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The motion of an electron in a periodic magnetic field with a large gradient is discussed. A method 
is developed for solving the corresponding Lorentz equations. The latter reduce to differential 
equations with periodic coefficients. Angular distributions of the intensity of the radiation 
emitted by the electron for a certain frequency, accurate to within the first quantum term, are 
derived. The amplitude of the vertical oscillations has a strong influence on the spectral and 
angular characteristics. 

INTRODUCTION 

Questions concerning the dynamics of charged parti- 
cles, particularly in beams, are currently of much interest 
because of the development of ultrahigh-energy, high-inten- 
sity accelerators and storage rings.ls2 Magnetobremsstrah- 
lung, which is unavoidable in an electron synchrotron, has 
recently found numerous  application^,^-^ and dedicated 
sources are under construction. 

The properties of synchrotron light in uniform and 
weakly focusing magnetic fields were studied in Refs. 7 and 
8, among other places. 

In the present paper we examine the radiation by an 
electron moving in a focusing-defocusing system in which 
the magnetic field index n (p) alternately takes on the values 
n ,  and - n, ( n ,  > 0) in the region p~[0.27~/N],  where N is 
the number of periodicity elements on a closed orbit. 

To solve the complex problem of the radiation by an 
electron we need, as in Ref. 8 (for example), expressions 
which are as simple as possible but still a good approxima- 
tion of reality to describe the dynamics of the electron in the 
classical approximation. Those equations which have been 
found in the accelerator literature involving (for example) 
the betatron function, are quite unwieldy. Even in this stage, 
they actually require numerical calculations. In the present 
paper we wish to propose a slightly different approach to 
solving the corresponding differential equations. 

The function n (p) has first-order discontinuities, so it 
can be expanded in a Fourier series. By taking this approach, 
we break up the complex motion of the electron into the sum 
of simple oscillations in which the first harmonics are pre- 
dominant. Under certain assumptions, this approach is 
equivalent to the averaging method of Refs. 10 and 11, as 
was shown in Ref. 9. That averaging method is more labori- 
ous, beginning with the third approximation. The question 
will be analyzed in its most general form, without considera- 
tion of the structural features of the existing devices. 

is a periodic function. 
We seek a solution of Eq. ( 1 ) in the form z = p, (T)  

exp(iy, T), where p, ( T  + 27~) = p, (7).  We assume Im y, 
= 0; we are thus assuming that we are dealing with a stabil- 

ity region. The equation for p, (7) takes the form 

We seek approximate solutions for (3)  in the form of asymp- 
totic series: 

We see that the expansion is in the parameter 1/N. Sub- 
stituting in p, (7) and y, from (3),  we find the chain of 
equations 

As in Ref. 10, we solve these equations by eliminating the 
secular terms. We then find, in succession, 

where 
m sin(2k + I ) T  

a, al  = const, s3 = k..O (2k + 113 ' 

1. THE MOTION PROBLEM 

Along our approach, and in the linear approximation, - k=O (2k + 114 
the vertical oscillations are described by the Hill equation Hence 

where T = Np, and 
z 4 a  (n1 + n212 

Y4 = 0, Y5 = - 
- n2 + 2(ni + n2) 5 ~ i n F + + ~ l ) r  ~ . 9 6 ~  (nl  - n,J3I2 

g(r) = - 2 n (2) 
k = ~  ~ [ 9 1 ( n ;  + n 3  - 202nln2J, ... 
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We write the frequency v, = y, N as 

In this approximation we have 

where the first two terms are the same as Eq. (3.40) of Ref. 
12. 

We find a general solution in the form 

We introduce some new arbitrary constants: 

We can finally write the solution of the Hill equation in a 
form accurate to within terms of order 1/N 3: 

The series S, and C4 here can be expressed in terms of 
Euler polynomials En (z). With n, = n, we then find the 
result found previously in Ref. 13. The higher approxima- 
tions constitute small increments in the modulated ampli- 
tudes of the "fundamental" oscillations. 

For the corresponding radial oscillations we need to 
solve the equation 

where g( r )  is expression (2),  p = r - R, and R is the radius 
of the equilibrium orbit. We seek a solution of (6) in the 
formp = exp(iyx T)P, (T) ,  and we again expand p, (T)  and 
yx in series. Eliminating the secular terms, we find y,, y,, y5 
( yz = y4 = O), and we construct the frequency as follows: 

We construct a solution in the form 

sion parameter is 4n , /TN (with n, zn , ) .  This parameter 
has values of 0.1-0.2 for existing accelerators, e.g., DESY. 
The next order makes a correction of less than 1 %. The solu- 
tions found here are superpositions of bounded functions, in 
agreement with the strong-focusing principle, which ensures 
stable motion of the particle in the accelerator. On the next 
period of the trajectory, the particle runs into similar condi- 
tions; a complete revolution occurs in this manner. If we 
consider a defocusing-focusing structure, there are no fun- 
damental changes in the solutions. 

In this problem the corresponding angular velocity is 
found from 

where w, = ceH /E .  The total velocity, averaged over the fast 
oscillations, is 

The constants A and B can evidently be treated as ap- 
proximat.: amplitudes of the "fundamental" slow oscilla- 
tions (since the solutions for z and p yield simple cosine 
functions when the average is taken), while the quantities v, 
and v, are treated as the frequencies of these oscillations. It 
is apparently a trajectory of this sort which is shown in Fig. 
22 in Ref. 14. 

The results found in this section of the paper can also be 
used to study the dynamics of a proton, provided that we 
change the sign on w, in Eq. (9).  

2. THE RADIATION PROBLEM 

To find the spectral and angular distributions of the 
radiation intensity in this periodic field, we use the so-called 
operator formulation of the semiclassical approxima- 
tion.I5-" This method has been used previously by Zhu- 
kovskii and the present author.' 

We put the radiation vector k = wn/c in the yz plane. 
We then have n = {O, sin 8, cos $1, where 6 is the spherical 
angle. We denote by a the linear component of the radiation, 
for which the electric vector lies in the plane of the orbit, and 
we denote by T the component orthogonal to a. The corre- 
sponding polarization vectors are then found from 

e, = (1, 0, O), e, = {O, cos 8, -sin 8). 

Taking the fi-st quantum correction into account, we 
write the corresponding radiation intensities as follows: 

d3k ce2 v' 
dW,  = - - - I l d t ( v S o n a  ( 2 ~ ) ~  R - ~ ~ i n 8 )  

2 
xcxp [if (ot - is)] I , 

L J I 
where A and x are arbitrary constants. 

In this model we have n, < n, < n, + 2. This condition where 

does not have to be mechanically extended to systems in v' = v(1 + hw/E), w = vow 
which there are gaps without fields. 

In the asymptotic expressions (5)  and (8) ,  the expan- The radiation passes near the plane of the orbit, so we 
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have 8 - ~ / 2 .  In addition, measuring instruments detect the 
light in a given direction as the electron traverses a small arc 
length pzw,t .  As a result, in the ultrarelativistic case 

= rnc2/I?, cos 6, t, v x A / R ,  v , B / R  

are small quantities of approximately the same order. Let us 
consider the phase 

o o  Wo o t  - kr = v[wot - - ( R  + p)sin ~p sin 0 - - z cos 61 . 
C C 

Expanding to the indicated third-order quantities, retaining 
terms - 1/N ', and switching variables in accordance with 

V ; - I  A 
wotl = wot + - - sin + "(a1 + nz) A - cos X 

"x R 4N R 

we can write this phase as 

v [ w ~ I ~ E ~ / ~  + ( ~ ~ t ~ ) ~ / 6 1 ,  

where 

B1 = 1 - p2 + E2 ,  

The spectra and angular distributions are no longer de- 
pendent on the radial oscillations after this substitution is 
made. 

Nonlinear terms can be taken into account in Eqs. ( 1 ) 
and ( 6 ) ,  but the increments in the solutions do not alter 
wt - kr in our approximation. 

Integrating expressions ( 1 1 ) , we find equations for the 
radiation intensity in the first quantum approximation: 

where K, is the modified Bessel function. We also need to 
take an average over the phase of the axial oscillations, qb. 
The small quantity E,  can also be written in the form 

where 

and the vertical frequency is 

We now transform to Airy functions, which are given in 
the tables of Ref. 18 as 

Restricting the discussion to the classical case, we write the 
basic result of this study as follows: 

where 

wl = 2113c&213/x2~2,  x1 = ( V / ~ ) ~ I ~ & ~ .  

For 8 - ~ / 2 ,  the intervals in (14) can be evaluated 
through series expansion of the Airy functions." As we 
move away from the orbital plane, we can carry out an ex- 
pansioninthequantity (B2/R ')/&,where& = 1 - P2 sin2 6. 

In this section of the paper we have not taken an average 
over the fast oscillations. In other words, we are taking into 
account in this radiation problem all components of the 
complex motion of the electron: the orbital revolution and 
the fundamental sinusoidal oscillations along the vertical 
and in the orbital plane, on which fast oscillations are super- 
imposed. The frequencies of the average motion are deter- 
mined by expansions (4) and ( 7 ) .  Those expansions agree 
with existing expressions which have been derived for cos p 
( p  = 2 ~ v / N )  by a matrix method in accelerator theory. 

There have been no experiments on the spectral and 
angular properties in strongly focusing fields, in contrast 
with the experiments involving weakly focusing fields. In 
constructing theoretical curves we must accordingly bear in 
mind that Eqs. ( 13) and ( 14) are very sensitive to changes in 
the electron energy, the frequency of the emitted light, and 
the amplitude of the vertical oscillations. The shapes of the 
curves may thus change substantially. In particular, it fol- 
lows from ( 13) and ( 14) that the T component of the radi- 
ation does not vanish at 6 = ~ / 2 .  In the long-wave region of 
the light, the intensity of the n- component is nearly propor- 
tional to the square amplitude of the "fundamental" vertical 
oscillations. 

For this asymmetric model we have 

272 
d W z ( v )  
--- = w1 (;) 

dfl 

where 

We see that the magnetobremsstrahlung is polarized best 
when the axial oscillations are at a minimal level. 

The curve for the a component is broader and lower 
than the corresponding curve for a uniform magnetic field 
(at the same energy). For both components the difference 
depends on the ratio 

For the symmetric model, with n, = n,, we need to set 
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FIG. 1. Spectral and angular distributions of the uand  ncompo- 
nents of the linear polarization of the radiation. The dashed lines 
correspond to a uniform magnetic field. 

in Eqs. ( 12)-( 14). Here vSymm = m/2flN.  The increment 
of 7~/6 in the phase here is interesting. 

We introduce a = 2vSymm B /R. Under the condition 
a 2 / ~ g  1 we then find the following result from ( 14) in the 
first approximation (with n, = n,): 

where the arguments of V and V' are x, = ( V / ~ ) ~ / ~ E  and 
p = a2/2&, g = cos2 O / E ,  and U = x ,  V2 + Vt2. The first 
terms in ( 15) correspond to a uniform magnetic field. 

In the orbital plane it is better to use series expansions of 
V and V' (for small values of x , ) .  The square brackets in 
(15) must then be replaced by, respectively, 

and 

where the constants are V(0) = 0.629 27 and V'(0) 
= - 0.458 75. 

Using these equations, and allowing for the smaller cor- 
rections to them, we can plot spectral-angular distributions 
of the a and P components (Fig. 1 ). In the model selected 
here, the energy of the electron is E = 5 GeV, the amplitude 
of the average oscillations is B = 2 mm, and the wavelength 

of the emitted radiation is A = 1000 (R = 30 m, N = 24, 
n = 70). 

We see from this figure that the greatest deviation from 
the corresponding curves for a uniform magnetic field (for 
the same values of E and A )  comes from the n- component of 
the radiation, especially at 6 = 90". 

In this case, in contrast with the case of weak foc~s ing ,~  
instead of the parameter fi B /R we find (n-n/flN)B /R. In 
the latter case, however, B is only the amplitude of the aver- 
age motion, not the overall motion. Instead of the frequency 
6 we have the quantity n-n/2flN, which describes a stable 
motion along the vertical in the focusing and defocusing re- 
gions. 

In many publications the spherical angle of the radi- 
ation B is replaced by the angular deviation from the plane of 
motion of the particle, $, expressed in radians. To go over to 
this parameter in the results found above, we would have to 
use cos 0- ll. 

The most fundamental aspects of this paper are the ex- 
pansion of the magnetic field gradient in a Fourier series 
(this approach may be physically justified for many periodic 
structures), the derivation of a constant total velocity when 
an average is taken over oscillations, and the incorporation 
of all possible oscillations in a study of the properties of the 
radiation. 

However, the main conclusion reached here is that the 
properties of the radiation are specifically determined by the 
average motion of the particle. 

This analysis was carried out for the focusing-defocus- 
ing model. The methods used here have revealed only the 
major effects. In real situations, there will also be some stim- 

550 JETP 76 (4), April 1993 0. E. Shishanin 550 



ulated oscillations, because of displacements of magnets, 
which will influence the straight sections, etc. 
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