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It is shown that the exponential form of the wings of the magnetic-resonance spectra observed in 
experiments over many years are due to the onset of an adiabatic invariant in the system under the 
conditions corresponding to observation of the wings. The approach developed made it also 
possible to analyze the magnetization loss produced when a system is acted upon by a system of 
adiabatic pulses. 

McArthur, Hahn, and Valstedt' were the first to dem- 
onstrate by experiment that the Fourier spectrum of the 
thermal correlation function (TCF) of the magnetization 
component longitudinal with respect to the external magnet- 
ic field has wings in the form of a simple exponential; it was 
named a dipole-fluctuation spectrum (DFS). The result of 
Ref. 1 was quite surprising in light of the then prevailing 
convictions that the absolute majority of the TCF observed 
by the magnetic-resonance method have spectra close to 
Gaussian or Lorentzian. The results of Ref. 1 were subse- 
quently repeatedly confirmed experimentally for different 
objects and by different procedures (see, e.g., Refs. 2-5). 

The exponential shape of the spectrum wings was first 
described by us on the basis of a statistical t h e ~ r y . ~  Further- 
more, a system of nonlinear integrodifferential equations 
yielded5 an exponential wing shape for TCF spectra and an 
estimate of the exponent. So far, however, the physical 
causes of the exponential form of the frequency asymptotes 
of the TCF spectra remain unclear. 

We show in the present paper that the exponential form 
of the frequency asymptotes is due to the onset, in the spin 
system, of an adiabatic invariant under conditions corre- 
sponding to the observation of spectrum wings. The pres- 
ence of an adiabatic invariant makes it possible to explain the 
physics of the experimental results2-' by resorting to the gen- 
eral theory developed in mechanics7 for adiabatic invariants. 
In addition, it was possible to analyze, on the very same 
basis, the magnetization losses incurred when adiabatic 

dinate frame (RCF), if two slowly varying orthogonal com- 
ponents: a longitudinal detuning field w,, ( t )  and a transverse 
field o, ( t )  with amplitude equal to that of the RF  field. We 
change to a comoving coordinate system, with aZaxis direct- 
ed along the instantaneous direction of the effective field 
a c t ) ,  which makes at the instant t an angle 6( t )  with the z 
axis of the RCF: 

@ l ( t )  
n2 ( t )  = o i ( t )  + w:(i), B(i) = arctg - 

w , p )  ' 
(1) 

The change of the magnetic-moment projection [p, ( t )  ] on 
this axis, initially directed along the constant external mag- 
netic field, is described by the equationI3 

t t ,  

&(I) = Po - J l ( i1 )J4 i2 )cos  lP(l l)  - ~(131 pI(i2)d4di2- 
-00 -00 

(2) 

where 

Let us find the value of the projection p, ( t ) ,  assuming 
that the adiabaticity condition 

pulses act on a system. 
It is known that the motion of a magnetic moment in is met. Under these conditions p, (t)  varies very little and, 

" 
magnetic field of variable direction is regarded as adiabatics assuming the projection to be constant, we take pi ( t )  out- 

if the rate of change of the field direction is much smaller side the integral sign. Integrating and transforming with 

than the field itself. Under these conditions the magnetic allowance for the symmetry of the integrand to interchange 
moment follows up the field. Owing to this property, adiaba- the tempora1 we get 

tic pulses have by now found extensive use in the practice of 
synchronous rotation of magnetic moments situated in dif- 
ferent magnetic  field^.^-'^ We show in the present paper that 
the magnetization losses induced by the action of adiabatic 
pulses on a spin system are exponentially small. The argu- 
ments of the exponentials were calculated for typical mag- 
netic-field variation cases. 

We consider thus a magnetic moment located in a con- 
stant magnetic field and an RF field rotation in a perpendic- 
ular plane. One of these fields, or both simultaneously, is 
modulated in accord with a certain law. The magnetic field 
acting on the magnetic moment consists, in a rotating coor- 

t 
I 

P I  T ~ o ~ J ~ ~ I e x ~ ~ i p ( t I ) ~  e ( i I )  12. 
-00 

( 5 )  

We can now use in detail the analogy between our problem 
and the above references7 to adiabatic invariants. The role of 
the slowly varying parameter il of Ref. 7 is played by the 
angle 6 characterizing the direction of the instantaneous 
field in the RCF. To make complete the analogy with the 
problem of the harmonic oscillator with slowly varying fre- 
quency,' we assume that n ( t )  = yH, = w, as t-. - co and 
as t+  W ,  changing slowly (compared with w) near w, at 
other times IO(t) - @,I 40,. Note that since the spin ener- 
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gy in an instantaneous field is determined by the relation 
E = p a  cos 0 I ,  the adiabatic invariant will be cos 0 ' (or the 
proportional quantity p, = p cos 0 ') , since7 

6' is the angle between the direction of the instantaneous 
field and the magnetic moment. 

Replacing in ( 3 )  and (5)  the lower integration limit by 
- co, and the upper by co , we obtain 

Following Ref. 7 ,  we replace the integration variable t  by p :  

Now 

This formulates the problem of the accuracy with which the 
adiabatic invariant is conserved. The integrand in ( 8 )  has no 
singular points on the real axis. We now regard p as a com- 
plex variable and shift the integration path from the real axis 
to the upper half-plane of this variable. The contour is then 
linked with singular points of the integrand and envelops 
them. Let po be the singular point closest to the real axis, i.e., 
the point with the smallest positive imaginary part. Note 
that this point is either a pole of 9 or a zero of a. 

The main contribution to the integral ( 8 )  comes from 
the vicinity of the point: 

where 

to is the coordinate of the singular point on the complex- 
variable plane, the lower integration limit can be chosen to 
be a real value oft ;  the imaginary part of interest to us is 
independent of the real. It is most convenient to integrate 
along a segment parallel to the imaginary axis from the point 
to to the point r = to + i~~ since the important part in the 
exponent is Im p,: 

We investigate now the magnetization lost by the action 
of adiabatic pulses on the system. We assume that the field 
modulation is governed by 

with a function f ( t )  of two types 

Substituting ( 1 3 )  in ( 7 )  we find that the sought nearest sin- 
gular point is determined by a zero of the denominator, i.e., 
by the equation 

w p )  + w: = 0, ( 1 4 )  

the approximate solutions of which in the two chosen cases 
are 

We obtain a pair of closely located branch points, which 
coalesce as A - co . Integrating in ( 11 ) and retaining only the 
principal terms, we get 

Note that in some cases of practical importance the in- 
tegrals ( 7 )  can be calculated exactly. Thus, for example, for 
the two modifications of adiabatic-pulse inversion, proposed 
in Refs. 8 and 9,  we have 

For both cases we obtain the same result: 

The causes of the obtained equality of the losses ( 19 )  for 
different time dependences of the fields w, and w,,  are the 
following. The quantity @ is determined in final analysis by 
an integral of a function that depends on the phase p  ac- 
quired by the magnetic moment upon rotation around the 
effective field a( t ) ,  and one and the same integrand can be 
obtained for a different choice of w, ( t )  and w,,  ( t ) ,  provided 
the form of the dependence of 9 /a on p  is preserved; this 
corresponds, of course, to a strictly defined connection be- 
tween them. Thus, the result ( 1 9 )  turns out to be a conse- 
quence of the relation 

Another functional dependence will lead to other results. 
Expression ( 1 9 ) ,  when substituted in ( 6 ) ,  determines 

the magnetization loss following the action of an ideal pulse. 
Under real conditions, however, the pulses become inevita- 
bly shortened, so that the main loss occurs at the "on" and 
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"off' instants. An estimate of this loss, which has a power- 
law dependence on a, is given in Refs. 8, 11, and 12. 

By way of example of the investigation of the frequency 
asymptote of the TCF spectrum, consider the shape of the 
absorption-line wing. Unfortunately, unlike in the preceding 
examples, the variation, with time, of the local magnetic 
field acting on the spin in a solid-state multispin system can- 
not be described by some simple function. An approxima- 
tion quite popular for magnetic resonance is a description of 
the local field by a random function of the time.14 In addi- 
tion, as usual, we confine ourselves to thew, approximation 
linear in the field. The absorption will be determined from 
the change of the projection of the magnetic moment on the 
RCF axis. Equation ( 2 )  changes now into the equation 

An asymptote of the spectrum ( 25 )  as A +  co in the absence 
of singular points on the real axis of the function G ( t )  can be 
obtained6 by the saddle-point method. The equation for the 
saddle point is 

For the spin system of a solid it was proposed in Ref. 14 to 
approximate the correlation of a random field by the Gaus- 
sian 

and in Ref. 15 by the function 
t t, 

*,(I) = /LO - o : J d ~ , J d t 2 c o s l ~ ~ ( t , )  - 1 ( t 2 ) ]  p,(t2). = l l ~ h ~ ( t 1 ~ ~ ) .  (28)  
0 0 In the first case an estimate of the wings by the saddle point 

( 2 0 )  yields6 
In the approximation assumed w, is conserved only in the 

G(A) o: exp[ - re  A  I ~ ~ " ~ ( ~ A I ( ~ ~ ) T ~ ) ] .  
pre-exponential factor e / R ,  while the terms with w, are left (29) 

out of the exponents of (8) and ( 11 ). BY the same token, p In the second case the integrals are calculated in explicit 
and p ,  are replaced by \Zl and To: formI6 

where too 1s determined by the solution of the equation 
oil ( t )  =o.  Note finally that in Eq. ( 20 )  the field o, is 
turned on at the instant t  = 0. In accordance with the statis- 
tical theory widely used in magnetic r e~onance ,~ . ' ~ . ' ~  we 
shall assume that the local magnetic field acting on the spin 
is a Gaussian random function of time { ( t ) .  Recognizing 
that the longitudinal-field modulation is due exclusively to 
local fields, we choose wll ( t )  in the form A + { ( t ) .  It is 
known that a Gaussian process is fully defined by a correla- 
tion function 

In addition, T ( t )  will also be a Gaussian random function of 
time. ThusI4 

where 

Since p, ( t )  varies slowly under the considered conditions, 
we take y,  ( t )  outside the integral sign in ( 20 ) .  After an 
averaging and some simple transformations we get 

Finally, extending the integration limits to infinity, we ob- 
tain Anderson's expressionI4 for the absorption-line shape 

where Y = (6 ')< and is the gamma function. 
For a longitudinal magnetic field dependence, specified 

by functions f ( t )  and g ( t )  and different from those in the 
above example, we can find the coordinates of the singular 
points and determine the arguments of the exponentials in 
the corresponding asymptotic expressions by solving Eq. 
( 14) or (26) .  Note that in the above examples a dependence 
on the detuning is encountered in the exponents in two 
forms: A and A ln'I2 A. Each form of the exponent is deter- 
mined by the properties of the slowly varying field wll ( t ) ,  
namely by the behavior of the function f ( t )  or g ( t )  on the 
complex-variable plane. If the function becomes infinite at a 
finite distance T ,  from the real axis, the singular-point coor- 
dinate determined by Eqs. ( 14) and (26)  as A + will ap- 
proach this value, while the exponent will approach AT,. If, 
however, the function becomes infinite only at an infinite 
distance then the singular point t, will move away as A - cc , 
leading to an additional dependence on the detuning and to 
an exponent A InS A. 

Thus, the magnetic losses following the action of ideal 
adiabatic pulses, and the form of the NMR absorption line 
on the wing depend exponentially on the ratio of the detun- 
ing to the rate of change of the field a or of l / rC.  This de- 
pendence illustrates, with the magnetic-moment motion 
known from mechanics as the example, the exponential 
smallness of the variation of the adiabatic invariants ( p r  in 
theconsidered case) for motion of systems with slowly vary- 
ing parameters. The exponential dependence is replaced by a 
power law only if the singular points of the functions f ( t ) ,  
g ( t ) ,  and R ( t )  are located on the real axis [for example the 
instants of turning on the pulses, the inflection point for 
functions of the type g ( t )  = exp( - It I/T, ) 1. 
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