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A new type of self-trapped charge-carrier state in antiferromagnetic ( AFM) semiconductors, 
which can be realized in materials with high Niel points, is proposed. The carrier produces a 
microscopic normally unstable AFM region, in which it is trapped. Its energy in this region is 
lower than in the stable one. An additional energy gain is produced by the canting of the moments 
of the sublattices in the carrier trapping region. Self-trapped carriers can become paired to form 
zero-spin complexes that can lead to high-temperature superconductivity of degenerate 
semiconductors. Calculation of the self-trapping of carriers in a chessboard-order 
antiferromagnetic within regions with layered AFM ordering show that this trapping can take 
place even far from the boundary of these two phases. The possibility of self-trapping of carriers at 
T = 0 in a spin-fluid microregion is discussed. 

INTRODUCTION 
It is common knowledge that the HTSC problem is 

closely connected with the problem of magnetic self-trapped 
states in antiferromagnetic (AFM) semiconductors, as are 
almost all high-temperature superconductors. The same in- 
teractions that lead to self-trapping can lead also to pairing 
of charge carriers. ' )  

Three different models have been proposed to date for 
self-trapping in AFM semiconductors. In the de Gennes 
model1 it was assumed that the spin of one of the magnetic 
atoms is skewed away from its initial position and this skew 
is sustained by a trapped nearby carrier. A subsequent analy- 
sis has shown, however, that such a state is possible at utterly 
fantastic, at the very least tenfold and even tens of times 
larger, values of the magnetic-atom spin S [see Ref. 2 and the 
latest survey of magnetic semiconductors3]. 

A self-trapping model proposed in Ref. 4 has become 
very popular most recently. The term "quasioscillator" pro- 
posed in it is replaced now by the term "magnetic string." 
This model is suitable only for AFM semiconductors with 
S = 1/2, if they are inadequately described by the Hubbard 
model in its semiconductor limit. A carrier in a string state 
oscillates about a certain center. A carrier moving away 
from the center produces on its trajectory an antiphase AFM 
ordering that increases the exchange energy of the magnetic 
atoms. If, however, the carrier returns along the trajectory, 
it replaces the antiphase ordering by a normal one. 

It must be noted that recent authors state that Refs. 4 
correspond to the Ising rather than the Heisenberg model. 
This statement, however, is unfounded: in fact, use is made 
in Refs. 4 of the perfectly natural inequality W) TN, where 
Wis the width of the energy band of the carrier and TN is the 
Ntel temperature ( W is of the first order and TN of second 
order of smallness with respect to the overlap of neighbor- 
ing-atom orbits). It is just this inequality which makes it 
possible to regard the magnetic-order disruption by the in- 
teratomic transition as basic, and the quantum oscillations 
of the magnetic-atom spins as corrections to it. In particular, 
as indicated in Refs. 4, allowance for quantum oscillations is 
essential for a description of translational motion of a string 

through a crystal, but it has little effect on the energy of a 
string at rest. 

In the third type-ferron5-of self-trapping the carrier 
produces in the AFM semiconductor a microscopic region 
of ferromagnetic (FM) phase and stabilizes it by its own 
inner self-trapping. The reason why phase trapping the car- 
rier was regarded as FM was that just in FM ordering is 
where the carrier energy is minimal. A survey of many subse- 
quent ferron studies (following Ref. 5, the ferron was redis- 
covered many times by other workers) is contained in Refs. 
2 and 3. Real ferrons can be produced only when the energy 
loss for production of an FM region is small, i.e., in materials 
with sufficiently low TN. 

A new type of self-trapped carrier in an AFM semicon- 
ductor is proposed in the present paper. Its idea is based on 
the fact that a potential well for a carrier can be not only an 
FM, but also some other phase, for example an AFM but of a 
type different from that realized in a crystal. In particular, 
the carrier energy in a layered AFM phase is lower than in a 
chessboard AFM phase, and their difference can reach sev- 
eral times ten eV. A carrier therefore becomes self-trapped in 
an antiferromagnetic with chessboard ordering in a microre- 
gion with a layered AFM ordering. The energy of the "car- 
rier + microregion of another AFM phase" quasiparticles 
(dubbed "afmon" hereafter2' ) can be additionally lowered 
if the moments of the sublattices in the self-trapping region 
are skewed and the quasiparticle acquires an additional mag- 
netic m ~ m e n t . ~ '  Large skews of the moments, however, are 
excluded by the condition that the ferrons become en- 
ergywise unfavored so that, strictly speaking, afmons be- 
come possible. 

Naturally, afmon self-trapping does not postulate low 
Ntel points. On the contrary, it is possible only in materials 
with sufficiently high TN, where ferrons are impossible. The 
optimal conditions for the onset of afmons obtain near the 
boundary of two AFM phases. It will be shown below, how- 
ever, that they can be realized also far enoughfrom the phase 
boundary. 

If the carrier density is high enough, cooperative effects 
among the afmons become substantial. The simplest of them 

138 JETP 76 (I), January 1993 1063-7761 /93/010138-07$10.00 @ 1993 American Institute of Physics 138 



is afmon pairing, which can have the most direct bearing on 
HTSC. It should be pointed out that the existence of HTSC 
was explained earlier as being due to the possibility of pair- 
ing of strings6*' and ferrons.' Since paired strings have zero 
spin and finite mobility, they can play a role in superconduc- 
tivity. Similar arguments hold also for biferrons. The ques- 
tion of afmon pairing will be discussed in Sec. 5. 

In contrast to biferrons, which have nonzero but integer 
moments, afmon pairing should lead the quasiparticles with 
zero spin; placement of two carriers with opposite spins in an 
orbital ground state suppresses the skewing of biafmon sub- 
lattice moments. At the same time, in contrast to the ferrons, 
pairing of afmons becomes energywise pronounced since 
formation of a triafmon calls for placing a third carrier in a 
higher orbital state separated by a gap from the ground state. 
The conditions for the existence of a triafmon are therefore 
much more difficult to satisfy than those for a biafmon. 

Still higher carrier densities permit more complicated 
afmonic states corresponding to breakup of a degenerate 
semiconductor into two phases. One is the normally stable 
("old") AFM phase, from which two carriers go off. The 
second is a normally unstable ("new") AFM phase stabi- 
lized by receiving all the carriers in the crystal. Such a state is 
the analog of the cooperative ferron state first investigated in 
Ref. 9, in which the crystal breaks up into AFM and FM 
phases, with all the conduction electrons concentrated in the 
FM phase. It is natural to expect the structure of the two- 
phase state in both cases to be the same. At relatively low 
carrier densities the new FM phase forms an aggregate of 
old-phase drops insulated from one another, and each such 
drop contains several carriers. With increase of the carrier 
density the number and dimensions of the new-phase drops 
increase, and at some density percolation sets in: the drops of 
the new phase come in contact with one another. The crystal 
changes instantaneously from insulating (all the carriers are 
trapped each in its own drop) into highly conducting. After 
the percolation the new-phase region changes from multiply 
to singly connected, and the opposition transition takes 
place in the region of the old phase. 

Obviously, a singly connected region cannot exhibit 
long-range AFM order-only a short-range order is possible 
within the confines of one and the same drop. Long-range 
order, however, can also be absent from a singly connected 
phase, since the dimensions and locations of the drops of the 
second phase have a certain randomness due to fluctuations 
of the electroactive defects. It may be energywise easier for 
the singly connected phase to break up into domains that 
ensure a minimum energy of the boundary between the two 
phases. 

As the temperature rises, the two-phase state becomes 
single-phase, ordered or paramagnetic, in full analogy with 
melting, investigated in Ref. 10, of a cooperative ferron state. 
Particular interest attaches to the first case, when a long- 
range AFM order first appear when the temperature rises 
but then vanishes with further rise. Such a reversing AFM 
long-range order recalls the one usually observed in HTSC. 
It is natural to assume that in real HTSC it is also due to 
phase separation. 

Strictly speaking, one cannot guarantee the existence of 
some other magnetic phases in which carrier trapping is even 
more favored energywise than in the new AFM phase. In 
particular, the estimates that follow show that at certain val- 

ues of the parameters self-trapping is more favored not in the 
new AFM phase but in regions which are fully disorderd at 
T = 0 ("spin fluid"). It has not been able, however, to prove 
rigorously that at the same parameters there will not be an 
energywise even more favored self-trapping in FM regions. 
If self-trapping is indeed feasible in a spin fluid, it would be 
possible to attribute in a natural manner, for degenerate 
semiconductors, the vanishing of long-range AFM order 
when the temperature is lowered, to formation of spin-fluid 
regions in which charge carriers are localized. 

At any rate, if there exists some other self-trapping 
mechanism more effective than the afmonic, this only rein- 
forces our main statement: self-trapping of a carrier in an 
altered-phase region is possible also in AFM semiconduc- 
tors with high T,. 

1. DEPENDENCE OF CARRIER ENERGY ON THE TYPE OFTHE 
AFM ORDERING 

The analysis that follows is based on the s-d (s-f) model. 
According to Ref. 2, it describes adequately not only situa- 
tions in which the carriers and the localized magnetic mo- 
ments of the atoms correspond to orbital states of different 
type, but also when they are of the same type. For example, 
the 3 0  model is equivalent to the Hubbard model in the 
semiconductor limit, when the d-atom spin S is 1/2, and the 
s-d exchange integral A tends to - co . The results of the t-J 
model are also duplicated in the s-d model. 

The s-d model Hamiltonian is taken here in the form 

where a,*, and a,, are operators of an s-electron stimulating 
the charge carrier (conduction electron or hole), S, are the 
d-spin operators, s,, is a Pauli matrix, and B is the Bloch 
integral. The lattice of magnetic atoms will be regarded as 
simple quadratic in the two-dimensional case (D  = 2)  and 
simple cubic in the three-dimensional case (D  = 3), with a 
constant a. The vector A joins nearest neighbors. 

In the absence of an s-electron the energy of a magnetic 
structure with vector Q is given by 

where exchange to neighbors of third order in distance inclu- 
sive is taken into a c c ~ u n t . ~ '  

J(Q) =2J, (cos Q,+cos Q;+COS Q3) 

+COS Qs cos Q,)+812 cos Q, eos Q2 cos 0,. (3) 

For D = 2 it suffices to take into account exchange up to 
neighbors of second order in distance: 

l (Q)  =211 (cos Q,+cos Q?) + 4 j 2  cos Q ,  cos Q, 

(Q is measured in reciprocal lattice consta~~is).  
According to (3)  and (4),  depending on the values of 

the exchange integral J, between neighbors of ith order in 
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distance, the following structures are possible in an insulat- 
ing crystal in the three-dimensional case: FM (F) with 
Q, = (0, 0, 0) ,  Nee1 AFM structure (N) with 
Q N  = (P, IT, P), and two layered AFM structures with 
Q, = (P, 0,O) and Q, = (P, P, 0).  The triple point for AFM 
structure is 

In the two-dimensional case it is possible to have besides 
the FM structure also a NCel structure with Q, = (P, T) 
and a layered structure (L) with Q, = (T, 0). The bound- 
ary of the AFM phases is the straight line 

It will be assumed in the calculation of the s-electron 
energy that the magnetic ordering in the crystal is that of a 
skewed AFM structure. In the simplest variant the magnet- 
ic-atom spins are assumed to be too large to be treated as 
classical vectors. The energy of an electron with quasimo- 
mentum k is then given by an expression easily obtained 
from ( 1 ) by "entangling" the operators a,*, and a:+ ., - ,: 

-[ (E~~-E:+,-AS cos r p ) ' + ~ ~ ~ '  sin2 cp] "1, (7)  

where the bare energy E i is described in case ( 1 ) by a simple 
cosinusoidal dispersion law 

D 

Ek0=2BC cos k,, 
i-l 

and q, is the angle between the moment of the sublattice and 
the total moment of the crystal (q, = ~ / 2  in the absence of 
skewing). 

2. INFLUENCE OF SPIN QUANTUM FLUCTUATIONS ON 
CARRIER ENERGY 

Equation (7)  alone does not identify the spins that can 
be regarded as classical vectors and whose quantum fluctu- 
ations can be neglected. We also consider therefore separate- 
ly the limiting case A S 4  Wand its converse, in each of which 
it is possible to take into account the influence of the fluctu- 
ations on the carrier ( W- W, - 12 1B I is the width of the s- 
band in the three-dimensional case). 

In the first of them, confining ourselves to the two-spin 
approximation, we obtain from ( 1 ), with allowance for the 
inequality W) T, discussed in the Introduction, from the 
known commutation relations for spin operators: 

where Nis the number ofmagnetic atoms. For the spin mean 
values and the correlators in a skewed structure we have 

(S,') =S cos cp, (10a) 
(S,Sr>==S2{cos2 cp-isin2 cp exp [iQ(g-I) I }  +S&r. ( lob) 

The first term in ( lob) corresponds to treatment of the spins 
as quasiclassical vectors, and the second describes the quan- 
tum corrections to them. 

In the three-dimensional case, putting E,, = E i in the 
second term of (9)  and using (8),  we obtain the following 
expression for the carrier energy near the bottom of the 
band: 

E~,C=E~"ASCJ cos cp+A2S2 sinZ tp /4  (E~O-E;+Q), ( 12) 

E~ ,~= , I~S  (1-20 cos q ) G  (Ek"I4; G (Er0)-31W, ( 13) 

where 

the term E f ,  corresponds to spins as classical vectors and is 
obtained from (7)  by expansion in terms ofAS/ W. The sec- 
ond term E E,, which gives the quantum correction, was cal- 
culated using Eq. ( 8). It is obviously of order 1/S compared 
with E f , .  

In fact, however, expression (7)  is not always accurate 
to 1/S. The described procedure leads in the two-dimension- 
al case to a logarithmic divergence of G. An accurate calcula- 
tion of G for D = 2 is in itself a rather serious problem. It 
need not be considered at all, however, if only the energy 
difference of unequal AFM phases is of interest, since E f, is 
independent of the type of the AFM structure and therefore 
does not enter into this difference. The quantum correction 
can be neglected also when the skews of the moments are 
small. On the other hand, however, the quantity G enters in 
the energy difference between an AFM phase and a spin fluid 
in which the electron energy is given, according to (9)  and 
( lob), by the expression 

In the three-dimensional case it is possible, as before to re- 
place E, in the expression for G by E i .  In the two-dimen- 
sional case, however, one obtains for G the estimate 

G -  (3/n W)ln (3A2S/4nW2). (15) 

The value of G for small atom numbers N is proportional to 
In N. It follows from ( 1 1 ) and ( 15) that in the three-dimen- 
sional case the classical-spin picture (7)  is valid if 

The validity of (7)  is even more restricted in the limit of 
narrow bands, WgAS,  regardless of the dimensionality of 
space. When the quantum character of the spins is taken into 
account, the result for small S depends substantially on the 
sign of A. In particular, a magnetic string (quasioscillator) 
should be realized for S = 1/2 and A < 0 (Ref. 4).  We there- 
fore consider below the case A > 0. At sufficiently large S, the 
results that follow can be easily generalized to include nega- 
tive A. 

According to (7),  for chessboard ordering and as 
A + co , the width of thes-electron energy band should vanish 
in the nearest-neighbor approximation (8)  regardless of the 
value of S; this is most doubtful from the physical point of 
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view. To obtain a correct result one must take into account 
the possibility of a d-spin direction change correlated with 
the s-electron spin. The d-spin direction change should be 
such as to restore the skewed AFM ordering in the crystal 
after the departure of the s-electron from the atom (other- 
wise a magnetic string would be produced in the crystal, 
wnich is incompatible with the assumption that A is posi- 
tive). 

Beside the inequality W4AS, account is taken in the 
calculation of the inequality W% T,  mentioned in the Intro- 
duction. The zeroth-approximation Hamiltonian is there- 
fore chosen to be the second term of ( 1 ). Its eigenfunctions 
corresponding to states with lowest s-d exchange energy, are 
characterized by the total spin S + 1/2 of a magnetic atom 
carrying an electron: 

$g (M) = ( 2 S f 1  I-'" { ( S f  M f l / , )  '"6 (S,', M-'/,) a;,,, 

where S(n,m) is a delta function with discrete argument; 
M - z is the projection of the total spin; all the spin projec- 
tions in ( 17) are taken in a local coordinate frame with z axis 
directed along the moment of the sublattice to which the 
atom belongs; 10) is the vacuum wave function for the s- 
electron 

It will be assumed below that the s-electron does not 
perturb the ordering in the sublattice 1, but when it goes over 
to sublattice 2 it deflects the spin of its target atom from the 
normal direction of the latter. When the s-electron returns to 
sublattice 1, the direction of the deflected spin is restored. 
Neglecting the zero-point oscillations of the spins, the wave 
function of the system takes the form 

where the subscripts g and h number the atoms of the first 
and second sublattice, respectively. The coefficients X, Y, 
and Z should be obtained from the minimum-energy condi- 
tion. 

Using ( 1 ), ( 17), and ( 18) we obtain the following 
expression for the s-electron energy in a NCel structure: 

The solution for layered ordering with Q, = (T, 0, 0)  
is in general too unwieldy. For 2SS 1 and arbitrary q, it can 

be written in the form 

sin" AS 
f?k=m [ r k f  oos k, (- + COS' 9 ) I"]- - 

2S+l ' (20) 
D 

The corresponding equation for p = ~ / 2  and arbitrary spins 
is 

4S+ 1 rk2 + 4 c 0 s ' k , ] ' ' ~  A2S. ..=, [- -- 
2SC1 + ( 2 S f  I) '  2S+I 

If p = ~ / 2  the result ( 19) coincides with that of Ref. 2. 
Obviously, Eqs. ( 19)-(2 1 ) yield a ground-state energy 
much lower than (7) ,  thus proving that they are more accu- 
rate. As seen from ( 19), at angles p close to ~ / 2  the carrier 
energy bandwidth remains finite as A -+ a,. With increase of 
spin, however, it decreases like (2s )  - Thus, in the limit 
WgAS Eq. (7)  is valid only if (2s )  I/* 3 1, i.e., for utterly 
fantastic spins exceeding 10. Equation (19), however, be- 
comes equivalent to (7)  if cot p$ ( 2 s  + 1 ) 

3. CRITERIA FOR THE EXISTENCE OF AFMONS 

The results of the preceding section yield estimates of 
the potential-well depth U for an s-electron, such as the re- 
gion of a layered AFM phase inside a chessboard one. These 
estimates will be obtained for non-skewed moments 
( p  = ~ / 2 ) ,  and their skew increases even more the depth of 
the potential well. In the region where Eq. (7)  or ( 11) is 
valid, assuming W =  AS = 3 eV (this corresponds to an 
electron effective mass m = (21B la2) - '  close to the true 
one) we obtain in the three-dimensional case U, = 0.4 eV 
and U2 = 0.1 eV respectively for layered phases 1 and 2 (see 
Sec. 1 ). In the two-dimensional case, at  the same parameter 
values, the depth of the potential well corresponding to the 
layered phase L turns out to be 0.3 eV. In the opposite limit 
WgAS, the potential well depth turns out, according to 
( 19) and (2  1 ), to be practically of the same order: for the 
AFM phase 1 it is close to ( D  - 1) W/6, i.e., it can reach 
even 1 eV at the indicated values of the parameters. With 
decrease of spin, however, the potential-well depth decreases 
drastically in the case of narrow s-bands. 

The presented values of U are comparable in practice 
with the potential-well depth U ,  for the ferron. They are 
most likely to be reached in transition-metal compounds, 
while for rare-earth compounds the inequality A S 4  W is 
usually so strong that the potential well is only hundredths 
of an eV deep. When it comes to HTSC, at the present level of 
our knowledge nothing definite can be said concerning the 
possible presence of afmons in them. On the one hand, al- 
though HTSC are frequently described by the Hubbard 
model, it is by far not evident that the appearance of a hole on 
a Cu2 + will cause the spin of the latter to vanish, i.e., that a 
Hubbard model which excludes afmons is adequate for such 
HTSC." On the other hand, however, the parameters of the 
hole are unknown, and it not clear with which virtual AFM 
structures the actually realized ones are to be compared. 

Disregarding the skew of the moments, the afmon ener- 
gy is calculated using exactly the same variational scheme as 
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for f e r r o n ~ . ~ . ~  It is assumed a layered-phase region inside a 
chessboard phase has a spherical (D = 3) or circular 
(D  = 2) form with radius R. The total energy of the system 
consists of the energy of the s-electron inside a potential well 
of depth U and the d-d exchange energy spent to produce the 
layered-phase region. The first of them decreases and the 
second increases with increase of R, so that R is regarded as a 
variational parameter obtainable from the condition that the 
total system energy be a minimum. This, together with the 
requirement that the energy of the self-trapped state of the 
carrier be lower than the energy of the free carrier in an 
ideally ordered AFM crystal, leads to the following criterion 
for existence of a self-trapped state:2." 

K!W<H/W=0,2 (4-D) (U/W)'+"", (22) 

where K is the energy per atom needed to produce the new 
phase, and is its critical value. 

As indicated above, at D = 3 the most favorable for the 
onset of an afmon is phase with Q, = (T,  0, O), if the energy 
needed to produce it is not high, e.g., near a triple point.5 The 
sufficient condition for the existence of an afmon is that the 
inequality (22) hold for the afmon but not for a ferron. If 
WSAS, the potential-well depth UF for a ferron, to first- 
order in A S  / W, is AS/2. Taking this and ( 1 1 ) into account 
we obtain the following expression for the ratio of the critical 
energies zF and ik, for ferron and afmon production is 

If AS/ W = 2/3, this ratio exceeds 0.25 for D = 2 and 0.35 
for D = 3. Similar estimates are obtained for large spins and 
when ( 19) and (21) are employed. Using the known expres- 
sion J (Q)S(S  + 1)/3, for the NCel point TN we find from 
(3)  and (5) that at the triple point 

If, however, J, = 0, we have J, = 45, a value of KF as large 
on the boundary between phases Nand 2. Thus, an afmon 
can exist at the values indicated for the parameters or close 
to them even if KA = E  M(Q,) - E  M(QN) amounts to sev- 
eral times TN, i.e., the antiferromagnet parameters are far 
from the NCel-phase boundary. 

It is interesting to note that at D = 3, according to ( 13) 
and ( 14), the paramagnetic region inside the NCel phase is 
for the s-electron a potential well of practically the same 
depth as the region of the layered phase 1. One can expect 
that the carriers are subject to dispersion laws, other than 
(ti), for which the carrier energy in a spin fluid is even lower 
than in a layered AFM phase. On the other hand, there is 
also an exchange-integral region in which the energy K,, 
needed to disorder the NCel phase is lower than that needed 
to produce phase 1. For example, if J3 = 0 on the boundary 
of phases N and 2, the first of these quantities is equal to 
3 ( J ,  IS2/2 and the second is 4/3 times larger. This raises the 
question whether there exists a parameter region in which 
self-trapping at T = 0 occurs not in a microregion of an al- 
tered AFM phase, but in a region with loss or order (spin 
fluid). 

Self-trapping of a carrier in a spin fluid, however, re- 
quires that it be energywise favored also over self-trapping in 
a FM region. In the case considered here KF/Ks, = 4, and 
according to (22) self-trapping is possible in the spin-fluid 

region but forbidden in the FM region if AS/ W >  0.7. Since, 
however, the equations used above were derived for the case 
A S /  W( 1, the inequality obtained above, being marginal, 
does not guarantee feasibility of self-trapping in a spin fluid. 
Possibly the conditions of cooperative self-trapping are more 
favorable for a spin fluid than for a ferron, for owing to s- 
electron polarization in spin the electron energy in the FM 
region increases with carrier density more rapidly than in a 
spin fluid (see Sec. 5). On the other hand, the structure of 
expressions (14) and (15) points to a possibility that the 
self-trapping conditions will be more favorable in the two- 
dimensional than in the three-dimensional case. 

4. LARGE-RADIUS AFMONS 

Explicit expressions for the afmon parameters can be 
obtained if the carrier self-trapping region is large. The cal- 
culation that follows corresponds to the limit W)AS and is 
based on expressions ( 1 1 ) and ( 12), although it can equally 
well be carried out in the limit W(AS using ( 19) and (20). 
It is more convenient here to assume that the region of 
layered phase I inside a NCel AFM phase has the form of a 
cube (D = 3) or square (D = 2) with side L ) a .  The quasi- 
particle energy is then obtained by minimizing with respect 
to L  and e, the expression ( f i  = 1 ) 

where K, is written for D = 3 and D = 2 with allowance for 
the third-next and second-next nearest neighbor, respective- 
ly [see (3)  and (4)  ]: 

K , = { -  (20- 1) Jl+21z(D-1) - [Il+2(D-I) J2]cos 2~ 
-4(D-2) IS (If cos 2q))Sz. (24) 

According to the condition that the Ntel ordering be stable 
in the absence of carriers, it is assumed that the inequality 
J, < W2 < 0 is satisfied, as well as J, > 4 4  in the three-dimen- 
sional case. 

Putting I =  (J2 - J,)S2 and confining ourselves to 
small values of I, we obtain from (24) in the two-dimension- 
al case 

cos cp=C(I-4/,c?)-'"(21)", (25) 

where 

The optimal dimension L  and the afmon energy E, are given 
by 

where 

Lo and Eo are the corresponding quantities without 
allowance for the skew. 

As I+0 in the three-dimensional case, we have for the 
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corresponding quantities: the skew angle 

cos rp= I AS1411 (4ma2/n2)'/5Za'~, 
(29) 

the dimension of the region 

and the afmon energy 

It followsfrom (25)-(27), (29), and (30) that as 1-0, 
i.e., as the phase boundary is approached, the size of the 
region tends to infinity, and the skew angle tends to zero. 
This result is physically clear: as L - co the probability of an 
electron staying on a magnetic atom, meaning also the mo- 
lecular field applied to the electron by the atom, tends to 
zero. The total moment of the afmon, however, remains fi- 
nite a 1-0 in both the two- and three-dimensional cases. 

Next, the influence of the skew on the energy and size of 
the afmon as 1-0 is much stronger in the two-dimensional 
than in the three-dimensional case: at D = 3 the skew contri- 
bution to EA and L is of the order of I "' and is therefore 
disregarded in Eqs. (30) and ( 3 1 ) . In the two-dimensional 
case, with decrease of I Jl I, meaning T,, the afmon energy 
for a given I increases, and its size decreases. It is interesting 
to note that when the condition (22) for the existence of a 
ferron is satisfied, expressions (25)-(28) become meaning- 
less, i.e., the afmon and ferron are mutually exclusive states 
of a carrier (strictly speaking, the critical value obtained for 
I, from (25)-(28) differs from E, in (22) by a factor - 1. 
This is quite natural, bearing in mind that the calculation is 
approximate and that furthermore the geometries of the self- 
trapping regions are somewhat different). 

It is interesting to note that the dependence of the af- 
mon dimension (27), (30) on the energy needed to produce 
the new phase and on the width of the carrier energy band 
turns out here to be exactly the same as for the ferron.'." 
Just as in the case of f e r r o n ~ , ~  the polarization of a lattice by 
the afmons lowers their energy additionally. 

5. AFMON PAIRING AND COOPERATIVE AFMON EFFECTS 

If the carrier density in the crystal is high enough, af- 
mons can become paired to form charged particles with zero 
spin. The reason is that placing a second carrier in an AFM 
microscopic region of containing the first requires less ener- 
gy than the production of a second region for the second 
carrier. Then, however, the Coulomb energy of the system is 
increased, and furthermore if the spins of both s-electrons 
are parallel the skew of the sublattice moments and the ensu- 
ing energy gain vanish. If, however, the electrons are placed 
in states with antiparallel spins, the second electron should 
be in a state with higher orbital energy than the first, so that 
pairing increases the kinetic energy of the trapped electrons. 
The number of carriers in the potential well should therefore 
be obtained from the condition that the system total energy 
be a minimum, and biafmon can be stable only in a definite 
interval of the system parameters and at definite doping lev- 
els. Owing to the dependence on the carrier density, afmon 

pairing in degenerate semiconductors is a cooperative effect. 
We shall consider below only the three-dimensional 

case. The first two orbital states of a free electron in a spheri- 
cal potential well of radius R with Dirichlet boundary condi- 
tions on its surface are12 

q,=C, sin(k,r)/r, CIa= (2nR)-', k,=n/R (32) 

and 

zp,=C, [sin (kzr)/k,'r'-cos (k,r)/k,r] Y,,, 
(33) 

where Y,, is a spherical harmonic and k,  = 4.4934/R. 
It is easy to verify that as 1-0 both s electrons in a 

biafmon should be in the state Jtl with antiparallel spins. The 
state Jt, will be needed below only to investigate the stability 
of the biafmon to coalescence with a third afmon. The pre- 
ceding statement concerning the electron configuration of 
the biafmon is justified by the following considerations. It 
follows from (29) that the skew of the sublattice moments 
lowers the afmon energy by an amount 13/ ' .  Recognizing 
that from (30) we have R a I - the orbital energy E, ex- 
ceeds El by an amount a 12/' . 

If a degenerate semiconductor is considered, the system 
energy with all the carriers paired should be compared with 
the case when they are not paired. It should be recognized 
here that a carrier undergoes Coulomb interaction not only 
with the carrier with which it shared a potential well, but 
also with the remaining carriers and ionized defects. Cou- 
lomb interaction in such a system can be approximately tak- 
en into account by the method of Wigner cells, when the 
crystal is subdivided into spheres centered about biafmons 
or monoafmons, while the remainder of the sphere is occu- 
pied by the compensating charge. The radius R, of the 
Wigner sphere is obtained from the condition that it be elec- 
trically neutral: 

where n is the density of carriers with oppositely charged 
defects and z is the quasiparticle charge. Taking (34) into 
account under the condition R, p R, the energy of interac- 
tion between the quasiparticle and the compensating charge 
is given by the expression 

where E is the dielectric constant of the crystal. 
In accordance with the foregoing, the biafmon energy is 

where 

a=n2/m. 8=3e2/2~, y=4nK,/3a3, U,=A2Sz/2W 

The constant /3 is obtained by calculating the Coulomb inte- 
gral 

94- j d3r1 $R(*(~I )  I ' I $ ~ ( ~ z )  12~rl-hl- '  (37) 

and using (32) as well as the expansion13 
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where 0 ( x )  is the Heaviside unit step function. According to 
(37) and (38), q,,  = 3/2R. 

It is easy to verify that the biafmon is not energywise 
favored at extremely small values of I. In fact, if the first term 
in the right-hand side of (36) is neglected, the biafmon ener- 
gy E, + 2U, reckoned from the bottom of the potential well 
is of order 1 whereas the corresponding energy for the 
mono-afmon is of the order of 1 2 / 5 .  At somewhat higher val- 
ue of 1 one can used perturbation theory in terms of the addi- 
tional small parameter e2/&a W. The energy difference be- 
tween two monoafmons and a biafmon is then 

where 

EA='I8 (9a3?)'/1, RZ=2'/3R,, R,= (a/3y)'I5. 

It follows from (39) that if the carrier density is low 
enough to be able to neglect the last term of the last expres- 
sion, a biafmon can be realized only if the energy K ,  needed 
to form a new phase satisfies the inequality 

At a = 10, a = 3 A, W = 3 eV, the critical value K f 
starting with which the inequality (40) is valid for K l  is 
4.1OP4 eV, while at W =  2 eV we have K f  = 2-10-3 eV. 

It is necessary, however, to verify that the triafmon 
state does not turn out to be energywise even more favored 
than the biafmon state. In the calculation of the triafmon 
energy E,  it is assumed that two electrons are in a state $, 
and the third in a state $, [Eqs. (32) and (33) 1. The Cou- 
lomb energy is calculated with the aid of (37) and (38). The 
resultant expression is unwieldy, and we cite only the nu- 
merical value q,, =: 1/R. We have then 

It follows from (41 ) that if n is small triafmons are impossi- 
ble at all values of the parameters. They do become possible, 
however, for larger n. There exists thus a density interval in 

which only carrier pairing is favored. If the densities are 
higher, multi-afmon complexes should be formed and lead 
to phase separation in the crystal, into an old and new AMF 
phase with all the carriers concentrated in the new one. 

"This must not be taken to mean that carrier self-trapping is the only 
possible explanation of HTSC. Other mechanisms are also possible (see, 
e.g., the survey in Ref. 14). 

') The term "afmon" stems from an abbreviation for antiferromagnet. The 
more convenient and better sounding "antiferron" cannot be used for 
the quasiparticle considered here, since it was previously introduced to 
denote quasiparticles of an entirely different type.* 

3, The possible skewing of the moments of the sublattices of a collinear 
antiferromagnet by the action of carriers was proved and investigated in 
detail in Ref. 2. It is shown there, in particular, that for small skews the 
magnon spectrum of such a system is positive-definite. 

4' Several exchange integrals must be taken into account because the af- 
mon is energywise most favored near a boundary between different 
AFM phases. A phase boundary, however, exists only if several ex- 
change integrals differ from zero, since the competition between them 
determines the stability of one phase or another [see Eqs. (5)  and (6)  1. 

"The appearance of a hole on the Cu2 + ion means a transition into the 
Cu3 + state. An isolated Cu3+ ion certainly satisfies Hund's rule, and 
its spin should therefore be not zero but unity. The levels of the partially 
filled d-shell are split in the crystal, so that Hund's rule may be violated. 
The Cu3 + spin can then indeed be zero. It would hardly be possible, 
however, to estimate by using purely theoretical calculations whether 
the crystal field suffices for this purpose. 
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