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A theory of thermal collisions of neutral perturbing particles with Rydberg atoms is presented. 
The atoms are in selectively excited states nlJ with specified values of the principal and orbital 
quantum numbers n and I as well as of the total angular momentum J. General equations are 
obtained, within the framework of the impulse approximation of the quantum theory of the 
angular momentum, for the cross sections of inelastic transitions n u -  n'l 'J ', inelastic scattering 
nu -  nlJ, and J-mixing of the fine structure components, nN-.nlJ1 with J = ( I  - 3 1 and 
J' = I + 4. These equations describe the region of weak binding of the states and can be used for 
arbitrary form of the electron-atom scattering amplitudef,, (k,O,. ). Simple analytic expressions 
are derived by a classical approach, in the scattering-length approximation, for the cross sections 
and rate constants of the considered processes. These expressions are valid in both the weak and 
strong coupling regions. The results are used to analyze the role of the J-mixing process and of the 
inelastic n- and I-mixing processes in the quenching of the Rydberg levels n2S1,2 n2P1,, and n2D3,, 
of Rb and Cs atoms undergoing thermal collisions with helium atoms. Specific calculations 
explain quantitatively the available experimental data for the processes in question. 

1. INTRODUCTION 

Many theoretical and experimental studies have been 
made recently of various processes involving collisions of 
Rydberg atoms A(n1) with neutral particles (see Refs. 1 and 
2 and the citations therein). In the case of thermal collisions 
with atomic particles, the most actively studied were the 
broadening and shifts of highly excited nl levels and quench- 
ing an ionization of Rydberg atoms in their own gas or in a 
buffer gas. According to the current theory3-'' the quench- 
ing of Rydberg nl states with very small quantum defect 
S,zO is due mainly to I-mixing, i.e., to quasielastic 
(AE,,,,,, zO)  nl--nl' transitions with change of only the or- 
bital momentum over a large group of hydrogenlike sublev- 
els nl ' (I  ' #I) of the same energy level n [see Ref. 1, Ch. 6, for 
details). The quenching ofisolated nl levels with appreciable 
quantum defect 8, (i.e., nS, nP, and nD levels) is the result of 
inelastic transitions nl+n'l'(A~,,,,.,. #O) with change of 
both the orbital momentum (2 5 I '(n' - 1 ) and of the prin- 
cipal quantum number n' # n (see Refs. 1 1-19). 

A theory of inelastic n- and I-mixing was developed in 
the scattering-length approximation in Ref. 13 in the frame- 
work of a quasiclassical model of a Fermi pseudopotential, 
and in Refs. 14 and 15 on the basis of the impulse approxima- 
tion and the binary approximation for atomic form factors. l6 

Simple analytic equations were obtained for the cross sec- 
tions of the inelastic transitions nl- n' (Refs. 13 and 15) and 
for inelastic transitions (n + n' ) between hydrogenlike lev- 
e l ~ , ' ~ ~ ' ~  and also for the corresponding rate constants 
K,,. (T) (Ref. 13) and Maxwell-averaged cross sections 
(a,,,. ) (Ref. 13) needed for comparison with the available 
experimental data. The existing theory of quasi el as ti^^-'^ 
and in el as ti^'^.'^ nl ' - n' transitions makes it possible on the 
whole to describe successfully the results of numerous ex- 
periments on the quenching of Rydberg atomic levels nS, nP, 
nD, and nF in thermal collisions with inert-gas atoms (for 
details see Refs. 1 and 2 ) . 

A general approach to the description of the inelastic 
transitions nl-n' and n+nf, valid for an arbitrary form of 
the scattering amplitudef,, (k,Bkkf ) of an electron e -  by a 
perturbing particle B, was formulated in Refs. 17-19 in the 
context of the impulse approximation'7~'8 and on the basis of 
the semiclassical model of a free electron.19 In Refs. 17 and 
18 the results were used for a quantitative explanation of the 
experimental data on quenching and to cast light on the role 
of the inelastic transitions nl- n' in the broadening of the 
Rydberg nl levels of atoms in thermal collisions with alkali- 
metal atoms in the ground state. It was established that in 
this case it is necessary in principle to take into account, 
beside the usually considered potential electron-atom scat- 
tering, also the presence of a 3P resonance (with energy E, 
and width J?, of order 10-2-10-3 eV on the quasidiscrete 
level of the corresponding negative ion (see Refs. 17, 18,20, 
and 2 1 for details 1. 

It should be noted that the calculation results of Refs. 
17 and 18 are valid in the region where the impulse approxi- 
mation is valid, i.e., at n 2 25-30for collisions with the heavy 
atoms K, Rb, and Cs. In this region the cross sections for 
quenchingI7 and broadening" of the nS levels by the inelas- 
tic transitions nS-+ n' decrease monotonically as n increases, 
and exceed substantially the cross sections for elastic scatter- 
ing. For the region of lower n ( 15 5 n 5 25), where oscilla- 
tions of widths and shifts of the Rydberg levels (initially 
considered in Refs. 22 and 23 assuming a very narrow reso- 
nance rr <E,, Er - eV within the framework of the 
asymptotic theory),24 an adiabatic approach was recently 
propo~ed,~'  based on the model of quasi-intersection of 
terms of the Landau-Zener type. 

We note also that the main contribution to the cross 
section of both quasielastic and inelastic quenching of highly 
excited nl levels in the experimentally investigated region of 
n is usually made by the scattering of the perturbing particle 
B from the quasifree electron e - of the atom A(n1). In many 
situations, however (especially for inelastic nl-n' transi- 
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tions with large energy change A&,,,,. ), the decisive factor is 
scattering by the atomic residue A +  (see, e.g., Refs. 25- 
28). 

Many experiments have also been performed by now on 
collisional quenching (see Refs. 1, 29-33, and the citations 
therein) and shock broadening and shift of highly excited 
Rydberg levels of heavy alkali (K, Rb, Cs) and alkaline- 
earth (Sr, Ba) elements with specified values of both the 
principal (n ) and orbital (1) quantum numbers, as well as of 
the total angular momentum J and the spin S of the atom. 
These processes have been very little studied theoretically 
even for Rydberg states of atoms with one valence electron. 
Thus, for example, an analysis of transitions between fine- 
structure components of alkali atoms at relatively low values 
of n was initially carried o ~ t ~ ~ , ~ ~  in the framework of a sim- 
ple model of quasielastic I-mixing,' which leads as a rule for 
the J-mixing process to results that differ substantially from 
the experimental data (see Refs. 29 and 33 for details). 

Only recently35 was a numerical calculation made for 
the n2D3/, + n2D,,, J-mixing process, with n 2 10-1 5, for 
cesium atoms in inert gases, using perturbation theory and 
the quasiclassical Fermi pseudopotential model (see Refs. 5 
and 13). In Ref. 36 there were likewise obtained simple ana- 
lytic expressions for the cross sections of the transitions 
n2P,,, +n2P3,, and n2D3,, +n2D,,, in the framework of the 
impulse approximation (for f,, = - L = const, where L is 
the scattering length). The results of Refs. 35 and 36, how- 
ever, are valid only in the weak-coupling region and cannot 
describe the region of the maximum cross section and its 
falloff with decrease of n at low values of the principal quan- 
tum number. 

For collisions of selectively excited Rydberg atoms 
A(n1J) and neutral particles there is thus at present no suit- 
able theory capable of explaining and quantitatively describ- 
ing jointly the behavior of the cross sections at high, low and 
intermediate values of n at different values of I and J and of 
spin-orbit splitting energy defects A&,. . In particular, for 
arbitrary form of the scattering amplitude f,, (k,Bkk. ), 
neither inelastic transitions nlJ+ n'l 'J', nor even the simpler 
case of purely elastic scattering have been considered. 

The aim of this paper is a detailed study of inelastic and 
elastic collisions of neutral particles B with Rydberg atoms 
A(nN) in states with specified quantum numbers n, I, and J. 
The investigations reported shed light on the role of J-mix- 
ing and inelastic n- and I-mixing processes in the quenching 
of selectively excited fine-structure components of highly 
excited atoms. 

The analytic approach used in this paper is based on the 
impulse approximation and on the quantum theory of the 
angular momentum in the region of large n, and on the quasi- 
classical approximation in the region of small and intermedi- 
ate n. The equations obtained are used for actual calcula- 
tions of the cross sections for J-mixing as well as for n- and 
I-mixing, for thermal collisions of the Rydberg atoms Rb 
and Cs in the states n2S,,, , n2P,,, and n2D,,, with He atoms, 
and to explain the available experimental data for these pro- 
cesses. Substantial differences between quenching of selec- 
tively excited nlJ levels and of the previously investigated 
case of nl states. The main point is that is that quenching of 
Rydberg levels with specified values of quantum numbers n, 
I, and J in the region with relatively small n 5 15-20 is pre- 
dominantly the result of transfer of the total angular mo- 

mentum nN+ n u '  without change of the orbital momentum 
1 and of the principal quantum number n. In the region of 
large n, however, the n- and I-mixing processes predominate, 
as before. Therefore the total cross section for quenching of a 
selectively excited nN level has an entirely different depend- 
ence on the principal quantum number n than for nl-states 
(cf. Figs. 2 and 3). In particular, two clearly pronounced 
maxima can occur here at low and high values of n (see 
Fig. 5). 

2. FORMULATION OF PROBLEM 

We start out from the general equation relating the 
cross section ofi of the inelastic transition li) - If) between 
the initial li) and final If) states of an atom A** with a scat- 
tering amplitude& (ql,q) or with the corresponding matrix 
elements of the scattering amplitude T ( $ )  on the energy 
surface1) ( $ = q2/2p + E~ = qf2/2p + E ~ )  : 

Here q = pv and q' =put are the moments of the relative 
motion of the particles A** and B (p is the reduced mass), 
v = (2E /p ) 'I2 and E are respectively their initial velocity 
and kinetic energy; 9 ( $ ) is Green's operator, Hand Z? are 
the total Hamiltonian (H = Ho + V )  and the energy of the 
system A** + B, Vis the interaction potential of the collid- 
ing particles, Ho = HA + K,, is the zeroth-approximation 
Hamiltonian: 

Here HA is the Hamiltonian of a Rydberg electron e - with a 
radius vector r in the field U(r) of the atomic residue A + 

( U(r) + - l /r  as r-+ co ); a is the set of quantum numbers 
indicative of a highly excited state with energy E, and wave 
function $a ( r )  ( (ala ' )  = S,,. ), is the kinetic-energy opera- 
tor of the relative motion of the particles A** and B, Iq) is its 
wave eigenfunction ( (qlq') = (27~),S(q - q') and R is the 
radius vector joining the atom B with the mass center of the 
systemAf + e - .  

In the case of selectively excited Rydberg levels with 
specified values of the quantum numbers n, I, and J 
(J = 1 + s, s = 4 is the electron spin), the wave functions of 
the initial and final states are 

li)= lnlJM>=R,.,(r) Y,': (n,), 
(5) 

I f > =  Jn'l'J'M')=R,.r,r ( r ) ~ : : : ,  (n,) ,  

where R,,,, ( r )  is the radial part of the wave function of the 
highly excited atom A** in the coordinate representation, 
n, = n - S, is the effective principal quantum number. S, 
is the quantum defect; Y$Z2(n,) is a spherical spinor (see 
Ref. 37, p. 176), and n, = r/r is a unit vector defined by the 

28 JETP 76 (I), January 1993 V. S. Lebedev 28 



angles 8, and p, . Thus, to calculate the cross section a,,""J' 
of a transition between fixed states nlJand n'l 'J ' expression 
( 1 ) must be averaged over the initial ( M r  J, ) and summed 
over the final ( M ' r  Jh ) sublevels. To determine, however, 
the total cross section 

for the scattering of a perturbing particle B from a Rydberg 
atom A(nlJ) we separate, in accordance with the specific 
features of the processes investigated here and of the calcula- 
tion method, the contributions rx; of the elastic scat- 
tering (transition nlJ- nu ) ,  of the J-mixing nlJ+ n u '  of the 
structure components, and the total contribution (with 
J 1 # J a n d J =  )I-+I o r J = I +  +) andthemaincontribu- 
tion a",',- ch of all the inelastic transitions nlJ- n'l 'J' with 
change of the principal and orbital quantum numbers, i.e., 

It is taken into account in (6) that the total contribution 

of all the inelastic transitions nN+nll 'J', after subtraction 
(prime on the summation sign) the elastic-scattering cross 
section, determines the cross section a,, for collision 
quenching of the Rydberg nN level. 

3. MATRIX ELEMENTS OF THE TRANSlTlONSnlJ+n'l'J'AND 
nlJ+n'lN THE IMPULSE APPROXIMATION 

The contribution of the scattering of the perturbing par- 
ticle B by a quasi-free electron e - and the residual atom A + 

can be calculated in the impulse approximation indepen- 
dently, i.e., T,,, = T,, + T, +,. We consider here the ma- 
trix elements of the scattering operator T,, 
(T,, = V,, + Ve,7VeB) which correspond to the poten- 
tial V,, of the interaction of particles e - and B. According 
to the initial equation of the impulse approximation [38] we 
have for the quantity ~>'(q',q) [called also the scattering 
amplitude in the energy normalization, cf. Eq. (2)  1 

Tf iwB (q', q) =(n'l'J'Mf I <q' I T e B  1 q) 1 n1lM) 

teB (k', k) a (exp (iktreB) ( teB 1 exp (ikreB) ). (7)  

Here t,, (kl,k) are the matrix elements of the two-particle 
operator t,, for scattering of a free electron e - by a particle 
B (the amplitude of the elastic electron-atom scattering in 
the energy normalization), while the relations between the 
momenta k, k', p, p' and the transferred momentum 
Q = q - q' are 

If the collisions of the particles A** and B are not too fast in 

the entire region of interest for applications n 4 u - ' we can 
put (see Ref. 1, Ch. 8) 

pmk, pr"k', k'--k%Q=q-q'. (9) 

The save functions of a Rydberg atom 

G,  (p)=g,.l ( p )  ~2 (up), G,(P') =gn:t,(p1) Y::,U~ (n,,) 

can be written in the momentum representation in the form 

Here CJ,,,, are Clebsch-Gordan coefficients, x,,,, is the 
spin wave function G,, (p) = g,,, (p)  Y,, (n,), and the ra- 
dial functions g,,, (p )  and R,,, (r)  are connected by the re- 
lation 

m 

wherej, (2) = (?r/2z) 'I2J,+ (z) is a spherical Bessel func- 
tion. 

We substitute ( 11 ) in ( 10) and use the expansion of a 
spherical function of order I '  + 1/2 (where k' = k + Q) in 
bipolar harmonics of rank (see Ref. 37, 55.17). We have 
then for the final-state wave function 

G,.,.,. ( k + ~ )  =exp (i@) G,,,,,, (k) (12) 

(2 = id/d k is the momentum operator), we arrive at the 
expression 

which is valid fork < Q. In the opposite case k>Q the substi- 
tution k s  Qis necessary. With the aid of Eqs. (9)-( 13) with 
allowance for the orthogonality relation for spherical func- 
tions, 

the matrix element (7)  of the scattering operator can be rep- 
resented in the impulse approximation as 

The radial integral @::,;,, (Q) is given by 
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wherep,, is the reduced mass of the particles e - and B (i.e., 
peBZm, = 1 a.u.) and& is the electron-atom scattering am- 
plitude, which is generally expressed in the impulse approxi- 
mation in terms of matrix elements t,, (kl,k) of the two- 
particle e - + B scattering operator both on ( I k' 1 # I kl ) and 
off (k and k') the energy surface (see Ref. 38 for details). 
Just as any two function of two vectors, k, and kt, the ampli- 
tude f, which is invariant to rotation of the coordinate 
frame depends generally speaking on the three variables 
k = I k 1, k ' = I k' 1, and the cosine cos Ow of the scattering 
angle [or the momentum transfer Q, see ( 15b) 1. We, how- 
ever, shall use below (as in all calculations based on the im- 
pulse approximation), the usual amplitude of the electron- 
atom scattering on the energy surface, f, =A, (k,Q) or 
A, (k,OW), putting in (15b) k ' = k and 
Q = 2k sin (8,. /2). 

We express the Clebsch-Gordan coefficients in ( 14) in 
terms of 3jsymbols and use their known properties (see, e.g., 
Ref. 37), and also the orthogonality relation 

+ X~,~,,.X~,~,, = 6, for spin functions. We have then for the 
quantity of interest 

which determines the cross section of the nlJ+ n'l 'J' transi- 
tion, after summing in ( 14) over all the z-components of the 
angular momenta and after averaging over the directions of 
the momentum transfer, ( 1/k)$dClQ ( . ), we arrive at 

The angle coefficient A is expressed in terms of 3j 
and 6j symbols and has the same form as in the calculations 
[36] of the form factors of the transitions nlJ- n'l 'J': 

The radial integral (15a) can be written in the coordinate 
representation with the aid of ( 11 ) in the form 

Expression ( 16c) acquires a particularly simple form if 
the amplitudef,, depends only on the momentum transfer 
Q. In fact, taking& (Q) outside the integral sign and using 
the orthogonality relation 

we express (Pit:n;,, (Q) in terms of the radial matrix element 

'"' (Q) of the spherical Bessel function for the n,l,n;r9 

nN- n'l 'J' transition 

If the energy defect A&,, - ,,,, . + ,,, of the splitting of 
the fine-structure components of the final level n'l' with 
J' = 11 ' f 1/2 ( is insignificant, one can sum over J ' in ( 16 ) 
with the aid of the relation 

As a result we have 

The calculation of the cross sections of the transitions 
nlJ- n'l ' (summedoverJ' = 11 ' + 1/20 reduces thus in this 
case to a calculation of the cross sections of the transitions 
nl-n'l '. 

Considerable interest attaches also to calculation of the 
matrix elements and cross sections a,,,,, of the transitions 
nN+nl that determine the total contribution of all the in- 
elastic transitions nu-  n'l 'J' of the initial level nlJ to all the 
degenerate sublevels n'l 'J' of the final hydrogenlike level n'. 
In this case the spin-orbit splitting A&,. - ,,,,. + ,,, of the 
sublevelsn'l 'J' with J' = 11 ' f 1/21 can certainly beneglect- 
ed compared with the energy defect AE,~,,. = 16, + Anl/n3 
of the transition nl-n' (An = n' - n). We can therefore use 
directly for the transitions nlJ- n' the already available cal- 
culation of the matrix elements of the nl-n' 
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transition, summed over 1 'm' and averaged over m in the 
impulse approximation: 

4. J-MIXING OF FINE-STRUCTURE COMPONENT AND 
ELASTIC SCATTERING 

4.1. Weak-coupling region 

Cross section of niJ+ n 'i'J' transition for arbitrary amplitude 
of electron scattering by a perturbingparticle 

The general impulse-approximation formula for the 
cross section ofthe transition nu-, n'l 'J ' can be written, with 
the aid of the expression do,,. = dp,. QdQ /qq' for the scat- 
tering solid angle in ( 1 ) and of the relation ( 16a), after inte- 
gration over dp,,. in the form 

I '+ l  

rn'I*J' 2n 
a . 1 ~  (v) -- A~$,'I;,* I@!:~,~.*I,(Q) l'Q@* 

f l  , - l l ~ - l ,  Or. 

(22a) 

where 

and the quantity @;in;,, (Q) is determined in the impulse 

representation by expression ( 15a) in which one must put 
n, = n - S ,  anah; = n' - S,.,, . For the cross section of 
the transition nl-n'l ' we get similarly with the aid of 

where, however, Qmin =: I A & ,  ,,.,. )v, while in the expression 
for the radial integral ( 15a) the effective quantum numbers 
of the initial and final states are equal respectively to 
n, = n - 6, and n; = n' - a,.. 

For the transitions nN-+ n'l 'J ' considered here, without 
change of the principal and orbital quantum numbers n and 
1, the angular coefficients A ::L. differ from zero only for 
even values A = 2, where s = 0, 1, 2, ... Calculation using 
(16b) leads then to the following result for the J-mixing 
process ( J1#J ,  J = I -  1 / 2 a J 1 = 1 +  1/2): 

Here 1 #O, since thes-state undergo no spin-orbit splitting. It 
is seen also that for arbitrary 1) 1 and J'# J the coefficient 
A hi;. = 0 for s = 0. For the case of elastic scattering 
(J ' = J )  we obtain similarly 

The values of the coefficients A I,,$;. for the ssp, and d levels 
are listed in Table I. 

For an arbitrary form of the scattering amplitude 
fee (k,Q), the cross section = 4:;; for elastic scatter- 
ing of a perturbing particles B by an atom A** in the n2S,,2 
state has the simplest form. A contribution is made to (22a) 
by only one term with R. = 2s = 0 (with A &)lzSs,, = I) ,  and 
the integral over dr' in ( 15a) can be calculated analytically. 
The result is 

(D 

*I 2n 
am.,, (u) --j l@Zr.o(~)l'Qdp, 

uZ 0 

(24) 

Substituting in (25) the known expression for the radial 
wave function g, (k)  of the hydrogenlike ns state: 

4na sin [na (k) ] 
g,., (k) = 

( l+n2k2)'  sin[p(k) J ' 

(26) 
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TABLE I. Calculated angular coefficients A $),. [see (23) for 1 = 24 O<s<l] and of the quantities CJ:'. = 85:'. ( v  = 0) [see (30c)I determining the 
cross sections for J-mixing (nlJ-+ nu',  J '#  J) and elastic scattering nlJ- nlJin s-,p, and d-states. The values of C,,and B I:' [Eq. ( 3  lc) 1, calculated in 
Ref. 8 for nl-nl transitions are shown for comparison. 

and calculating the integral over dk ', we obtain where Js(z) is a Bessel function of integer order, and - is (z) = ( d 2 2 )  'lZJs+ (2). 

1 

a 

P 

d 

i 
Q ; : . ~ ( Q )  = -J j.B(k,Q)sininfi(k)l {cos[ny,(k, Q ) l  

2Qnz , Scattering-length approxlmatlon 
-cos[nyz(k, Q) l ) k  dk, 

In the scattering-length approximation Cf, = - L )  
ytj(k, Q)-WWOS [ nz(k*Q)'-i ] 

nZ(kkQ)'+1 . (27) Eq. (29) leads directly to an analytic expression for the cross 
, section 4; of elastic scattering of a perturbing particle B by 

a Rydberg atom A(nW) and for the cross section 4, "'" for 
In actual calculations of arbitrary values of the angular ~ - ~ i ~ i ~ ~  of the components,36 

momenta 1, J ,  and J' the cross section of the transition 
nlJ- nlJ' has aparticular convenient form when the scatter- 
ing amplitude& either depends only on the transferred mo- 1  a,, - 2nc2 L' 

d n l ~ m a n c  J - van.& ' 
(30a) 

mentum Q or is constant. We use in this case Eqs. ( 18a) and 
(22a) as well as the results of the classical  calculation^^.^^ of 
the radial matrix elements ( 18b) for I (n and A = 2s3 n t J 1  hc::).~' ly 

&IJ m a s l ~  - v'n.' 9rr '  ( v J J * ) ~  

J . c  (Q)  =i.(n.IQ) J .  (n.'Q), (28) 

Transition I Elastic scattering (J' = I J-missing (J'  # J )  

which are valid both for elastic scattering at J' = J and 

naSX -, naS% 

- 
= 0 and for transitions between fine-structure compo- 

~ J J *  - na'l b e J J *  I I A h , ,  I --• 
nents at J ' # J and AE JJ. # 0 (details in Ref. 36). As a result v vn. 

A(O) = I , c ( ' )  -0,583 
8%' sI/I %* % - 

we have 

a I Here $ 2  = 5 )  0 are constant coefficients 
nIJ' (1) 

U n r ~  ( 0 )  = " .f 1 ~ * S I  (Q)  1 ' Z A  jt?J,j? ( n - ' ~ )  p $,. (vjj. ) = {$ (vjj, )/{$$ (0) is a function that deter- 
IA~, , ,  11" .-o mines the dependence of the J-mixing cross section on the 

inelasticity parameter vJJ., and As,, = 16, - 6,. I is the 
difference between the quantum defects. The quantity 

X J.'(n.'Q)Q dQ. (29) %$:! (vjj. ) can be represented in the form3" 

na-+na n I B(') = I ,  c,, = 6'!! IC I 0,583 
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A(") 
7 0 ,  A&, P,I, = 2 ' x '  '*/r 

A$:/,, 
= 0,  A") = 1 

Pals. P% 

C e , ) , l I =  0,4Si, c![! I / I  = 0,Bs 

ngP, + nap $, 

A(O) 
= I ,  A$! , PI = 0 p ~ *  p ~ s  A A 

A#' 
- 2 ,  Ap!,,, I 

'la* 

c:!,,, = 0,583, c!!,),,~, = 0.808 

np  + np 

n*D -t nsDJ, 

nd -c nd ~$0; = 1, B$"J = lo/ , ,  ~ ( 4 )  - "I,, C &  = 2 c'J"~, = 1.282 dd - 
3' 

B(') = !, ~ ( ~ 1 -  2. C p p  = 2 c:Pf. = 1.0% 
PP PP - 

J' 

~ ( 0 )  - ~ ( 2 )  (4) 
Dv, .  D J I , -  Dslr. D,,,"' A D ~ I s .  DII ,=  O 

~ ( 0 )  
- 1 p ~ g ! / , ,  D , / ,  = 8 / , .  A$!~,, D , / ,  ='I7 D*l . .Dy , -  

"I;! ,/, = 0,808, ~!/ql,,, = 0,966 

A'.) D 1 l ~ .  ,-,,I,= 0. A $ ! ~ ~ .  , / ,  ' 1 . 9  ĝ!/,, D . ~ ,  = "1. 

A(@) = O , A ~ ~ , , ~ ~ / ~ - ~ ~ / ~ ~  A ~ ! 1 , , ~ ~ 1 , = 1 a ~ 7  =''I,. D*l, 

~ ( d )  ' I S .  'It = 0,474,  c!:: ,/, = 0,316 



I DD 4.2. Normalization of cross sections in the strong coupling 

E::! (vJJ~) = EA~(:::,* .I j: (2) ~ ; (z )z  dz, 
region. General equation for high, low and intermediate n 

1-0 V J J ~  Equations (22a), (29), (30), and (3 1 ) were obtained 
within the context of the quasi-free electron model and the 

( 1 )  2J+f ( I ,  impulse approximation." They are therefore valid for large 
$J*I (VJJ,) =-;-E,,. (vrr*), U +1 (30c) enough n, 2 no(v) [see Eq. (35) below], i.e., in the region 

of weak coupling of states. In this region the cross sections 

where we must put vJJ = 0 for elastic scattering ( J '  = J). 
In the most interesting case of small I<n (for example, 

s-,p-, and d-states), a contribution is made to the sum overs 
in (30c) only by terms with s<l. The values of the corre- 
sponding coefficients C::. =--c::'. (0) are listed in Table I, 
and the functions e, $:,,, (v)  and g, ::;,,,, (v) as functions of 
the inelasticity parameter v are shown in Fig. 1 for the J- 
mixing processes n2P,,, sn2P3,, and n2D3,, sn2D,,, . 

As seen from Fig. 1 and Eq. (30c), at vJJ. 4 1, (when 
e, $:. (vJJ, ) z 1 ), the J-mixing process has a quasielastic 
character. The behavior of the cross section o$ "Ix differs 
then from the elastic-scattering case (30a) only by the value 
of the constant coefficient. ~ h u s ,  for small vJJ, 4 1 we arrive 
with the aid of Eqs. (16b), (19), (20), and (30) at the fol- 
lowing result for the total cross section of the J-mixing and 
elastic scattering: 

= c::! = Z B : : ' )  Sf: ( z )  J: (z )dz ,  

for J-mixing-andelastic scattering, calculated with the aid of 
these equations, turn out to be certainly smaller than the 
geometric cross section u,,, = T(?),, of the Rydberg 
atom A**. 

We propose here a simple quasiclassical method of nor- 
malizing the cross sections (30) and (31 ). It makes it possi- 
ble to obtain lucid analytic expressions (see (37) and (39) 
below) for J-mixing and elastic scattering. These expres- 
sions are valid for high (n, s no), sufficiently low (n, <no), 
and intermediate n, -no values of n,. We begin with the 
known equation for the cross section in the representation of 
the impact parameter p: 

In view of the rapid exponential decrease of the wave- 
functions Rn*, ( r )  in the classically forbidden regions past 
the turning points r < r, and r < r, (where r, =: ( I  + 1/2)'/2 
and r2z2n: for l<n) ,  the integration in (32) should in fact 
be carried out in the range O@<2n2. We define the transi- 
tion probability w$' as follows: 

nl J' ( 1 )  
W n l l  (p, v) = CJJ' LE ( 1 )  

The cross section e', = u,,,,, for elastic scattering of an atom WZ(P, v) = 2u2n*6p 
TJJ' (vJS')?  

B by a Rydberg atom A** in the nl state was calculated in 
Ref. 8 (see also Table I for the values of B 2," and C,, at I = 0, (33b) 
4 ... p>pa ( ~ 9  n*) 9 

1, LJ. 

The inelastic character of the J-mixing process (when where g,, = u1 + 1 and = Z, (W + 1) = 2(21+ 1) are 
%* % 1 and 9 %), (v)  4 1 ) becomes particularly important the statistical weights of the sublevel n u '  and of the entire nl 
for thermal collisions of heavy atoms A(nlJ) and B, is., at level. ~ h ,  value of po is determined from the condition 
low relative velocities v and for Rydberg atoms A** with W2(Po,U) = W1, i.e., 
large atomic numbers Z (when the spin-orbit splitting of 
sublevels with J = I 1/2 is large) 

111 
We introduce next the principal quantum number 

,?: r ,  (';I no(v) in such a way that when n, = no(v) the impact pa- 
rameter (34) becomes equal to the radius r2z2n: of the 
Rydberg atom, i.e.,po(v,no) = 2n:. As a result we obtain for 
the separation no(v) of the regions of weak n, %n,(v) and 
strong n, 5 no(u) coupling of the states the following condi- 
tion: 

- 1 1 ,  , , , ,  
'5 o so 15 20 25 1;. It assumes a particularly simple form when g, $:. (v) = 1, 

i.e., for elastic scattering and for J-mixing in the quasielastic 
FIG. 1. The functions p \::,,,, (v)  and q, ::j.,,, (v) that determine the de- limit (vJJ, 4 1). 
pendences of the transitions nzP1,en2P3,, (curve I )  and 
n2D3, s n 2 D , ,  (curve 2 )  on the value v,, = n: ~AE,, I / u  of the inelas- If n, <no(v) the entire integration region (0@<2n: ) 

ticity parameter of the J-mixing process. in (32) corresponds to close coupling, i.e., W$;'(~,V) = w,, 
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for in this casep,(v,n, ))2n:. As a result we have with the 
aid of (33a) 

where (3 )  ,,, =: 5n4, /2 if Ign.  
In the opposite case n, > n,(v), whenp,(v,n, ) < 2n:, 

it is necessary to take into account in the impact-parameter 
regionpoq<2n: the decrease of the transition probability 
w2(p,v) with increase ofp [see (33b) 1, i.e., use the equation 

In the weak coupling region (large n, )n,(v)), when 
p,(v,n, ) 42n: and one can put p, = 0, Eq. (36b) leads di- 
rectly to the result (30) given above for the J-mixing or elas- 
tic-scattering cross section. This, in particular, determines 
the specific form of w2(p,v) in Eq. (33b). 

In the general case of arbitrary values of po4 2n:, we 
ultimately have after substituting (33) and (34) in (33b), 
evaluating the corresponding integrals, and combining the 
result with (36a): 

It is easily seen that at n, = no(v) the quantities (37a) and 
(37b) become equal, as do their first derivatives. Given the 
relative velocity v = (2E /p) the maximum cross section 
of the nlJ- n u '  transition is reached at avalue n, = n r  (v) 
determined from the condition 

For elastic scattering (J' = J and Y,, = 0) and for J mixing 
in the quasielastic limit v,,,gl we obtain 
[ n r ( v ) / n O ( v ) l 8 = 3 / 2  see also relation (35) for 

( 1 )  e, n, (vjj, = 1. 
The value of n,(v) for J-mixing of strongly split fine- 

structure components with large values of 
As,, = IS, - 6,. I and for small enough relative velocities 
of the colliding particles A** and B (when Y,,. ) 1 and 
e, 2 ,  ( V  ) g 1 ) remains extraordinarily small, i.e., 
n,(v) 5 1. There is then practically no region of close cou- 
pling of the channels (37a). The cross section of the inelastic 
transition nu-nlJ '  ( J1#J ) ,  is therefore described in the 
entire region where the theory presented here is valid 
(n,, ) 1 ) by expression (37b) [or (30b) if n, )n,(v) 1, and 

its value 4:' is much less than the geometric cross section 
a,,, --, (51~/2) n4, of the Rydberg atom. 

For comparison with the available experimental data, 
the cross section (37) must be averaged over a Maxwellian 
velocity distribution, i.e., (<:'), = (vo$;'(u)) ,/(v) ,, 
where (v), = (~T/T,u) = 2u,/1~"~ is the average ther- 
mal velocity and v, = (2T/p) The cross section (4:;'). 
of an nN+ nlJ' transition with excitation of a Rydberg elec- 
tron E,,, <E,,,. is then connected with the cross section of 
the inverse de-excitation process nu ' -n lJ  by the detailed 
balancing relation: 

whereg, = W + 1 andg,. = W' + 1 are statistical weights. 
In the particular case when the energy defect A&,, of 

the nN+ n u '  transition is insignificant, the averaged cross 
section (<:'), can be calculated analytically. In fact, put- 
ting e,$. (v,,. ) = 1 in Eqs. (35) and (37) we obtain at 
v,. 4 1 for pure elastic scattering J' = J (vJJ = O), or for J- 
mixing of weakly split fine-structure components J'# J, 

Here 

is an integral exponential function of second order, and { is a 
parameter indicative of the collision "force." The cross sec- 
tion (39a) reaches a maximum at c,,, = 0.68, when 
F,,, = F({,,, ) = 0.80. In the regions of weak ( 5 4  1) and 
strong ({) 1 ) coupling of the channels, the transition cross 
section 4:;' varies rapidly as a function of n, (in proportion 
to n;4 and n;, respectively, with F({) -0 as {-0 and 
{- co. The function F({) is therefore similar to that ob- 
tained (see Ref. 40) for the averaged cross section of the nl- 
level broadening by purely elastic scattering by using a qua- 
siclassical approach based on calculation of the phase shifts. 
It should also be noted that the average cross section of the 
transition nlJ+nN1 in the region of small n, 4 n r ( v T )  and 
large n, ) n r  (v, ) values of the principal quantum number 
can be written (for Y,,, 4 1 ) in the form 

The use of the approach proposed here to the calcula- 
tion of the cross section (d', ), of elastic scattering (nl-nl) 
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transition via collision of a perturbing particle B with a qua- 
si-free electron e - leads to the expression 

(see also Eq. (31b) and Table I for the values of C, , ) .  To 
determine the total elastic-scattering cross section 
6 )  = e ) ( B + e - )  +a",)(B-+A + )  itisnecessarytoaddto 
this expression the contribution 

due to the competing mechanism of scattering of the per- 
turbing particle B by the atomic residue A + of the Rydberg 
atom A(n1). 

It is easy to show, using the excited-electron shake-off 
method (see Refs. 18 and 26), that the very same expression 
(41b) is valid also for the contribution of the B+A+ scat- 
tering to the cross section of the nN+nN1 transition and 
should be added to Eq. (39a) obtained above (at J' = J) for 
the contribution of B + e - scattering. Yet the contribution 
of the B -+ A + scattering to the cross section of the J-mixing 
process (the transition nlJ-.nlJ1 at J1#J) turns 
out to be exceedingly small at not too high values 
n, 5 (pv/M, + ) - 'I2 and can be neglected. 

5. RESULTS AND DISCUSSION 

The theory developed here can be used to explain and to 
describe quantitatively the experimental results on collision 
quenching of Rydberg nlJ levels with specified values of the 
quantum numbers n, I, and J,  for atoms with one electron in 
excess of a filled shell. We investigate here by way of example 
the case of thermal collisions of heavy atoms of the alkali 
metals Rb** with Cs** with He atoms in the ground state. 
Reliable experimental data at high, low, and intermediate 
values of n are available for this purpose. The actual calcula- 
tions reported here for the J-mixing as well as n- and I-mix- 
ing cross sections for n2S,,, - n2P1,, and n2D3, states iden- 
tify the basic laws and the relative roles of these processes in 
the quenching of selectively excited components of the fine 
structure of "single-electron" Rydberg atoms. It should be 
noted that for collisions between highly excited atoms and 
helium atoms one can use in practically the entire range of n 
the scattering-length approximation: A,,, = - L He 

x (L,, = 1.19 a.u. ) for the amplitude of the elastic elec- 
tron-atom e - +He scattering amplitude. This makes it pos- 
sible, in particular, to use clear analytic equations (37) and 
(39) for the J-mixing cross sections. Calculations of the 
Maxwell-averaged cross sections (on,,.),  of the nl--+nl 
transitions were made above with the aid of Eq. (38) of Ref. 
13, which was derived for inelastic nlJ+ n' transitions within 
the framework of the quasiclassical model of the Fermi pseu- 
dopotential. It was taken into account here that by virtue of 
relation (21) the cross section 

I ' J '  

of the nl-n' transition, summed over all the quantum 
numbers I ' and J ' ,  is equal to the cross section of the transi- 
tion nl+nl, i.e., on,,,. = on,,,,. 

Thermal atomic coliislons Rb(n2S,,,), Rb(n*D,/2)+ He 

We consider first the thermal collisions ( T  = 520 K, 
v, = (2T/p) ' I2 = 6.8. a.u.) of Rb (n2D3/, ) atoms 
with helium atoms. The calculated Maxwell-averaged J- 
mixing cross sections (o i~~,?) , and of the total contribu- 
tion 

of all the inelastic transitions n2D3,,-+n' 
(2 < l l<n '  - 1, J' = 3/2, 5/2) are shown in Fig. 2. The 
values S F  = 1.34 and S::,, = 0.002 were used for the quan- 
tum defects. It follows directly from (37) that the inelastic- 
ity parameter v:;;,,,, = lh8:$4,5/2 I/uTn, for the transition 
n2D3, + n2D5,, is small (v:;;,,,, 4 1 ) in the entire consid- 
ered range of n and, correspondingly, e, :;':,,,, (v) -- 1 (see 
Fig. 1). The averaged cross section ( d ~ , y ) ,  (dashed 
curve in Fig. 2) was therefore calculated in this case using 
the simple analytic equation (39) corresponding to the 

FIG. 2. Cross sections of thermal collisions ( T =  520 K)  of the atoms 
Rb(nZD3,, ) + He. Dashed cu~e-calculation using Eq. (39) of the 
cross section (G,?), of J-mixing (nZD,, +n2D,,,); dotted-total 
cross section , = I,. ( u , ~ , , ~ . . .  ) , of all inelastic n2D3,, +no tran- 
sitions, which determines the nD3,,-level quenching cross section 
( e D , , , )  = ( e & : h )  T; @( T =  520 K )  and O( T = 296 K)--correspond- 
ing experimental data of Ref. 29 and of Refs. 41,42. The dash-dot curves 
correspond to the contribution (u,,,,~,,. ) , of individual inelastic 
nZD3,, -n' transitions [calculated using Eq. (38) of Ref. 131. Solid 
curve-total cross section (<D,,, ) , = (d;,,?) , + for 
quenching a selectively excited n2D3,, level; n ( T =  520 K) and 
A ( T = 380 K)  are the corresponding experimental data of Refs. 29 and 
30. 
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quasielastic limit vJJ. - 0) of the J-mixing process (we must 
put here 1 = 2, J' = 5/2, and C ::;,,,, = 0.474, see Table I) .  
This equation leads to results that agree very well with the 
available experimental data29930 for the considered J-mixing 
process at low, high, and intermediate values of n. It follows 
from (39), in particular, that the maximum of the cross sec- 
tion (d~~F)y--, 1 10- l3  cm2 is reached at n",iXmiX = 8. 
With increase of n > nkxmix the cross section of the transi- 
tion n2D3,, -n2D5,, tends very rapidly to the asymptotic 
limit of weak coupling of the states: (dD3/?) , a n; [more 
details in (30b) 1,  recently considered in Ref. 36. 

The calculated averaged cross sections (anD3/,,,. ), of 
inelastic transitions n2D3,, -+n' with change of the principal 
and orbital quantum numbers and their total contribution 
(a".'- nD3/2 ch ) , for the possible values of n' are shown in Fig. 2 by 

dash-dot and dotted curves. It can be seen that the maximum 
(<&:h)y=: 8.8.10 - l5  cm2 of the cross section of n- and 1- 
mixing is reached at n$i; Ch = 22. The largest contribution 
to the cross section ( e ; ~ ; ~ ) ,  is made by the transitions 
n2D3,, -n - 1 and n2D3,, -n - 2, which have the smallest 
energy defects AE,,, - , = 0.34/n3 and AE,,, - , = 0.66/ 
n3. At large n k 40-50, inelastic transitions n2D3,, -n' to 
other degenerate hydrogenlike sublevels n'l 'J' (1 ' > 2) with 
nl#n - 1, n - 2 become substantial. 

The total quenching cross section 

which is determined by the total contribution of the J-mix- 
ing and n- and 1-mixing, is shown by the solid curve of Fig. 2. 
Thus, for large n 2 20 the quenching of a selectively excited 
n2D3/, level is due mainly to inelastic n2D3,, -n' transitions 
with change of the principal and orbital quantum numbers, 
while at low n 5.15 mainly to the transition n2D3,, -n2D5,, 
with change of only the angular momentum. These pro- 
cesses make comparable contributions in the region n - 15- 
20. 

It should be noted that this constitutes the main differ- 
ence between the quenchings of the levels n2D3/, (Fig. 2) 
and n2S1,, (Fig. 3 ) off alkali metal atoms. In fact, since there 
is no spin-orbit splittings at I = 0, the n2S,,, state is 
quenched only as a result of inelastic n2S,,, +n' transitions 
with changes of the principal and orbital quantum numbers. 
In view of the substantial difference between the quantum 
defects S,Rb = 3.15 and S F  = 1.34, the cross sections 
( d . 1 -  ch 

~ S I I ,  ) and (&$;2ch) , themselves and the relative roles 
of the individual transitions nN-+nl in the n- and 1-mixing of 
the n2S1,, and n2D3,, levels turn out too differ significantly. 
In particular, the maximum value of the cross section 
(a",:,"")f"" = 2.10- l4 cm2 at n2f; Ch = 18 is much higher 
than the corresponding value (e;;;2"h);BXfor the n2D3,, lev- 
el (cf. Figs. 2 and 3). In addition, by virtue of the small 
energy defect ( AE,,, - ,  = 0. 15/n3) of the n2S,,, -n' tran- 
sition, its role in the quenching of n2S,,, is particularly im- 
portant (see Ref. 13 for details). However, the allowance 
made in the present paper for the contributions of other tran- 
sitions n2Sl,, -n' with n' #n - 3 leads to a less sloping de- 
crease of the cross section ( a  ~,,/, ) , with increase of n in the 
region n > nmaX compared with the contribution of the cross 
section - ) , of the separate transition 

FIG. 3. Cross sections ) . = H,. (a ,,,,2,, . ) . for quenching n2S,,, 
levelsfor thermal collisions ( T = 520 K)  of Rb(nZS,,, ) + Heatoms (sol- 
id curves) e( T =  520 K )  and O(T = 296 K)  are the corresponding ex- 
perimental data of Ref. 29 and of Refs. 41 and 42, respectively. The dash- 
dot curves correspond to the contribution of individual inelastic 
transitions n2S,,, - n' (calculated using Eq. ( 38 ) of Ref. 13). 

n2S,,, -n - 3. This leads to a good description of the avail- 
able experimental data4Is4, in the entire investigated range of 
n. 

Thermal collisions of the atoms Cs(n2P,,) and 
Cs(n2D,,2) + He 

We investigate now the total angular momentum trans- 
fer nu -  n u '  and the n- and I-mixing for n2P,,, and n2D3,, 
states of Cs** atoms in thermal collisions ( T =  353 K, 
v ,  = (2T/p) ' I2 = 5.58. l o p 4  a.u.) with He atoms. The 
quantum defects used in the calculations are S F  = 3.58, 
SF;/, - S$:/, = 0.033 and S z  = 2.47, SZ/, - = 0.009. 
The corresponding cross sections ( a  :4/?), and 
( a  ) , of the transitions n2P1,, -n2P3,, and 
n2D3,, +n2D5/, , obtained by averaging the common expres- 
sion (37) over the Maxwellian distribution of the velocities, 
is shown by the dashed curves of Figs. 4 and 5. It is evident 
from Fig. 4 that in the case of J-mixing of the levels 
n2D3/, -n2D,,, our theoretical results are in good agree- 
ment with the available experimental data, and they describe 
well the observed behavior of the cross sections ( 4 ~ ~ 2 ) ~  
not only in the weak-coupling region at n k 11-12 (as was 
done in Refs. 35 and 36), but simultaneously also in the 
strong coupling region at n - 8-1 1, i.e., in the immediate 
vicinity of the maximum ( d , $ ( n  = 9 ) ) y  = 1.03.10- l3  

<, - 
cm2. There are no experimental data at present for the 
n2P1,, -n2P3,, J-mixing of the levels of the atoms Cs** in 
helium, so that particular interest attaches to the corre- 
sponding calculations and their comparative analysis with 
the case of the n2D3,, -n2D,,, , transition. 

The substantial differences in the behavior and values of 
the cross sections ( d i 3 / y ) ,  and ( d ~ ? )  , are due primar- 
ily to the qualitatively different influence of the inelas- 
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FIG. 4. Total cross sections (u:D3/2 ), = (ui&F), + (~."i;~"), for 
quenching of n2D3,, levels for thermal collisions ( T =  353 K) of 
Cs(n2D3,, ) + He atoms (solid curve). Dashed curvesJ-mixing cross 
sections for the direct n2D3, -, n2D5,, ( 1 ) and inverse n2D5,, + n2D,,, (2) 
transitions, calculated by Maxwell-averaging over the velocities in Eq. 
(37); 0( T = 353 K)-corresponding experimental dotted--corn- 
bined cross sections (@j;lh), = 2,. (u,,D3/1,nn ) , of all inelastic 
n2D3, -n' transitions, calculated from Eq. (38) of Ref. 13. 

ticity parameters ~:;;,5/, = lAS::;,5/2 I/vTn, and vjP,;,,, 
= IASiP,i,3,, I/vTn, in these two cases. Thus, for the colli- 
sions Cs(n2D3,, ) + He the value of v:;;,,, is small enough 
already at n 2  12 (when v::;,,, 5 1.7 we can put 
p :::,5/2 (v) z 1 ) and leads only at n - 8-1 1 to small devia- 

FIG. 5. Total cross sections (u jlP,,2 ) , = (u  ipl,?) , + (u of 
n2P1,, -level quenching for thermal collisions ( T = 353 K )  of 
Cs(n2P1,, ) + He atoms (solid curve). Dashed curve-cross sections of 
(n2Pl, -n2P3, ), J-mixing obtained by Maxwell-averaging of the veloc- 
ities. Dotted-total cross sections ( o $ ; / ~ ) ,  = 2,. (o,,,,~.,. ) , of all in- 
elastic n2Pl,, - n' transitions, calculated using Eq. (38) of Ref. 13. 

tions in the behavior of the J-mixing processes from the 
purely quasielastic case v = 0. In fact, at n = 8,9,10, and 11, 
when v$:$,~,, = 2.92, 2.47, 2.14, and 1.89, we have from 
(30c) and from Fig. 1 respectively p $?;,,,, (v) = 0.65; 0.84; 
0.9 and 0.94. By virtue of the appreciable increase of the 
energy splitting AE~P/:,~,, of the fine-structure components of 
the Rydberg n2P levels compared with the corresponding 
value AE::;,~,, for n2D levels (AS:$!:,,, /AS:;;,,,, z 3.67 ), 
the inelasticity parameter turns out to be large, vg:,,,, ) 1, in 
practically the entire considered region of n. For example at 
n = 40 and n = 8 we have respectively ~lP,:,3/~ (40) = 1.62, 
q, 'P' 

1/2,3/2 (v) = 0.85 and v$!L,3/, (8) = 13-43 p $!&3/, (v) 
= 0.046. This lowers substantially the cross sections for J 

mixing of the levels n2P1,, + n2P3,, compared with the cross 
sections of the n2D3, +n2D5,, transition, not-withstanding 
the insignificant difference between the coefficients 
C IP,:,,, = 0.45 1 and C :$$,,,, = 0.474 and between the sta- 
tistical weights. 

The calculated cross sections (6;- ch) of the n- and 1- 
mixing processes for collisions of the atoms Cs(n2D3,, ), 
Cs(n2P1,, ) + He (obtained, just as for Rb** + He colli- 
sions, with allowance for the contribution of many inelastic 
nlJ-n' transitions) are shown (dotted) in Figs. 4 and 5. It 
should be noted that by virtue of the close values of the ener- 
gy defects (AE,,, -, = 0.47/n3, AE,,, - , = 0.53/n3 and 
AE,, ,,-, = 0.42/n3, and AE,,,,-~ = 0.58/n3) of the most 
substantial transitions, the cross sections (a  :&2ch)T and 
( a  :~l;ch)T turn out to be exceptionally close. The total 
quenching cross sections ( a  z,) of the selectively excited 
levels n2D3/, and n2Pl, of the Cs** atoms differ consider- 
ably in the region of the low values n 5 20, where the decisive 
role is played by angular-momentum transfer without a 
change of the principal and orbital quantum numbers. 

" We use here the atomic units e = m, = f i  = 1. 
2, The criteria for the applicability of the quasifree electron model and of 

the impulse approximation were considered in many papers for both 
quasielastic I-mixing and elastic scattering (see Ref. 1, Ch. 6 8 ) ,  as well 
as for inelastic transitions nl-n' and n- n' (Refs. 13, 17, 18) and ioni- 
 ati ion^^ of a Rydberg atom. 
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