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The Coulomb correction to the electronic thermal conductivity of amorphous metals and alloys is 
calculated taking into account the scattering of electrons by dynamical concentration excitations 
(DCE), which are introduced in order to describe the structural state of amorphous metallic 
systems. It is shown that at low temperatures the interference of inelastic electron-electron 
scattering and multiple elastic scattering of electrons by DCEs contributes to the thermal 
conductivity an amount comparable to its experimental values. The computed temperature 
dependence of the thermal conductivity reproduces the anomalous character of the function 
k( T) for amorphous and metastable crystalline alloys at low temperatures. In the limit of low 
concentration of one of the components of the amorphous alloy the expression for Sk ( T) is 
identical to the corresponding result obtained for an impure metal. 

The universal character of the thermal conductivity of 
amorphous systems (AS) at low temperatures has recently 
been attracting the attention of many investigators. Three 
types of temperature dependences of the thermal conductiv- 
ity k( T) are observed, irrespective of the type of chemical 
bond--covalent, ionic, or metallic: k ( T ) a T Z - " ,  
a 50.3, for T <  TI; k(T) = const for T, 5 TZ; Tz; and, 
k(T) kc, ( T) a T for T >  T21-9 [in Ref. 10 it is indicated 
that other types of temperature dependences k( T) for T> T2 
are also possible]. The temperatures TI and T2 for different 
types of amorphous systems (metals, dielectrics, semicon- 
ductors, polymers) differ by about one order of magnitude, 
namely, TI - 1-10 K, T,- 10-50 K.1-9 

The thermal conductivity of metastable metallic alloys 
characterized by structural phase transitions ottp exhibit 
the same type of "glassy" behavior. ' ' Being nondiffusive, 
w t t p  transitions are accompanied by atomic displacements 
of the order of 0.5 A." This enabled Lou to conclude in Ref. 
11 that metastable metallic alloys have low-energy (as com- 
pared with phonon) atomic dynamics, similar to the dynam- 
ics of atoms in amorphous systems. This conjecture is cor- 
roborated by the fact that in these alloys not only the thermal 
conductivity but also the heat capacity, the electric conduc- 
tivity, and the thermo-emfexhibit low-temperature "glassy" 
an~rnalies.''-'~ Neutron scattering experiments'6317 and 
Mossbauer and x-ray spec t ro s~opy '~~ '~  confirm the exis- 
tence of coherent low-frequency lattice distortions in meta- 
stable alloys. 

The low-temperature anomaly in the thermal conduc- 
tivity of amorphous systems is interpreted with the help of a 
phenomenological model of two-level systems (TLS)'0,2' 
and different modifications of this model,20 the microscopic 
soft-configuration rn0de1,'~ the quasiphonon rn0de1,~' and 
other modekg The phonon thermal conductivity k,, (T)  
has been calculated within these theoretical models, and it 
has been shown that at very low temperatures ( T <  1 K )  
k,, ( T) a T (TLS modelz0 and soft-configuration mod- 
elz4); in the temperature range 5 < T <  30 K k,, = const 
(soft-configuration and quasiphonon model2'); 
and, finally, at high temperatures [in the quasiphonon mod- 
el T2 - 200 K (Ref. 22) ] k,, ( T) a T. In spite of the fact that 
the results obtained in Refs. 2-4, 10, and 20-22 are in good 

qualitative agreement with the experiments, it seems to us 
that the analysis of the low-temperature features of the ther- 
mal conductivity of amorphous metals and alloys performed 
on the basis of these results is incomplete. For metallic amor- 
phous systems it is also necessary to calculate the electronic 
contribution to k,, (T) ,  and it is well that in met- 
als this contribution can be significantly greater than the 
phonon contribution to the thermal conductivity. 

The problem of the electronic contribution to k ( T) for 
impure metals was addressed in Refs. 24-26. In Ref. 26 it 
was solved by the quantum kinetic equation method,27 based 
on Keldysh's diagrammatic technique. This method has 
been used successfully to calculate temperature-dependent 
corrections introduced in the impurity conductivity by the 
electron-electron interaction (EEI) '' and scattering of elec- 
trons by phonon~. '~ The advantage of the method of Ref. 27 
is that it can be easily extended to the case of any other long- 
wavelength scattering, since in Ref. 27 no assumptions other 
than isotropy of the metal and smallness of the phonon con- 
tribution to the damping of the electrons are made in the 
derivation of the kinetic equation. 

The description of the low-temperature minimum of 
the electric resistance and the minimum in the electronic 
density of states at the Fermi level,'' which are observed 
experimentally in metallic amorphous systems also, ' s ' '  is an 
unquestionable successful achievement of the theory of EEI 
in impure metals. It is obvious, however, that the EEI theo- 
ry'' cannot be applied in its original form to amorphous al- 
loys in which the concentrations of the components are of 
the same order of magnitude. In these systems the electrons 
are scattered not by a random impurity but rather by cluster- 
type structural no nun if or mi tie^.^^ For this reason, in order 
to describe the electronic transport in metallic amorphous 
systems the EEI theory must be extended to the case of elec- 
tron scattering by structural formations of the short-range- 
order type. 

We proposed such an extension in Refs. 3 1-34, where it 
is shown that the anomalous low-temperature properties of 
metallic glasses (the electric resistance, the electronic heat 
capacity, and the thermo-emf) are determined by the inter- 
ference of inelastic interelectronic interaction and multiple 
elastic scattering of electrons by DCEs. The DCEs are dy- 
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namical concentration excitations of the electron-ion sys- 
tem, which are responsible for the cooperative nondiffusive 
rearrangement of local atomic configurations in metallic 
amorphous  system^.^'-^^ 

Our calculation of the Coulomb corrections to the elec- 
tric resistance and electronic density of states of amorphous 
metals and  alloy^^',^^ in the limit when the concentration of 
one of the components of the alloy c-* 0 agrees with the theo- 
ry of EEI in impure metals.'' 

In the present paper we calculate the contribution of the 
Coulomb electron-electron interaction and multiple elastic 
scattering of electrons by DCEs to the electronic thermal 
conductivity of metallic amorphous systems. 

A systematic exposition of the concept of DCEs as ele- 
mentary excitations of amorphous metallic systems is given 
in Sec. 1. In Sec. 2 Sk( T) is calculated by the quantum kinet- 
ic equation method, as was done in Ref. 26 for impure met- 
als. 

1. ELEMENTARY EXCITATIONS IN AMORPHOUS METALLIC 
SYSTEMS 

Consider an amorphous alloy formed by quenching 
from the liquid state (melt). At temperatures T <  T, there 
exist in the system many structural states of regions (clus- 
ters) with different types of short-range order (SRO). A 
local minimum of the interatomic interaction potential can 
correspond to some of these states. When the quenched state 
is annealed (with increasing T) the state of the amorphous 
system becomes more ordered-the existing short-range-or- 
dered regions relax into clusters, which are more "conve- 
nient" for the particular amorphous system at hand. The 
random position of the ions in such a system can be written 
as follows: 

where R$-the equilibrium position of an ion-is a "lattice" 
site of the short-range-ordered region (of the N-th cluster); 
U: are the dynamic2 thermal displacements of ions with 
respect to &;; 6 = 9 1 S ~ ( R l  ,t) are displacements induced 
by the dynamical fluctuations of the concentration 
Sc(R,t) = c(R,t) - c where c(R,t) and c are the microscop- 
ic and macroscopic concentration2f the components of the 
amorphous system. The quantity 9, will be defined below. 

The position of the ions in the N th cluster can be repre- 
sented conventionally as in Fig. 1. Different pairs (triplets, 
quadruplets, etc.) of chemically bound atoms can form in 
the amorphous system as a result of quenching. The change 
in with time is associated with quenching and relaxation 
of the structure of the amorphous system. 

In crystalline solids the i5, are static displacements, and 
their existence is demonstrated, for example, by diffuse scat- 

FIG. 1 .  Conventional representation of the position of ions in the Nth 
cluster: u,-temperature displacement of an ion relative to its equilibrium 
position;  displacement due to dynamical concentration fluctuations. 

tering of x-rays.35 The displacement 6, is essentially the dis- 
placement of an ion from Rol due to the formation of a new 
chemical bond owing to quenching of some short-range or- 
der that is uncharacteristic for t& structure given by the 
configuration { 9 0 1 ) .  The vector 9, appearing in {, is the 
static displacement of a single "defectw-atom (ion) in a 
position inconvenientlor the given cluster. In the simplest 
case of a point defect 9, can be represented in the form35 

where R, is the position of the ion, c i s  Poisson's ratio, and V 
is the atomic volume. 

The concentration fluctuation Sc(R,t), characterizing 
the number of such "defects" in a cluster and the dynamical 
changes in f, , can in turn be represented as follows: 

where k is a reciprocal lattice vector. 
The average ( Ic, 1') over the observation time t can be 

taken as 

and, in particular, for binary systems35 

where fl is the volume of the system and a, is the short- 
range-order parameter. 

The configurational rearrangement of the uncharacter- 
istic short-range-ordered regions, which is described by the 
variable Gc(R,t), is caused by transfer of electrons and, cor- 
respondingly, ions into a more favorable spatial position. As 
a result, there arises a new (more advantageous) chemical 
bond between the ions in a cluster. In metallic amorphous 
systems such a bond between ions is of a resonance character 
and can be realized by "resonance" do-electrons. This is 
due to a characteristic feature of the electronic spectrum of 
disordered alloys. It is shown in Ref. 36 that narrow reso- 
nance fluctuation bands (FB), associated with the transfer 
of an atom of one type into "sites" of atoms of a different 
type, appear in the electronic spectra of disordered alloys 
together with a crystal-phase (CP) band. Therefore excited 
states, associated with disorder and maintained by external 
actions, appear in the electronic subsystem of disordered al- 
loys. As the intensity of the external action decreases, the 
number of electrons in such an excited state decreases, and 
the fluctuation bands relax into crystal-phase bands. This 
releases sufficient energy for the ions to be transferred into 
more favorable spatial positions. 

In our opinion, the electronic spectrum of amorphous 
metals should be characterized by a collection of different 
fluctuation bands, corresponding to all uncharacteristic 
configurations {Rl 1. For this reason, the relaxation of fluc- 
tuation bands into crystal-phase bands in amorphous sys- 
tems can proceed both as a direct transition and sequential- 
ly-by a transition of one fluctuation band into another. The 
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structural relaxation of metallic amorphous systems thus 
consists of a configurational rearrangement of uncharacter- 
istic short-range-ordered regions, which is realized by a 
transfer of electrons and, correspondingly, ions into a more 
favorable spatial position. Such a cooperative atomic motion 
is nondiffusive and, evidently, analogous to the motion ob- 
served in alloys undergoing martensitic transformations. 

We now determine the explicit form of the Hamiltonian 
H for the electron-ion system examined above: 

H= H, (R) +He (r) +He - , (R, r) . (1.1) 

Since we are concerned with amorphous systems at low tem- 
peratures, for which U, can be assumed to be frozen out, we 
set R r z  R: + 6,. 

The first term of the Hamiltonian ( 1.1) is the ionic 
Hamiltonian 

where M, is the ion mass. If the Sc, form the concentration 
field, then the kinetic energy is a V2Sc(R,t). Hence it is ob- 
vious that if the gradients of the concentration fluctuations 
in the system under consideration are small (weak nonequi- 
librium), then the kinetic energy of the ions can be neglected 
compared with the potential energy [second term in Eq. 
( 1.2) 1. If, however, VSc is large (strong nonequilibrium), 
then this contribution cannot be neglected. 

It is interesting to make one other observation concern- 
ing the kinetic energy of ions. Since the term M , 9 :  in 
B,M,R :(Sc, )2/2 is a certain moment of inertia, &(I)  can 

where v is the electron-ion interaction potential. This inter- 
action determines the change in the energy of the n electrons 
in the N-th cluster when the ions move from R{ to Ry. This 
change in the energy is 

and corresponds to some "deformation potential" arising 
with a change in the position of the ions as a result of concen- 
tration fluctuations. The index Sc, in V,,,( Ir, - R, I ) is in- 
serted in order to underscore the explicit dependence of the 
electronic potential on the change in the atomic environ- 
ment. 

The classical equation of motion of the ions, which is 
associated with g, , has the form 

In the single-mode approximation (cluster with a given 
type of short-range order) we seek Sc, in the form 

evidently be interpreted as an angular velocity. Then the mo- 
where k, is a "superstructure" vector corresponding to the tion of the ions in a transition to equilibrium is of a nondiffu- 
given type of short-range order, and the energy w (k, ) is, in sive "rotational" character with displacement much less 

than the interatomic distance. As a result of this, the poten- the case of resonance, the difference of the energy of the 
electrons in the fluctuation band ( E ,  + ks), associated with tial energy can be represented in Eq. ( 1.2) in the "harmonic 

approximation," where the presence of the given uncharacteristic type of chemical 
bond between ions, and the energy of electrons in the crystal- 
phase band (E ,  ), to which the amorphous system relaxes. 

Then Eq. ( 1.3) assumes the form 

M,9e,'alLhaa(k.) 
are the "force constants," which determine the change I 

brought about in the coupling forces by the concentration 
fluctuations. Here U(Ry - R: ) is the pair interaction po- = x . ., w ( R ~ ' - R ~ , N ) ~ ~ ' ~  e ~ ~ [ i k , ( R ~ * - ~ ~ ~ " )  l .  (1.4) 

* ,1  

tential energy of ions located at the points R, and R, of the 
Nth cluster. Introducing the dynamical matrix 

The electronic Hamiltonian He in the total Hamilto- 
nian ( 1.1 ) has the form Dl (k.)= w ( R ~ * - R ~ ~ " ) ~ ~ : ~  exp[ik.(R~"-Rl~*) 1, 

I 

we obtain from Eq. ( 14) the scalar equation 

llM19eIZw2 (k,)a,"-I), (k,) /J=o. (1.5) 

where p, and rn are the electron momentum and the electron which enables us to find the dispersion relations for the fre- 
mass, respectively, and Veff (r, ) is the effective singleparti- quencies w (k, ), if the form of the ion pair interaction poten- 
cle potential acting on an electron at the point r,. tial energy is known. We note that, in contrast to the classi- 

Finally, the last term in Eq. ( 1.1 ) describes the interac- cal definition of the dynamical matrix in crystals, in the case 
tion of the ions themselves with the electrons participating in of amorphous systems Dl (k, ) contains the short-range-or- 
the change in the interionic chemical bond: der parameter a,. . 
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In the ckssical equation of motion of the ions ( 1.3) the 
quantity Ml9,ScLRl ) plays the role of a generalized coor- 
dinate Q, and M , ~ , G c ( R , )  plays the role of a generalized 
momentum PI = Q,. At low temperatures, in the case of 
strong nonequilibrium, when AQ, are small and AP, are 
large (i.e., VSc, are large), the uncertainty relation AP,AQ, 
-fi is obviously satisfied. Therefore, at low temperatures we 
can talk about the quantum motion of ions in amorphous 
systems. In order to describe this motion it is convenient to 
introduce field creation and annihilation operators q, + and 
q,, related with PI and Q, by the canonical transformation 

where PI and Q, satisfy the commutation relations 
[Q,Q] = [P,P] = 0 and [Q,P] = ifi, while q, and q, + satis- 
fy the condition [q, +,p] = 1. 

Then we obtain for the concentration fluctuations 

With the help of the expressions presented for P, and 
Sc(R, ,t) we obtain from Eq. ( 1.2) 

where 

The unitary tran~formation~~ 

where the new Bose operators b, and b ,+ satisfy the commu- 
tation relations [b, ,b ,f ] = S,,. , diagonalizes the ionic 
Hami l t~n ian .~~  The transformation (1.7) is unitary, if 

The diagonalized ionic Hamiltonian is 

Then the following conditions are satisfied: 

where 

The first term in the diagonalized ionic Hamiltonian corre- 
sponds to the "vacuum" state of the amorphous system, in 
which there are no excitations associated with the quantum 
motion of ions owing to dynamical short-range order. The 
Hamiltonian of these excitations (DCE) has the form 

ffDcE=Z E (k) b k + b k ,  

where 

is the energy of the DCE, which is determined from the solu- 
tion of the system of equations ( 1.8). 

According to the expression for E(k) ,  substituting the 
definitions of A, and YM, (k) ,  the DCE decay if 
[A, I <2YM, (k )  or 

Conversely, if JA, 1 >MI (k )  or 

then the DCE are nondecaying excitations. 
In the case / A ,  I 2 U ,  (k)  we can talk about real long- 

lived states in the amorphous system-low-energy DCE. 
They are of special interest for studying the properties of 
amorphous systems at low temperatures, since it has been 
shown experimentally that it is the low-energy excitations 
determined by the structural state of the amorphous system 
that are responsible for the anomalous behavior of the phys- 
ical properties of amorphous systems at low temperatures. 
In Refs. 31-34 we proposed a theory of the anomalous elec- 
trical resistance, the thermo-emf, and the electronic heat ca- 
pacity based on the DCE concept. The main results of Refs. 
3 1-34 are as follows: 

1. The contribution made to the temperature depend- 
ence of the electric conductivity by the interference of inelas- 
tic electron-electron scattering and multiple elastic scatter- 
ing of electrons by DCE has the form 

6 o ( T )  2,5.2"* T'" = - -  
a 6 YJP [i+(T)']-* To- , 

where v, is the initial electron density of states at the Fermi 
level, D is the electron diffusion coefficient, and To is a tem- 
perature, defined below, typical of a specific amorphous sys- 
tem. Figure 2 shows the Sp ( T)/p dependence taken from 
Ref. 3 1. 

2. The thermo-emf of nonmagnetic amorphous alloys, 
calculated taking into account the same scattering processes 
as for the electric conductivity, is defined as follows [Fig. 3 
(Refs. 33 and 34) ] : 
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66, Arbitrary units 

lot 

FIG. 4. Contribution 6c (T)  to the electronic heat ~apacity.",~' 

FIG. 2. Temperature dependence of the contribution 6p( T)/p.31832 

scattering of electrons by DCE to k ( T )  on the basis of the 
quantum kinetic equation, it is necessary to determine the 
temperature Green's functions of the electrons and DCE in 

kg P 1 1 s(T) E - YBA-~ (=) v*,, (-), the amorphous system. In Refs. 31 and 32 we showed that 
61el 4zT the temperature Green's function of DCE is defined as the 

where Fourier tra%sform of the correlation ^function 
(D d(x  - x') = (Ty(x) y(xl)) ,  where x = (r,t), T is the 

dy 1 1 -. chronological operator, and y(r,t) = Z,g(r - R) 
h 2 ( y + x )  (y+z)" .Sc(R,t). Hereg(R) = V, (R)  - VB (R) ,  where V,,,, ( R )  

are the "site" potentials of ions of species A (B), and Sc(R,t) 
3.   he corresponding contribution to the electronic is defined in Eq. ( 1.6). At low temperatures, when low-ener- 

heat capacity gy DCE are important, their temperature Green's function 
SC(T) = f ~ ~ ; S V ( E ~ )  has the f ~ r m ~ ' . ~ ~  

is determined by the contribution of the indicated scattering c (1-c) 
processes to the electron density of B ( k , w c )  =- I P ~ Y  B(E.1. (2.1) 

Po 

The temperature dependence SC (Ref. 31 ) is shown in Fig. 
4. According to Figs. 2-4, it is at low temperatures T 5  50 K, 
when the scattering of electrons by low-temperature DCE is 
significant, that all quantities computed in Refs. 3 1-34 are 
anomalous. For this reason it is of interest to calculate the 
temperature dependence of the electronic thermal conduc- 
tivity associated with scattering of electrons by one another 
and by DCE. 

where p, is the density of the material, 
A(k) = Jc( 1 - c) /2Ng(k), g (k)  is the Fourier transform 
of g(R) ,  N is the number of atoms in the volume, p is the 
DCE chemical potential, and E ,  are the eigenvalues of the 
diagonalized DCE Hamiltonian ( 1.9). 

The temperature Green's function of the electrons in 
amorphous metals and alloys, neglecting the interaction of 
the electrons with one another, has the form 

2. COULOMB CORRECTION TO THE THERMAL where 
CONDUCTIVITY 

1 d3p' 
In order to calculate the contribution of the interference 

;a Ig(p-p') I'dc (p)dc (p') [ie.-E (p') 
of inelastic electron-electron scattering and multiple elastic 

+i6 sign ( I p' ( -pp) I - I .  

FIG. 3. Thermo-emf of amorphous metals and alloys as a function of 
t e m p e r a t ~ r e ? ~ . ~ ~  

Here c (p)  =p2/2m - p,; p, E ,  and p, are the momentum, 
energy, and chemical potential of electrons with mass m; 7 is 
the electron momentum relaxation time, taking into account 
scattering of electrons by DCE; Sc(p) and g(p  - p') were 
defined above. 

In Keldysh's technique employed in the quantum kinet- 
ic equation method2' the Green's function, the self-energy of 
the electrons, and the interelectron interaction potential are 
represented by the matrices 
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The heat flux is expressed in terms of the electron Green's 
function as 

where v is the electron velocity and s(p,&) is a distribution 
function [at equilibrium s ( p , ~ )  = so(&) = - tanh(d2T) 1. 

The advanced and retarded Green's functions are con- 
nected with the temperature Green's function by a well- 
known relati~n,~'  so that we have from Eq. (2.2) 

The Green's function Gc, to first order in inhomogeneity, 
has the formz6 

The Poisson brackets in the presence of a temperature gradi- 
ent is expanded as follows26 

The kinetic equation for the electron distribution func- 
tion, linearized with respect to VT, is 

where I are collision integrals, which are related, respective- 
ly, with the electron-electron interaction and the scattering 
of electrons by DCE. 

The kinetic equation (2.7) is solved by the method of 
iterations with s = so + qo + q,,  as done in Ref. 26, since we 
assume that the main electron momentum relaxation mech- 
anism is scattering of electrons by DCE. In the absence of 
electron-electron interaction the nonequilibrium correction 
to the distribution function isz6 

dso(e) e cp0(e,p)=mVT-- (2.8) 
ae T 

To first order in the perturbation theory in the interaction 

where Sin, I,-,,, is the correction to the collision integral, 
determined by the scattering of electrons by DCE, due to the 
renormalization of the electron density of states 

Here Sint GA = (G t )  *2:- (so + qO) is the correction intro- 
duced by the electron-electron interaction into the elec- 
tronic Green's function. According to Eqs. (2.4), (2.7), and 
(2.8), the correction SK to the thermal conductivity is made 
up of the correction to the distribution function q , (~ ,p )  and 
the correction to the electron density of states: 

where n is a unit vector directed along VT. 
In Refs. 3 1 and 32 we calculated in terms of tempera- 

ture Green's functions the correction introduced by the elec- 
tron-electron interaction and multiple scattering of elec- 
trons by DCEs into the electronic Green's function. The 
calculation was performed in the ladder approximation in 
the interaction of the electrons with DCE and to first order 
in the Coulomb electron-electron interaction. 

The screened Coulomb potential, calculated in the indi- 
cated approximation, has the f ~ r m ~ ' . ~ '  

where 8 ( x )  is a step function, ~ ~ 4 ~ e ' ~ ,  D = - fuf-r ,  and u, 

is the Fermi velocity. The quantity 

where oo is the DCE limiting frequency, has the dimension 
of temperature. According to the estimates given for this 
quantity in Refs. 31-34, To- 1-5 K. From the definition of 
To one can see that it is a function of the concentration c of 
the components of the alloy, of the formation energy AE 
( -A(0) ), and of other physical characteristics of amor- 
phous alloys. 

It follows from Eq. (2.12a) that 

The interaction vertex function y(w,,q,e, ), obtained in 
Refs. 3 1 and 32 in a calculation of the correction to the elec- 
tron Green's function, has the form 

Thus we have determined all quantities appearing in Eqs. 
(2.4), (2.7), (2.8), and (2.11). Theequation (2.1) iscom- 
pletely analogous to the corresponding equation derived for 
the case of impurity ~cattering.'~ Its solution is presented in 
detail in Ref. 26 together with an analysis of the contribution 
of all diagrams to Sk. For this reason, we give directly the 
final expression for the Coulomb correction to the thermal 
conductivity of amorphous metals and alloys: 
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At low temperatures (T<To) we obtain from Eq. 
(2.14) 

At intermediate temperatures To 5 TS; 10To we have, in the 
long-wavelength limit (o- Dq2) , when ( T/T,)o - Dx2, 

and, finally, for T) To we easily obtain from Eq. (2.14) 

We have thus described three types of temperature de- 
pendence of the electronic contribution to the thermal con- 
ductivity: Sk(T) a T~~~ for T< TO; Sk(T) a T '" for 
To 5 TS; 10To; and, Sk( T) cc T - ' for T) To. Estimates ofthe 
contributions (2.15a)-(2.1%) are made according to the 
formula 

Figure 5 shows the computed contribution Sk(T) for an 
amorphous alloy with To - 1 K, D- 3 cm2/s, and x - lo8 
cm-'. According to the figure, in the region T< To the ther- 
mal conductivity increases sharply-by several orders of 
magnitude-with increasing temperature. Next, at interme- 

FIG. 5. Contribution Sk(T) to the electron thermal conductivity. 

diate temperatures To 5 TG lOT,, Sk( T) changes by an 
amount within one order of magnitude. On the logarithmic 
scale usually employed in measurements of Sk(T) in amor- 
phous systems, such a change is virtually unnoticeable. 
Further, for T) To the electron component of k(T) drops 
with increasing temperature, but in this temperature range 
the phonon mechanism of scattering becomes significant. 
Therefore, a phonon contribution, which increases with 
temperature, should appear in the temperature dependence 
k(T).  

The changes, described here, in the temperature de- 
pendence of the thermal conductivity were observed experi- 
mentally. For example, Figs. 6a and 6b display data on the 
low-temperature thermal conductivity k(T)  for the amor- 
phous alloy Zr, , Pd, , (Ref. 8) and the metastable alloy 
Zr, , Nb,, (Ref. 1 1 ). Comparison of our calculations with 
the experiments of Refs. 8 and 11 shows that not only is the 
agreement qualitative, but the quantitative description of 
the low-temperature thermal conductivity of the systems 
studied is also good. 

It is curious to note that the result obtained here is not 
unexpected. As one can see from Eqs. (2.10) and (2.1 I) ,  the 
temperature behavior of SK is largely determined by the cor- 
responding dependence of the self-energy part He, (E,T) of 
the electronic Green's function. In Refs. 33 and 34 we calcu- 
lated the temperature dependence of the effective relaxation 
time ?( T) of the Fermi electrons, which, as is well known, is 
inversely proportional to the imaginary part of 2,, (E,T) 
(Fig. 7).  According to Fig. 7, ?(T) at low temperatures 
drops rapidly and, therefore, 2, (T)  increases just as rapid- 
ly with increasing T-immediately by several orders of mag- 
nitude. He, (T)  increases next more gradually and saturates 
for T) To. However, Sk( T) repeats the change in Zee ( T) at 
order-of-magnitude lower temperatures. As one can see 
from Eq. (2.11), Sk is an integral function not only of 
Zee (E, T) but also of the temperature Green's functions and 
the distribution functions. This is what causes the tempera- 
ture interval where Sk( T) at first increases and then exhibits 
a plateau to shift. 

FIG. 6. Low-temperature thermal conductivity k( T )  of the amorphous 
alloy Zr,,, P&,, (Ref. 8 )  (a) and the metastable alloy Zr,, Nb,, (b)." 
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7, Arbitrary units 

FIG. 7. Temperature dependence of the effective conduction electron re- 
laxation time ?( T).33.34 

We also note that the contribution, computed in this 
work, to the thermal conductivity (2.15) and the contribu- 
tion made by individual scattering processes to the electric 
condu~ t iv i t~~ ' .~*  and presented at the end of Sec. 1 are not 
related to one another by the Wiedeman-Franz law. This is 
obvious, for besides the multiple elastic scattering by DCE, 
we took into account inelastic electron-electron scattering. 

Our final remark is that in the limit as c-0 Eq. (2.15a) 
is identical to the corresponding results of Ref. 26, which 
were obtained for impure metals. Thus as in the case of elec- 
tric conductivity and electron heat capacity, the limiting 
transition from an amorphous binary alloy to a disordered 
impure metal is satisfied. 

In conclusion it should be stated that in spite of the good 
qualitative and quantitative description of the low-tempera- 
ture electron transport in metallic amorphous systems, the 
proposed mechanism for the formation of anomalies in the 
transport properties cannot be regarded as finally estab- 
lished. The results must be carefully checked experimental- 
ly. In particular, it is possible to determine experimentally 
whether or not k(T) saturates in the intermediate tempera- 
ture range ToS; TS; 10To or the thermal conductivity 
changes with temperature within one order of magnitude. 
Further, if the proposed mechanism does exist, the tempera- 
ture at which the phonon mechanism of scattering ( Tph ) 
comes into play can be determined from the length of the 
temperature "plateau" in k( T). If Tph is equal to To, then 
the curve k(T) will not have a plateau, and k(T)  will be 
characterized only by an inflection point. It could also hap- 
pen that Tph > 10To. Then k(T) can be expected to exhibit 
four types of behavior: increasing ( T 4  To), "plateau" 
(To S; TS; 10To), decreasing ( 10To < T <  Tph ), and once 
again increasing ( T >  T,,, ). Quite possibly this is what ex- 
plains the temperature dependences k( T), obtained in Refs. 
3941, characterized either by a point of inflection or de- 
creasing k(T) with increasing T a t  intermediate tempera- 
tures. 
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