dl ,  = y ( 1 - C) '/4, and d2 ,  = y ( 1 + c )  */4, satisfies 
the particle number conservation law (4).  

According to the equations for the diagonal elements of 
the transformed and averaged density matrix p' ( 10) 
e 

. I igN + 
P - ~ - ~  = -j- [a  + a, P L ~ - ~ I  + k([a,  p -I ' , -1 ,a+] 

+ [ q L f - / ,  at I ) +  d21N~-lj '+l .-r+l  - d l p p L f - r ,  
P,:,. = -igm' [a+ + a, p;,,,I + k([a ,  p;,,a+I 

+ [ ~ 4 0 ~ , ~ l  a + ] )  
+ dI2( j  + rnl)(j - m' + l ) p ~ , - l , m t - l  
+ d2]G + m' + 110 - m ' l ~ A . + ~ , , . + ~  
- (d12(j + rn' + 1)(j - m') 
+ d2,(j + rn l ) ( j  - rn' + l))p,:,,, 

pf je  = - @! 2 [a+ + a, pfj,l + ~ ( [ a ,  prj., a+]  

+ [api.;., a + ] )  + d 1 2 N ~ ~ - l J - l  - d2,Npi'j., 

b (13) 
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the atoms in different eigenstates I j,ml) (8 )  interact with 
the intracavity field independently if the spontaneous transi- 
tion probabilities y into noncavity modes are small ( d ,  are 
small). In addition, the equations for the diagonal elements 
p;.,, are equivalent to the equations for damped harmonic 
oscillators excited by coherent radiation with amplitude 
( -gml), varying in intensity and phase for different states 
1 j,ml). Therefore, for d,, = 0, the cavity field will have 
2j + 1 possible stationary ialues of the amplitude 

a,,, = Elk  + igm'lk (m' = - j ,  ..., I). (14) 

The representation of the "field + atoms" quantum 
system as a collection of weakly coupled harmonic oscilla- 
tors can also be interpreted conveniently using the Tavis- 
Cummings model.I3 For this, we now consider the excitation 
of eigenstates of such a model by external resonance radi- 
ation. 

4. INTERPRETATION ON THE BASIS OFTHE TAVlS 
CUMMINGS MODEL 

The eigenstates of the Tavis-Cummings Hamiltonian 
(see Appendix) 

for the case of exact resonance can be represented in the form 
(A21 

where the indices f and a denote the eigenstates of the intra- 
cavity field and the system of atoms. The number n is the 
number of the excitations in the "field + atoms" system 
and the number r enumerates the eigenstates belonging to a 
fixed number of excitations n. For n < 2j the number 
k = n - j and r varies from - n/2 to n/2 in steps of 1. For 
n>2j the number k = j and r ranges from - j/2 to j/2. The 
eigenvalues of the Hamiltonian H 

where E2,,,, are the eigenvalues of the interaction Hamilto- 
nian &(a + J -  + aJ+ ), determine the energy spectrum of 
the system. The spectrum consists of the levels of the nonin- 
teracting atoms and the field, each level being split by the 
interaction into n + 1 sublevels for n < 2j and 2j + 1 sublev- 
els for n >2j (Fig. 1 ) . 

The external field, exciting the "atoms + intracavity 
field" system (the interaction Hamiltonian is 
- iE(a  - a + ) ), induces transitions between the eigen- 

states 12j,n,r). The different paths of excitation of the nu- 
merically computed energy levels of the Tavis-Cummings 
system are displayed in Fig. la ( N =  2) and Fig. lb  
( N  = 3 ) . The first two paths start from the ground state and 
excite the states 12j, 1,1/2) and 12j, 1, - 1/2) with the same 
probability (since the frequency mismatches 
Ifiw - ~ 2 , , 1 , 1 / 2  I and lfiw - $,,,I, - , / 2  I are equal): 

FIG. 1 .  Formation of independent excitation paths in the system of energy levels of the Tavis-Cummings rnodell3 under the action of external classical 
resonance radiation. The numerical calculation was performed using the formulas from the appendix for even N = 2 (a)  and odd N = 3 ( b ) .  
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The excitation probability of the next states now depends on As n increases the situation repeats. For n>2j transitions 
the state from which the system starts. The most likely tran- without a change in r are the most likely of these two paths: 
sitions (due to the small frequency detuning) are 1 %  n,]) -. 121, n + 1, J) ,  

As a result, the first two excitation paths can be represented 
as 

The next series starts from the state 12j,2,0) corresponding 
to two excitations in the system (n = 2) and r = 0. One [for 
2j= 2 (Fig. l a ) ]  or two [for 2 j>2  (Fig. l b ) ]  new excita- 
tion paths starting from the state 12j,2,0) are formed similar- 
ly to the paths ( 17). Thus each state 12j,21,0), where 1 is an 
integer and 21 < 2j, gives rise to new excitation paths. The 
total number of excitation paths distinguished in this man- 
ner, is equal to the maximum number of split energy levels 
with the same value of n and is equal to 2j + 1. 

As shown in the appendix, for large numbers of excita- 
tions n ) 2j the eigenstates of the Tavis-Cummings Hamilto- 
nian can be represented in the factored form [see Eq. 
(A1711 

5. NUMERICAL SOLUTION 

In order to solve the system (13) we make use of the 
definition of the characteristic matrix 

Note that in the basis of dressed states b,m') (i,nll the sys- 
tem of equations for F,.,. , which is obtained on the basis of 
Eq. ( 13), splits into two subsystems for the diagonal and off- 
diagonal elements. The diagonal part of the system has the 
form 

where the states Ir). = E', = - ,d',, ( - ~ / 2 )  lm) are iden- + d120 + mf)O - m' + l)gm,-l,m,-l 
tical to the "dressed" states (8)  with q, = - ~ / 2 .  In addi- 
tion, according to Eqs. ( 16) and (A 12), for n > 2j the energy + dzlO' + m' + 110' - m')~m,+l ,m,+l  
eigenvalues are - d12U + m' + 1)o - m') 

'2i,n,r = h ( n  - fi + ZMr, (19) + dzlU + m')U - m' + 1))9,,,.. (21 1 

i.e., the detuning of the frequency of the transition 

1 %  n,r) + l2j, n + 1, r) 

for each separated rth excitation path decreases as n in- 
creases. 

Thus, according to Eq. ( 18), the eigenstates (8)  of the 
operator J, are dressed atomic states which determine the 
quasiclassical (n )2j) eigenstates of the Tavis-Cummings 
Hamiltonian. Using these states as a basis for expansion, we 
obtained the equations ( 13) which represent the excitation 
of the "atoms + intracavity field" system as a motion of 
2j + 1 weakly coupled oscillators; for large n this is equiva- 
lent to separation of 2j + 1 independent excitation paths (of 
the form ( 17) ) in the Tavis-Cummings model. 

Taking decay into account in this model will lead to 
transitions from one distinct path to another. In Eqs. ( 13) 
these transitions are described by terms containing the spon- 
taneous transition constants d,, and d,, and characterizing 
random quantum jumps between states of neighboring har- 
monic oscillators with probability proportional to 
d , , ( j+m) ( i -m+  l ) andd , , ( j+m+ l ) ( j -m) .Asthe  
transition probabilities decrease, the intracavity field will 
have for most of the time a definite amplitude ( 14) and the 
system of atoms will be in the corresponding state b,ml). 
This makes it possible to talk about multistability of the sys- 
tem under consideration. 

We have solved the system (21) numerically for four 
and eleven particles and found the probability distribution 
of the field 9 ( a )  = 8,.9,.,.(a), where 9,.,.(a) 
= ( l / d ) ~ d  exp ( A  *a - ;la*) Y,,,. (A,?) is the proba- 

bility density for finding the field in a coherent state with 
amplitude a and the atom in the superposition state v,rn1) 
(8) .  Since in the case at hand 9 ,.,. as a function of the real 
part of the amplitude of the field can be found explicitly in 
the form 9 ,.,. (a) = 9 ,.,. (y)S(x - E/k) ,  where a = x 
+ iy, we investigated the distribution function as a function 

of the imaginary part of the amplitude. The results of calcu- 
lating this dependence for different values of the parameters 
g/k and d /k are displayed in Fig. 2 ( N  = 4) and Fig. 3 
( N  = 11 ). For fixed values of g/k and d /k the number of 
peaks in the distribution function is equal to the number of 
independent paths of excitation of the "molecule," and the 
positions of the peaks correspond to the amplitudes of the 
fields that would be established in a cavity pumped by a 
classical field with amplitudes E + igm': a = E /k 
+ igmf/k. Since the imaginary part of the field amplitude 
cannot exceed the value gN/2k, the distribution function is 
confined to the segment [a,,,,a,,,], where 
a,,, = E - igN/2k and a,,, = E + igN/2k. The qualita- 
tive nature of the probability distribution is not changed by 
increasing or decreasing the parameter g/k; the actual value 
of g/k determines only the scale of the change in the imagi- 
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FIG. 2. Stationary distribution function 9 of the field inside the cavity for N = 4 with a )  g/k  = 10, d  / k  = 0.05, b) g / k  = 20, d  / k  = 0.05, c )  g / k  = 10, 
d  / k  = 0.2, and d)  g/k  = 10, d  / k  = 0.6. 

nary part of the amplitude of the field (compare Figs. 2a and ratiod / k  increases [Fig. 2a(3a) and Fig. 2b(3b) ] the distri- 
2b). bution of the peaks becomes more diffuse and above some 

The sharpness of the peaks in the distribution function critical limit, which depends on N, the probability density 
increases symmetrically from the center to the limits of the function assumes the form shown in Figs. 2d and 3d with a 
segment (Fig. 2a and Fig. 3a), and for fixed d / k  it increases single stable state at the center of the segment. 
as the number of particles in the system decreases. As the In order to find the critical value of d / k  let us assume 

FIG. 3. Stationary distribution function 9 of the field inside the cavity with N = 1 I ,  g/k  = 10, and d / k  = 0.01 (a),  0.05 (b), 0.1 (c) ,  and 0.15 (dl .  
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that as the transition probabilities between neighboring 
functional states of the "molecule" increase, all stable states 
in the system vanish except two states corresponding to the 
extreme excitation paths. In this case the system (21 ) can be 
averaged over the fast intermediate motions and we arrive at 
equations for the probability densities similar to the single- 
atom variant:" 

Then the condition for the appearance at least two stable 
states in the system (21) is given by the inequality 

Compared with the single-atom phase optical bistability 
(y/4k < 1 ) the collective interaction of the particles weak- 
ens the phase stability of the states in proportion to the num- 
ber of atoms. The corresponding solution of Eq. (22) for the 
function 9 is, to within the substitution k+  k /N, the beta 
distribution,1° and it describes a curve averaged over all in- 
termediate states. 

6. ANALYTICAL SOLUTION FOR N= 2 

We have solved the problem (21 ) analytically for a 
three-level Dicke system, corresponding to two atoms inter- 
acting with the field in a cavity. In this case the stationary 
system of equations for the probability densities 9 ,,. , 
where m = 0 and + 1 is 

In solving this system, it is convenient to normalize the 
imaginary part of the field amplitude to the ratio 
g/k : z = y/(g/k). This change of variables "cleans up" the 
explicit dependence on the constant g/k in the system (24). 
The role of the parameter g/k as a scale factor of the imagi- 
nary part of the field amplitude can also be demonstrated in 
the case of an arbitrary number of particles [see Eq. (28) in 
Sec. 71. The numerical solution given in Sec. 5 confirms that 
the form of the distribution function does not depend on the 
ratio g/k. 

In order to derive the equation satisfied by the distribu- 
tion function it is necessary to take into consideration the 
relation 

. 

( k ~  = g ) P - l - l  + k p ,  + (ky + g ) P l l  = 0, 

' a - [ ( k ~  - g ) P - l - l l  + 2 d P m  - = 0, 
ay 
a 
- [ k p , ]  + 2 d ( P - , - ,  + P ,  , )  - 4 d P ,  = 0, a~ (24) 
a - [(ky + g ) P l l ]  + 2dP, - 2 P 1 1  = 0. 
, ay 

which follows directly from the system (21) for the charac- 
teristic functions .Fit (i l,t). Then the normalized distribu- 
tion function of the two-particle problem is found from the 
hypergeometric equation 

and can be expressed as follows: 

where the constants a, 6, c, and 9, are given by the relations 

Here ,F, is the hypergeometric function, 0 is the Heaviside 
step function, and B is the beta function. 

The distribution function (25) is quite easy to analyze 
qualitatively, since the behavior of the function 9 (x,y) is 
determined mainly by the poles z = 0, f 1 and not by the 
hypergeometric function ,F,. For this reason, the critical 
point of the transition for the extreme poles from unstable 
to stable states is d / k  = 1/2, which corresponds to 
c - a - b = 0. The relation 1 - c = 0 or the value 
d /k = 1/4 gives the critical ratio of the parameters d and k 
for the appearance of an interior stability pole. For 
d /k < 1/4 the distribution has three pronounced peaks at 
points with amplitude a = E /k + ig/k and a = E /k (Fig. 
4a). 

The solution in the form (25) contains the hypergeo- 
metric series, which converges well only for d /k < 1/4 (for 
d /k > 1/4 it converges conditionally). For d /k > 1/4 the 
distribution function can be represented in the following 
form equivalent to Eq. (25): 

x ( 1  - z 2 ) c - a - b z ~ l ( c  - a, c - b, c - a - b + 1, 1 - z2) ,  

(27) 
whence it follows directly that ford /k > 1/N [see Eq. (23) ] 
the function 9 (x,z) has a stable distribution with a maxi- 
mum at the center of the segment [ - 1,1] and vanishing at 
the ends of the segment. 

Figure 4 displays for different values of d /k the form of 
the function 9 (y) computed numerically from the formu- 
las (25)-(27). 

7. DISCUSSION 

In order to determine the conditions under which the 
internal states of the "molecule" are stable, we consider the 
system of equations for the probability densities 9 ,.,, in the 
case of exact resonance Am = 0: 
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FIG.4. Analytically computedstationary distribution function 9 ofthe field in thecavity for N = 2 , g / k  = 10, andd / k  = 0.1 (a) ,  0.4 (b),  0.5 (c),  and4 
(d) .  

The phase space of the model is represented by a collection of 
N + 1 phase planes, corresponding to "dressed" states of the 
"molecule" (Fig. 5). The system (28) describes a discrete- 
continuous Markov stochastic process, consisting of phase- 
plane motion along the trajectories y + gml/k = const 
(X - E /k) (for the m'th phase plane) in the direction to- 
ward the pole with the coordinates xom =E/k ,  
yo, = gml/k and random hops from one phase plane to an- 
other in accordance with the transition probabilities. The 
continuous part of the Markov process is determined by the 
terms of Eq. (28) which contain partial derivatives of the 
probability densities and the discrete part is determined by 
terms with the constant probability d of a spontaneous tran- 
sition. 

The conditional probability density c,.,.,,, ( t  + rlt)  of 
a transition at the time t + r into the state m' can be calculat- 
ed by means of the theory of semi-Markov processes, using 
the Kolmogorov-Feller equations under the assumption 
that at time t the system was in the state n: 

Here d,,, is the probability of a transition from the plane n 
into the plane m', and in our case it is different from zero 
only form' = n f 1: 

FIG. 5. Possible motion of the system in phase space for N = 2. a )  Motion 
in a definite plane m' corresponds to the choice of the state ofthe system of 
atoms I j,m1) (and the choice of the mth excitation path in Fig. 1 ). The 
amplitude of the intracavity field is determined by fixing a point in the 
plane. b) Stochastic character of the variation of the intracavity field. 
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The quantity y,, determines the probability of leaving the 
plane n (y,, = Z,d,,) and is equal to 2d(j + j2 - n2) be- 
cause the balance of the populations in this system is closed. 
The inverse of y,, is the average time between transitions of 
the system from one phase plane into another. 

If at time t,, the system passed into the state m', then the 
amplitude of the field on the given plane evolves toward its 
stationary value at the pole according to the law 

where a,, = E /k + igml/k and k - ' establishes the time 
scale for reaching the stationary point a,,. . If 

the system will be found in one of the stationary states during 
the time At. It is obvious from the inequalities (32) that for 
m' = j the condition for the appearance of stable states on 
the limiting plane is Eq. (23) (maximally stable states). As 
m' decreases, the states become less stable, and states with 
m' = 1/2 for odd number of particles and m' = 0 for an 
even number of particles in the system are least stable. The 
inequality (32) indicates the ratio of the decay rates of a 
separate atom y and the field k for which stable states can be 
observed. At the critical value, as Q of the cavity decreases 
continuously the successive appearance of 1 to N + 1 stable 
states in the collective model of N + 1 particles will be ob- 
served experimentally. The single-particle problem solved 
analytically in Ref. 10 (critical point d /k = 1 ) and the prob- 
lem for two particles interacting with the radiation inside the 
cavity solved in Sec. 6  (critical points d / k  = 1/2 for 
m' = + 1 and d /k = 1/4 for m' = O), make it possible to 
indicate exactly, by comparing with the condition (21 ), the 

value of the ratio of the parameters y and k from which the 
next stable state will arise as the ratio y/k decreases: 

The phase trajectory of the motion after the first few 
transitions, as one can see from Eq. (3  1 ), will be limited to 
the segment [a,,, ,a,,, ] (see Fig. 6 ) .  In the stationary limit 
of unstable states the system moves rapidly between the 
poles lying closest to the center of the segment [a,,, ,a,,, 1, 
so that it can be observed mainly at the central point of the 
trajectory. In the case of multistability, however, the system 
spends most of its time near one of the poles. The difference 
in the values of the amplitude of the field at the transition 
from one pole to another is displayed in Fig. 6. On all points 
of the phase trajectory the real part of the field amplitude 
E /k is the same and the imaginary part increases in an arith- 
metic progression with the difference g / k ,  starting with the 
minimum value mg/k. Besides the phase difference between 
the field at the entrance and a value of the field at the exit 

a difference in the absolute values of the amplitudes also 
appears: 

A(a, , l  = (E/k)[(l + (rn'g/E)2)"2 - 11, (34) 

which makes it possible to interpret the effect observed in the 
system as amplitude-phase multistability. In the case when 
the number of particles increases without bound, the maxi- 
mum phase difference approaches ~ / 2 ,  and the maximum 
difference of the amplitudes increases as N. 

Thus multistability of the states can be observed expe- 
rimentally by comparing the amplitude and phase of the 
incident field and the field exiting the cavity, for example, 
by investigating their interference. It should be kept in 
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FIG. 6.  Diagram of stationary values of 
the complex amplitude of the intracavity 
field for an even number of particles. 
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mind, however, that in order to obtain all possible amplitude 
shifts the system must be observed not over the time interval 
At but rather over the interval AT-Z',. = -, 
x [2du + j2 - mt2) 1 - '. 
8. POSSIBLE EXPERIMENT 

The amplitude-phase multistability is more easily ob- 
served experimentally than single-atom phase bistability.I0 
The cavity Q in the multiparticle experiment can be made N 
times smaller than in the single-atom case without destabi- 
lizing the extreme states if the pump power is high and the 
interaction is strong in order to satisfy the conditions (9).  
The observed phase difference will be tan- '  (gN/2E)/ 
tan- ' (g/2E) times greater than the difference Ap for the 
single-particle problem. 

The multistability effect predicted here can be observed 
under conditions achievable in existing experimental facili- 
ties. Thus in Ref. 14 bistability of the absorption type was 
investigated for the case of strong interaction of a beam of 
Cs atoms (A,, = 852 nm) with the field in a high-Q cavity 
with transmission coefficient To = 4.10 - and 
k = cTo/2L = 2n- (0.9 + 0.1 ) MHz, where L = 1 mm is the 
cavity length. The interaction constant go was of the same 
order of magnitude as the spontaneous emission probability 
y: [go,y] = (2n-(3.2 f 0.2),5 f 0.41 MHz. The normalized 
input pumping intensity Y = Iln/(I,,, To= lo4 (titanium- 
sapphire laser with beam waist w, = 50,um), where I,,, = 1 
MW/cm2, Iln/To = (&/41rw;L) (E/k)', makes it possi- 
ble to estimate the Rabi frequency of atomic oscillations in 
the experiment of Rempe et al.l4 as R - 102g, for which the 
conditions (9)  are satisfied. In this experiment, however, the 
relation (32) does not hold because of the large value of the 
ratio y/k. As the coefficient k increases with R - ' remaining 
the shortest characteristic time in the problem, it becomes 
possible to observe the multistability effect in the system of 
atoms in the cavity. 

In conclusion it should be noted that the predicted mul- 
tistability of a system of two-level atoms in a cavity reflects 
the quantum nature of the interaction of the atoms and the 
radiation to a greater degree than the phase bistability of a 
single atom in a cavity studied in Refs. 10 and 11. The phase 
bistability effect can be explained by means of the quasiclas- 
sical approach, treating the formation of two stable states as 
a manifestation of stationary points on the Bloch sphere,'' 
whereas such a quasiclassical approach, based on equations 
for the averages (J ,  ), cannot be used to explain the presence 
of stable internal states in the case of a system of atoms. The 
quasiclassical approach can only be used to explain the exis- 
tence of two extreme stable states. A systematic quantum 
approach, not limited only by the lowest-order averages 
(J ,  ), is required in order to explain the appearance of stable 
internal states. 
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APPENDIX 

In this section we study the structure of the energy lev- 
els of the many-body analog of the Jaynes-Cummings Ham- 
iltonianl3 for the case of exact resonance w = w,: 

for which there exists a system of eigenvectors constructed 
from a superposition of eigenstates of the free Hamiltonian 
( A l )  withg = 0: In - j - m)JIm). (where theindices fand 
a designate the eigenstates of the intracavity field and the 
system of atoms) with a vacuum state corresponding to no 
field quanta n = 0 and the lowest Dicke state m = - j: 
lo),./ - j). . As shown in Ref. 13, the eigenstates of the inter- 
action Hamiltonian &(a + J _ + aJ + ) are 

where the number n = 0, 1,2, ... corresponds to the number 
of excitations in the "field + atoms" system, 

for n 2 2j, 

for n < 2 j ,  

and the number r, ranging from - n/2 to n/2 for n < 2j and 
from - j to j for n>2j, labels the eigenstates of the Hamilto- 
nian fig(a + J -  + aJ+  ) which belong to a fixed number of 
excitations n. The states l2j,n,r) are eigenstates of the Ham- 
iltonian H with energy eigenvalues 

where E,,,,, are the eigenvalues of the interaction Hamilto- 
nian 

wa+J- + &+)12j, n, r) = E2i,n,r(2j, n, r). (A41 

According to Eqs. (A2) and (A4), the coefficients a; satis- 
fy the recurrence relation 

a",lS; - Enak + ak-lSk-l = 0 M a )  

with the boundary conditions 

= ai-i+l = 0, n < 2j, 

and the energies En are found from the equation 

where 5': = + i g d ( n - j - m ) u + m + l ) ( j - - m )  and 
E - E,,,,,, . The dimension of the matrix (A6) fixes the num- 
ber of separate sublevels into which the energy level of the 
free Hamiltonian Eon = h ( n  - j )  is split for fixed values 
of n and j. Starting with the state n = 0, which corresponds 
to the unsplit energy level of the single "intracavity fiel- 
d + atoms" system with E2j,o,o = 0, as the number of exci- 
tations increases, the number of sublevels corresponding to 
the level Eon increases as n (Fig. 1 ). The maximum amount 
of splitting is limited by the maximum dimension of the ma- 
trix (A6) and is equal to 2j + 1. As the number of excita- 
tions increases further, only the splitting of the sublevels in- 
creases. 

581 JETP 76 (4), April 1993 S. Ya. Kilin and T. V. Krinitskaya 581 



From the recurrence relation for det:,, obtained by 
expanding the determinate (A6) with respect to the ele- 
ments in first row, 

detlj = E detlj+, - ( ~ ~ ~ ) ~ d e t ~ ~ + ~ ,  (A71 

where the lower index coincides with the index of the coeffi- 
cient S YJ in the first row of the determinant, it follows that 
in the case when the dimension of the matrix (A6) is even 
the splitting into sublevels E, is symmetric with respect to 
Eon, and in the case of odd dimension, besides the symmetric 
sublevels, there is also the level with E,,,,, = 0. The corre- 
sponding energy level diagrams for an even ( 2 j r N  = 2) or 
odd (2j- N = 3) number of particles are displayed in Fig. l a  
(It)). 

In the case of a large number of excitations in the 
"atoms + intracavity field" system (for example, for a 
large number of field quanta), such that 

the equations (A5) and (A6) can be solved approximately. 
Indeed, setting in Eqs. (A5a) S,,,zfigfi 
x + m + 1 ) 0' - m )  , we find that in this approximation 
the equations (A5a) are equivalent to the following eigen- 
value problem: 

where 

and Im), are the eigenstates of the operator J, .  The solution 
of Eq. (A9) is obvious: applying the rotation transformation 

we find that in this approximation the eigenvalues E are, to 
within a factor, the same as the eigenvalues of the angular 
momentum operator J : :  

E2,,qr =>h@112r, r = -j/2, ..., j12, (A121 

and the eigenvectors I$,) are related to the eigenvectors 
1 r) = Jm') of the operator J by the relation 

X 
exp(-i 7 / y )  l vE) = I r). (A131 

According to the last relation the coefficients a>re deter- 
mined by the Wigner d-functions and do not depend (for 
n 9 2j) on the number n of excitations: 

a", dl;(-n/2). (A141 

Therefore the approximate eigenstates of the interaction 
Hamiltonian with a large number of excitations have the 
form 

Under the action of the external field with interaction Ham- 
iltonian iE(a + - a )  the "atoms + intracavity field" sys- 
tem can make transitions between the states 12j,n,r). The 
transition matrix elements are 

i 
= (2j, n',  r1 1 z dL(-n/2) 

m=-j 

i.e., transitions between states with the same quantum num- 
ber r are allowed for n>)2j, and this is what explains the 
existence of 2j + 1 independent paths of excitation of the 
"atoms + intracavity field" system by an external field. 
Moreover, since the approximate matrix elements (A16) 
can be used to calculate averages of field operators for n % 2j, 
the eigenstates (A15) can be represented in the factor form 

where thkstates Ir), = = -,d/,,( - 77/21 Jm). are iden- 
tical to the "dressed" states (8)  with g, = - 77/2. 
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