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We use the recently found physical branch of the solution of the exact (local) equation of the 
renormalization group as the zeroth approximation in a perturbation theory that allows for 
generating nonlocal terms in the free-energy functional. We show that even with these terms the 
physical branch remains unique, and we discuss the variation in the effective dimensionality of the 
space caused by nonlocal interactions. 

INTRODUCTION 

An exact formulation of the transformation of the re- 
normalization group (RG) via an equation in variational 
derivatives was first suggested by Wilson and Kogut.' The 
exact solution of this equation should, at least in principle, 
answer all the questions of the theory of critical phenomena 
(finding fixed points, calculating the critical indices, etc.). 
In practice, however, because of the exceptional complexity 
of the suggested equation, one is forced to resort to different 
variants of perturbation theory that are either based on pa- 
rameters that are not small in reality2.3 or presuppose the 
existence of uncontrollable nonphysical criteria for truncat- 
ing the systems of coupled equations for the vertices of the 
free-energy functional.495 Notwithstanding the great prog- 
ress achieved along these lines of research, the problem of 
finding the solution to the exact RG equation (or at least 
establishing a method for finding it) in variational deriva- 
tives is still on the agenda. Lately several slightly differing 
approaches to deriving the exact RG equation have been 
sugge~ted.'."~ For one thing, the modification of the RG 
equation suggested in Ref. 8 proved the most suitable for 
practical applications and at the same time the most rigorous 
(see also Ref. 9).  Following the lines of reasoning of Ref. 8, 
we write the exact RG equation for an arbitrary Ginzburg- 
Landau (GL) functional H,,,,, = Ho + H: 

In Eqs. (0.1 )-(0.3), d is the dimensionality of space, (p is a 
vector with n components, h(q)  = exp( - q2/2A2) is the 
smooth cutoff factor, where A is the cutoff momentum, and 
~ ( q )  is the anomalous-dimensionality function. The chief 
difficulty in applying (0.1) lies in the requirement that a 
rigorous calculation procedure must employ an essentially 
nonlocal GL fun~ t iona l .~* '~ - '~  Even in the case of a purely 
local initial functional, nonlocal behavior occurs as a result 
of (0.1 ). For one thing, this process is closely linked to the 
problem of excluding redundant solutions of the RG equa- 
t i ~ n . ~  As shown in Ref. 14, the problem can be resolved by 
requiring that no new nonlocal behavior develop in terms of 
order Ip(q) 1 2 ,  that is, by fixing 77(q) = ( d  + 2) - 2Ap(p) 
in the form 

Sf1 where A, (p) is the scaling dimensionality of the field p. The 
- j ddr[(d-2)rp(r)+r!?.rp(r)l 2 - 

6T (r) 
function ~ ( q )  in turn determines the structure of the physi- 
cally measurable correlation function Gq = (p, , p  -, ) at 

+ J {h (r-r') [. tiZH till ti, I the critical point, and its limit ~ ( q - 0 )  = ~ ( 0 )  coincides 
rr' b ( r )  6rp (r') 6 ~ ( r )  ficp (r') with the Fisher index 7 in the asymptotic forms 

Gq mq-2+q(0)  at T = Oand as 9-0 (see Ref. 13). 
1 6H 

(0.1) If we formally let the cutoff momentum A tend to infin- 
2 ity, h (q) - const = h (0) = 1 and so the function 

Here for H, we take the Gaussian functional h(r-r') = [A/ ( 2 ~ t ) " ] ~ e x ~ [ -  (~- r ' )~ ,1~/2]  

o = J G -  q I q I ,  J = J d d i /  ( ~ n ) ~ .  
tends to a delta function, h ( r  - r') - S(r  - r'). Here the 

(0.2) nonlocal terms in the free-energy functional are not genera- a m 

ted if they were absent in the initial form of the functional. 
Vis the system volume, Go the zeroth-order propagator, and This makes it possible to formally consider the local version 
q the wave vector. In the most general form the functional H of the exact RG eq~ation.~."- '~ Actually, the initial RG 
can be represented as follows: equation is written with the normalization condition A = 1, 
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so that the passage to the limit A - co is unjustified. The use 
of this formal approach, however, has proved useful in the 
initial stage. 

For H we take the purely local form 

and put 11 = 0. In this case the functional equation (0.1 ) 
transforms into the "ordinary" equation7.9.'5-'7 

where 

here ea is the unit vector along the direction specified by pa. 
The equation is still very complicated for analytic study 
since it is essentially nonlinear and contains the variable p 
explicitly. Nevertheless, it can be analyzed by using a combi- 
nation of numerical and analytical methods.I7 Here we list 
the properties of the solutions of (0.5) on which we base 
virtually all our further reasoning. 

The solution of the local RG equation has a unique 
physical branch. Qualitatively this branch resembles the p 
model, but asymptotically it behaves like -p * as 1p 1 + CO. 

The series in powers of (p  ') for f (p) is conditionally con- 
vergent, and a meaningful representation of the solution re- 
quires retaining all the powers (e, 2, in the expansion of f in 
powers of p. As the dimensionality of space tends to four 
( E  - O), the solution approaches the one obtained analytical- 
ly by means of the ~ - e x ~ a n s i o n . ~ ~ ~ " ~ ~ ~ ~ ~ ~  

It is known that the spectrum of Eq. (0.5) linearized 
near a fixed point, {Ak 1, is real, bounded below, and dis- 
~rete .~."  Numerical calculations for this spectrum with 
n = 1,2,3,4, ... carried out on the basis of the physical solu- 
tion yield good values of critical indices. 

As d-2, the amplitude of the physical branch of the 
solution increases, and at d = 2 the local equation has no 
solution corresponding to a real physical situation, with the 
exception of the so-called high-temperature fixed p ~ i n t . ' ~ . ' ~  
The latter stems from the fact that, as shown below, with 
d- 2 the nonlocalness rejected in deriving Eq. (0.5) play an 
important role in forming real critical behavior. 

In the exactly solvable case, important for theory, in 
which p has an infinite number of components, that is, 
n - 0 3 ,  the correponding local equation (0.5) can be solved 
analytically and yields critical indices coinciding with the 
well-known results of the spherical m ~ d e l * ~ . ~ '  (see also Sec. 
3 1. 

We believe that the discovery of the uniqueness of a 
physically meaningful solution is important to the theory of 
critical phenomena since, on the one hand, it resolves the 
problem of selecting such a solution that arises in all variants 
of perturbation theory and, on the other, it allows a new 
version of such a theory based on a natural small parameter 
7 and the (verifiable) smallness of the nonlocal corrections. 
Building such a perturbation theory in the form of a gradient 
expansion19 and discussing some of its corollaries are the 
goals of the present paper. 

Avoiding the process of truncation of the series in p 
saves one the trouble of using perturbation series at the local- 
equation level. This makes it possible to avoid using expan- 

sions in E )  1 but requires using the entire body of the numeri- 
cal data on f ( p )  in further calculations. 

1. THE NONLOCAL RG EQUATION: THE n= I CASE 

Even if the initial Hamiltonian HtOtal is purely local, for 
finite A nonlocalness is generated, according to Eq. (0.1 ), 
owing to the term 

with h( r  - r') = h(r  - r') - S( r  - r'). The nonlocalness 
can be allowed for by representing H in the form of the sum 
H = @, + @, of the local part 

@ o =  Jf(rF(r)) 
r 

and a nonlocal additional term @, . If, as expected, @, 4 @, 
(in view of the smallness of 71, linearizing in @, yields the 
following equation: 

For further progress we must specify the possible form 
of the nonlocal term a,. This term is sought in the form of a 
gradient expansion. To this end we expand the factor h in 
powers of gradients and keep in the first order the lowest 
nonvanishing contributions of Vp. Wishing to clarify the 
general structure of the theory, we consider the simple case 
of a scalar field (n = 1 ). Calculating the variational deriva- 
tives here is elementary. One can easily verify that the contri- 
bution of the generation term to the nonlocal part of the 
functional has the form $, f i, (Vp)*/2. Bearing this in 
mind, we seek the solution for the nonlocal part @, in the 
form 

@ i  = 9 r , ( v ( r ) )  ( V 9 I Z .  (1.3) 
r 

According to ( 1.2), the action of the operator 

on the nonlocal term @, causes @, to contribute to the local 
part of the functional, which has the form $dd rBx [ p ( r )  1. 
Here the coefficient 

is numerically small and, hence, assuming that numerically 
the func t i on~[p ( r )  ] is also small, we can ignore the contri- 
bution of $ddrBx[p(r)]  to the equation for the local part. 
On the other hand, the contribution of ~ ( r  - r') # O  to 
d - 2 + 7 cannot be ignored even though ~ ( r  - r') 4 1, 
since for dimensionalities of space close to two the given 
additional term provides the main contribution to the physi- 
cally significant term ( d  - 2 + 7) f,p /2 (see Ref. 17). It 
can easily be verified that in this approximation it is suffi- 
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cient to keep the anomalous-dimensionality function 
~ ( r  - r') in the form q ( r  - r') zconst = q. Retaining the 
lowest nonvanishing gradients Ve,(r), we arrive at the next 
pair of equations for functions f and X: 

At a fixed point we have f = = 0 and the system of equa- 
tions ( 1.4a) and ( l .4b) can be integrated numerically. 

The main difficulty with this procedure, however, is 
that the physical branch of the solution for f [e,(r)] corre- 
spoding to genuine critical behavior is known only numeri- 
cally l7 and varies together with q, which enters into ( 1.4) as 
a parameter. To get around this difficulty we change vari- 
ables in equations ( 1.4), introducing e, = e, '(2A, )'Iz, 
where A, = ( d  - 2 + q)/2 is the scaling dimensionality of 
field p. We have 

Equation (1.5a) is universal in the sense that the physical 
branch of the solution f [e, ' ( r ) ]  corresponding to critical 
behavior is a unique function of d,, = 2d /(2 - q )  > d, 
which in this context can be identified with the effective di- 
mensionality of space. Actually, however, conditions (0.4) 
do not fully determine the numerical value of q since in the 
given order it reduces to the boundary conditions 
~ ( 0 )  =x, (0)  = 0. With these restrictions and for a fixed 
branch of the solution, f(e,) = 0, the equation for a fixed 
point, = 0, has a one-parameter family of solutions 
x(q,;q). This creates the problem of selecting the physical 
branch of the solution forx(e,;q), just as it does in the purely 
local case with f [e,(r) ] (see Ref. 17). This fixes the value 
7 # 0. Consider Eq. ( 1.5b). Bearing in mind that for e , )  1 the 
function f(p) assumes its asymptotic form f (p )  ze, '/ 
2 + ...( see Ref. 17), we get 

xW- ( 4 + q ) ~ - ' / ~  (4+28,) ( P X ~ + ' / Z  (1-q) =o (1.6) 

is sufficiently high, x is much larger than f: Hence, these 
solutions for x contradict the way in which Eq. (1.5b) is 
chosen (i.e., the requirement that the nonlocalness be small, 
xQ) and represent the "redundant" solution branches. 
The only possibility of satisfying the inequality x e i s  to 
assumethatx-const= (1 - q ) / 2 ( 4 + q ) a s I p  1- this 
restriction uniquely determines the Fisher index 
77 = q(de,) = q[deff(d)1. 

The results of calculating the functions f and x numeri- 
cally for the given case of n  = 1 qualitatively resemble those 
depicted for the more general multicomponent case in Figs. 
1 and 2, respectively. The physical branches of the solution 
at the initial stages of variation of q, ' for these functions are 
depicted by solid curves. It is obvious that we have 
~ ( e , )  cc 10-2f(q,) e ( p ) ,  so that the calculation procedure 
developed here is self-consistent. Table I lists the values of 
parameters 7, f(e, = O), and d found numerically for given 
values of d,, . 

When the dimensionality d of space is greater than 3.75 
the amplitude of the solution's physical branch is small and 
the effectiveness of the numerical methods employed lowers 
considerably. At the same time, in this limit, that is, as E-0, 
the &-expansion is applicable. In the opposite limiting case, 
d-* 2, higher-order gradients become important and the ac- 
curacy of the present calculation diminishes. As a result the 
numerical value of q ( d  = 2; n  = 1 ) of approximately 0.28 
proves somewhat overestimated in comparison with the 
well-known exact result for the Ising model, q ( d  = 2; 
n =  1) = 1/4 (seeRef.23). 

In reality, the small parameter of the theory is f(O), 
which, as shown in Appendix 2, falls off exponentially as d 
increases: f(0) a exp[ - a ( d  - 2 + q )  1, where a is positive 
and of the order of unity. On the order hand, as mentioned 
above, for d-4 the quantity f (0)  - E  is small and one must 
use the &-expansion. As a result, this approach is most effec- 
tive for d z 3 ,  that is, where this is most desirable. 

To conclude this section we note that allowing for non- 
local behavior leads to the appearance of corrections to the 
"local" approximation equation that are taken into account 
self-consistently in the solution of this equation. In view of 
this the quantity q in (d  - 2 + q)/2, far from being a cor- 
rection to the difference d - 2, which becomes small as 
d- 2, increases the effective dimensionality d,, . As a result, 
the expansion is satisfactory even for d-2. The increase in 
the effective dimensionality in comparison to d = 2 in turn 

or for p) 1 (where X, X, , and x,, tend to f 

with z = (4 + 2A, )e, '/4 a new variable. Equation (1.7) is 
the well-known Kummer equationz2 and has the asymptotic 
form 

where y = (4 - d - q)/[2(2 + d + q ) ]  >O. For the given 
boundary conditions ~ ( 0 )  = X, (0) = 0 the constant c (q)  
is determined by the parameter q. Note, however, that if Ie, I FIG. 1.  The typical structure of function f (the case dew = 3 and 7 = 3 ) .  

The dashed curves depict the secondary branches of the solution close tof: 
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FIG. 2. The same as in Fig. 1 for function X .  

leads to a situation in which the critical behavior of a planar 
system can qualitatively be the same as ford > 2. This prob- 
lem is discussed in greater detail in Appendix 1. 

2. THE NONLOCAL RG EQUATION: THE n> 1 CASE 

Let us now consider the general case of a multicompo- 
nent order parameter. Following the previous example, we 
start by establishing the structure of the generation term 
( 1.1 ) in the general case. Calculating the variational deriva- 
tives and performing straightforward transformations we 
find 

6@, 6 0 0  J i ; ~ c ( ~ - ~ ~ ) - -  = - - 
70 rr' 6rp1(r) 6rpU(r') 2 

where for the sake of brevity we have introduced the nota- 
tion f/ = df /dpY, with Cf/ ) the Fourier transform off/. 
Thus, for n # 1 the nonlocal behavior generated by Eq. ( 1.1 ) 
cannot be reduced to the expression 

J x [pw I ( V P ) ~ ,  (F) 

and essentially depends on the gradients of different compo- 
nents of the order parameter p. This fact complicates analy- 
sis somewhat, since now it is necessary to seek the solution in 
the form 

0 1  = j Xap vqa  vqD. (2.2) 
a0 r -- 

A 

where the xap are the components of the tensor x of rank n. 
The physical equivalence of index permutations implies that 
this tensor is symmetric about the principal diagonal. Substi- 
tuting (2.2) into Eq. ( 1.2) and discarding higher-order gra- 
dients, we arrive atAthe following equation for the compo- 
nents of the tensor X: 

(here and in what follows summation over repeated indices 
is implied). It would seem that to find the coefficient 7 one 
must solve a system of 1 + (nZ + n)/2 coupled nonlinear 
second-order differential equations. Note, however, that the 
function f depends only on the absolute value of p, that is, 
actually on p (see Ref. 17). If for the new independent 
variable we take p = x, the number of equations can be re- 
duced. In terms of x, 

Using this structure for the generation c?ntribution, we look 
for the solution for the components o f x  in the form 

where x = x(x)  and o = a ( x )  (x = p ') are functions only 
of the absolute value of p. After substituting (2.5) into Eq. 
(2.3) and performing the necessary transformations we ar- 
rive at a system that consists of only two equations for the 
functions x (x)  and u(x)  : 

At n = 1 the system of equations (2.6a) and (2.6b) trans- 
forms into a single equation, ( 1.4b). To clarify this step it 
has proved expedient to introduce a new function 
x = x + xo in place of x. In terms of the functionsx and a ,  
at a fixed point we have the following system of equations: 

4 cp' n-I 
a,.,= [(I +7hr)---]xT. v 2 (0' 
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Here we have performed the change of variables, 
g, = g, '(2A, ) 'I2, and introduced the effective dimensionali- 
ty d,, = 2d(2 - 7) . The passage to the n = 1 limit is 
straightforward. 

Equation (2.7) must be solved numerically with 
boundary conditions that correspond to genuine critical be- 
havior. The solution for f is unique (the appropriate bound- 
ary conditions are fixed by the symmetry f, (? = 0)  = 0 and 
the asymptotic behavior off as /g ,  ( -. CQ , that is, f-. p 2/2. For 
the function x in the limit Ig, 1-0 we have the constraints 
~ ( 0 )  =x, (0)  = 0, which coincide with those at n = 1. If 
we allow for parity, aq (0) = 0; however, the value of a as 
Ig, 1-0 and that of 77 are fixed solely by the choice of the 
physical branch of the solution (i.e., by the asymptotic be- 
havior). Thus, for n > 1 we have the problem of selecting 
the physical branches of the solution for each functionf, X, 
and a. 

To select such branches we must analyze the system 
(2.7) in the limit of p 2- CQ. Bearing in mind that here 
f -g, 2/2, we arrive at a Kummer equation forx similar to the 
one for the case where n = 1. For a we also have a Kummer 
equation but, in contrast to the equation for X, with a zero 
free term. It can be shown that each nontrivial solution of 
this equation is exponentially divergent for large p. Hence, 
according to the asumption that nonlocalness is weak, such 
solutions must be discarded, with the result that the only 
way to satisfy the requirement that nonlocalness be weak is 
to select for a a solution that tends to zero as Ip I -. CQ . This 
condition fixes unambiguously an additional free constant 

a(O), which suggests the following computational proce- 
dure. 

For given n and d,, we find the physical branch of the 
solution of the equation for$ The resulting numerical data 
on f are then substituted into Eq. (2.7b). Regarding the 
Fisher index 7 and u(0)  as parameters, we find the branches 
of solutions for x and u that become constant. These solu- 
tions fix the desired values of 7 and a (0 ) .  In the last stage we 
restore the true dimensionality of space, d = (2  - 7)de,/2. 

The results of numerical calculations for different val- 
ues of n and d,, are listed in Table 11. To illustrate, Figs. 1-3 
show the results of solving the system (2.7) numerically for 
the functionsf, X, and a, respectively, in the most interesting 
case of d = 3 and n = 3. The solid curves indicate the phys- 
ical branches, while the dashed curves represent the non- 
physical branches closest to the physical. 

The further expansion procedure appears to be fairly 
regular. In higher perturbation order we must retain terms 
with higher orders in Vp and the contribution BX to the 
equation f o r j  The function ~ ( r  - r') must also be expand- 
ed. The coefficient of the first nonvanishing correction is 
fixed by the requirement that @,<@,, hold in the func- 
t i ona lH=@,+@,+@,+  .... 

Note that even the first nontrivial order in this expan- 
sion yields very good results. On the other hand, this agrees 
well with the results of Refs. 4 and 5, in which the use of the 
"balance principle" revealed that the best results are ob- 
tained if many powers of p are retained in the fixed func- 
tional [specifically, about ten terms ( g ,  2, ] and only one or 

TABLE 11. 

f I 1(01 1 ~ ( 0 )  

n = 2  

I 
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FIG. 3. The same as in Fig. 1 for function 6 '0. 

two of the lowest gradients (i.e., powers of q2). On the other 
hand, the expansion done here clearly demonstrates the rea- 
son for such a result since it is based on the use of a natural 
small parameter (see Appendix 2).  

3. THE DEPENDENCE OF q ON n; SOLUTION OF THE RG 
EQUATION IN THE LIMIT OFn- 

Figure 4 depicts the dependence of the Fisher index 7 
on the number n of components in the order parameter at 
d = 3. The curve connecting the was obtained with the 
present approach, and the dashed curve corresponds to an 
extrapolation of the &-expansion. The behavior of ~ ( n )  for 
other values of d ranging from 2 to 4 is qualitatively similar 
to that illustrated by Fig. 4. At n -- 3 there is a pronounced 
peak in this dependence [whose presence, generally, is not 
evident from Eqs. (2.7) 1, with a further increase in n leading 
to a rapid drop in r ]  to zero. Actually, the value of 7 can be set 
equal to zero even for n - 10. For small values of n ( 1, 2, or 
3) the values of 7 obtained numerically are found to practi- 
cally coincide with those obtained from experiments,24 while 
the &-expansion strongly understates the value of 7. Note 
that 

(see, e.g., Ref. 19) in the &-expansion also contains a peak 
(at n = 4) and demonstrates a slow decrease in r ]  to zero as n 
increases ( r ]  - l/n for large n ) . 

In the isotropic case the limit n + co leads to the exactly 
solvable spherical m ~ d e l . ~ ~ . ~ ~  Methodologically, an analysis 
of this limit by our approach is expedient since it is possible 
to verify the passage to the limit in an exactly solvable case. 

This analysis has been carried out using the local ap- 
proximation in Ref. 18. Following that paper, in Eqs. (2.7) 
we explicitly isolate the terms that vanish as n -+ by replac- 

FIG. 4. Dependence of 7 on n. The dashed curve represents the extrapola- 
tion of the &-expansion to d = 3. 

ing H with nH and q, with nq, '. To avoid any misunder- 
standing, we note that such normalization of the sum 
q, = Zq, is c o m m ~ n . ~ '  Following the ideas developed in 
the papers published earlier on this subject, we retain this 
normalization condition everywhere in the present paper 
with the exception of the case n + a. One can easily verify 
that with the normalization H-nHand q, -+ nq, thequanti- 
ty f(0) remains small (at d~ 3) as n increases and tends to a 
constant as n + co instead of increasing in proportion to n (as 
is formally the case with the data in Table 11). 

Clearly, with the given normalization the term contain- 
ing the second variation in H vanishes as n + co. As a result 
the order of all the differential equations generated by the 
initial exact RG equation is reduced from the second to the 
first. In the final analysis it is owing to this effect that the 
equation becomes exactly solvable. For one thing, the equa- 
tions for f and x in the limit specified above in terms of the 
variables x = q, '/n and y = f /n have the form 

Let us show that the Fisher index r ]  in this limit does 
indeed tend to zero. Equation (3. l a )  implies that at the min- 
imum point x,, , at which y, = 0, the function y(x)  vanish- 
es. Differentiating Eq. (3.lb), we arrive at the following 
condition at the minimum point: 

It can easily be verified that since in a certain neighborhood 
of point xmin the function y(x)  is nonzero, the second deriva- 
tive y,, (x,,,, ) is nonzero, too, and hence xmin = l/A, . Sub- 
stituting this value of xmin into Eq. (3. lb),  we find that at 
point xmin 

This is possible for x(xmin ) = - 4 or 7 = 0. However, the 
function x is uniquely determined by the boundary condi- 
tion as x+O and the choice of asymptotic behavior. The re- 
quirement x(xmin ) = - 4 is additional for this function and 
cannot be satisfied in the general case. The reader will also 
recall that Eqs. (3.1 ) are valid only i f x e ,  so that even if for 
a specific branch of the solution this condition accidentally 
holds true, the inequality x e b r e a k s  down and such a solu- 
tion can be considered nonphysical. The only possibility of 
satisfying Eq. (3.2) is to put r ]  = 0. 

With allowance for the fact that 7 = 0 the equation for f 
reduces to the following form:'' 

To establish the fixed point we have, respectively, 

while to find the eigenvalues and eigenfunctions we must 
solve Eq. (3.4) linearized near the fixed pointy*: 

with $ = y - y*. In the case of a trivial fixed point, Eq. (3.5) 
leads to the eigenvalue ill = 2 and, respectively, to Gaussian 
critical indices. For a nontrivial fixed point Eqs. (3.4) and 
(3.5) can be written in the form 
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(d-h) $=2y,' (2ys*- I )  d~ldy,'. (3.7) 

For y: $0 and y: # 1/2 these equations are exactly integra- 
ble. For one thing, for IC, we have 

where C is the constant of integration. The solution of Eq. 
(3.6) determining x(y* ) is elementary but somewhat more 
involved. As can be shown,'' on its physical branch Eq. 
(3.8) leads to the spectrum ilk = d - 2k, which together 
with the condition that 7 = 0 leads in turn to the known 
critical indices of the spherical model: 

Similar results are yielded by the numerical solution of the 
initial system of equations for n, 1, which shows that our 
method is meaningful. 
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local approximation and the role of nonlocalness. He is also 
grateful to Yu. M. Ivanchenko and A. A. Lisyanskii, who 
helped him to conceive the idea of expansions in the small 
index 77. 

APPENDIX 1. THE EXISTENCE OF A TRANSITION AT d=2 
AND THE MERMIN-WAGNER-HOHENBERG THEOREM 

As shown above, allowing for the generation of free- 
energy functional nonlocal behavior leads to an increase in 
the effective dimensionality both for n = 1 and for n # 1. For 
one thing, in two-dimensional space, d,, ~ 2 . 3  > 2 and, con- 
sequently, there exists a physical branch, so that a real sec- 
ond-order phase transition must exist, as it does for d > 2. 
Formally this conclusion, however, violates the well-known 
rigorous Mermin-Wagner-Hohenberg (MWH) theorem 
concerning the absence of such a transition in degenerate 
two-dimensional  system^.^^-^' Below we show that this con- 
tradiction is illusory. 

We start by offering simple phenomenological argu- 
m e n t ~ . * ~  Let us suppose that a two-dimensional system is 
place in an external field h and that its order parameter devi- 
ates only slightly from the equilibrium value po. We study 
the transverse fluctuations p, (for n # 1 ). Using the "princi- 
ple of conservation of absolute value,"24 we write the respec- 
tive variation in the free-energy functional as 

where the transverse susceptibility X ,  in the field h can be 
represented in the form X, = p,/h. The correlator of the 
fluctuation p, is defined by the following integral: 

where Tis the temperature. The quantity (p, ) is divergent if 
we have d<2 for p, # 0 and h -. 0. This means that ordering is 

absent at d = 2 and h = 0. Qualitatively the initial argu- 
ments of Mermin and Wagner25.27 and H ~ h e n b e r g ~ ~  were 
the same but more rigorous. In their proof they used the 
exact Bogolyubov inequality 

where H is the Hamiltonian 

(X)=SP [Xexp(-HIT) I/Sp(X), [X, Y ]  , 
and [X, Y] denotes a commutator. 

To be definite, we follow Ref. 25 and give its main re- 
sult. Let us consider the Hamiltonian of the Heisenberg 
model: 

1  
H = - --x ~ ~ ~ ~ ~ ~ s ~ ~ - h ~  s l zOik i .  

1 1 ,  1 

Here k = 0 in a ferromagnetic system and eikl = f 1 (for 
different sublattices) in an antiferromagnet. Setting 
C = s+ (q) and A = s- ( - q - k)  and using the Bogolyu- 
bov inequality, we obtain 

s ( s + l )  >--- 2 T ( s z ) 2  z [ s ( s + l )  ( z 121(1))% + (hs z (  I-' , 
N i  1 

or, in the thermodynamic limit V-. W ,  

where l/p is the volume per spin. If the exchange interaction 
J(1) is fairly short-range, that is, if sdd 11 2J(1) is finite, the 
inequality (A1.5) leads to the same result as Eq. (A1.2). 

The direct link between these two approaches can easily 
be established. Bearing in mind that the quantum nature of 
the system is unimportant in the fluctuation range," we 
demonstrate this link for the classical analog of Hamiltonian 
(A1.4). This derivation can easily be generalized to the case 
of quantum systems. We linearize in s, the exponent in the 
partition function 

by using the Stratonovich-Hubbard transformation: 

(A1.6) 

where ZJ,, J,! = S,,, , and the s(1) are classical vectors. 
Integrating with respect to s, yields 

where T (x )  and I,  (x)  are the gamma function and the 
modified Bessel function, respectively. Formally Eq. (A1.7) 
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gives the exact representation of the initial free-energy func- 
tional. Using the gradient expansion, in the continuum limit 
we obtainz9 

where c = sdd I1 'J(I)/sdd N(1). This formula for c makes 
the connection between the two approaches quite obvious. If 
the interaction J(1) decreases fairly rapidly, cis finite and no 
phase transition occurs. 

We believe the assumption of short-range interaction to 
be realistic. Strictly speaking, however, J(1) usually con- 
tains long-range contributions that are small in amplitude. 
Often these contributions are unimportant and can be ig- 
nored, but not in the case of the critical region, where nonlo- 
cal corrections to H [ p ]  in the form of (A1.8) are sure to be 
generated. Formally this causes the propagator Go(q) cc 1/ 
q2 to be replaced by G(q) cc l/q2 - ", which corresponds to 
the divergence of c a g - - w and q -. 0 and leads in turn to 
the substitution of d,, for d in Eq. (A1.2). In other words, 
long-range effects in the system are generated in the critical 
region even if they are negligible far from it, that is, although 
the MWH theorem remains valid within the framework of 
its hypotheses, one of these [the one concerning the finite- 
ness of 5dd 11 'J(1) ] becomes invalid. The same situation oc- 
curs, naturally, in the case where the initial interaction falls 
off fairly s l ~ w l y . ~ ~ , ~ '  To conclude our discussion of the rela- 
tion between the obtained results and the MWH theorem, 
three remarks are in order. 

1. The above arguments are valid for various two-parti- 
cle systems. A Heisenberg ferromagnet was taken only as an 
illustration directly related to the original work of Mermin 
and Wagner.25 

2. All the arguments are applicable only to the critical 
region. If we assume that after the transition the two-dimen- 
sional system becomes ordered and that in the process the 
temperature "leaves" the critical region, we arrive at a con- 
tradiction. Indeed, outside this region the theorem's hypoth- 
eses are satisfied and ordering is impossible. This means that 
the "ordered phase" must lie completely inside the critical 
region. Of course, this cannot be an ordered phase in the 
ordinary mean-field sense since the fluctuations against the 
background of the phase are large (in this sense the MWH 
theorem is still valid). However, a second-order phase tran- 
sition does exist in the two-dimensional system. 

3. If d,, is formally set equal to two, 7 diverges together 
with f(O;d,, ) and in any case reaches 7 = 2. Here, however, 
d = (2 - 77)de,/2 vanishes. In other words, when the real 
dimensionality d decreases to zero, the expected generation 
of nonlocal interactions is so high that d,, always remains 
greater than two. The behavior of d as a function of d,, is 
depicted schematically in Fig. 5. It is unclear to what extent 
this dependence can be reconstructed experimentally, but 
theoretically the behavior is of considerable interest because 
it reveals that the critical behavior of an idealized system 
(infinite and pure) for any value of d which is nonnegative 
but less than four must be the same as at d = 3. The presence 
of a boundary is, apparently, an important factor in forming 
a specifically critical behavior of real quasi-low-dimensional 
systems, while the idea that such behavior can be modeled by 
an infinite system with d<2 is to a certain extent illusory. 

FIG. 5. The behavior of d and 7 as functions of d,,; the dot-dash line 
corresponds to d = d,,. 

APPENDIX 2. THE NATURE OF THE SMALL PARAMETER 

The idea of using the local approximation as the zeroth 
approximation in perturbation theory was based on the ex- 
perimentally established smallness of the Fisher index, 
which reflects the onset of nonlocal behavior. In itself, how- 
ever, the quantity 7 requires calculation and does not enter 
into the initial concepts of the theory. More than that, in the 
actual expansion we used the smallness of the amplitude 
f(0) of the physical branch of the solution of the local equa- 
tion, while 7 was determined indirectly. Note that the same 
small parameter was used when the local equation was stud- 
ied analytically (although this is not needed in a numerical 
solution). The quantity f(0) in turn was also calculated in 
the solution process, and its smallness appeared to be even 
more accidental than that of 77. To grasp the nature of the 
corresponding perturbation theory one would want a "gen- 
uine small parameter" that would be a combination of the 
parameters d and n and would enter into the equation in such 
a manner that the desired problem would be clear-cut. 

To establish the relation between f(0) and d and n, we 
reproduce the estimate of f(0) done in Ref. 17. The local 
equation is taken in the form 

where 6 = z'I2, z = ( d  - 2 ) p  2/4, and all solutions are nor- 
malized at 6 = 0 to unity. The linear equation 

has a solution in the form of the Kummer functionz3 

such that 

The physical branch of the solution departs from this func- 
tion near the turning point of its derivative (i.e., at f g' ~ 0 ) .  
Using the recursion formulas for the Kummer function, we 
can easily obtain the equation defining the turning point: 
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(here we are interested in the second positive "zero" of this 
equation, z=zo). The value of the derivative at the point can 
be estimated by the Sonin-Polia theorem." 

Ford( 3 the parameter a = d / ( d  - 2) is fairly large, so 
that the corresponding estimate can be simplified by em- 
ploying the approximate repr,esentation of the Kummer 
function in the form 

If at the minimum point f p' is sufficiently large, 

it is the first point where the solution of the nonlinear equa- 
tion (A2. l ) departs from the Kummer function as f(0) in- 
creases. Therefore, the condition 

provides an estimate for f(0) on the physical branch of the 
solution. The numerical factor c, can be chosen in such a way 
that the above relation provides good estimates of f(0) for 
different d and n [co- 2; see Fig. 6(a) 1. 

Note that in this case we are interested not so much in 
good numerical estimates for f(O,d,n) as in clarifying the 
meaning of the smallness of f(O,d,n). For this reason we 
restrict our discussion to n = 1. Equation (A2.3) and 
(A2.4) then simplify considerably. Combining them with 
the condition imposed on f(O), we arrive at the following 
estimate: 

The presence of the formal singularity (d  - 2)  - ' as d-2 is 
unimportant since in the local approximation instead of d we 
must use the effective dimensionality d,,, which does not 
become smaller than d,, -2.3. More important is the pres- 
ence of the factor exp( - z,,/2), owing to which f(0) rapidly 
decreases as z, a d - 2 increases. Figure 6(b) illustrates this 
exponential decrease. This exponential factor is actually the 
small parameter sought. But although it depends on d, its 
presence in the equation is not obvious and the smallness of 
f(0) is an accidental corollary of the properties of the Kum- 
mer function. 

Yet, since the answer is known, it is easy to clarify the 
nature of the parameter obtained. The equation 

df- (d-2)(pVT//2+V,2f- ( V , f ) 2 = 0  (A2.6) 

can be interpreted as an Euler-Lagrange equation for the 
functional 

Let us examine the behavior of the integrand on the 
physical branch of f(q,). At 

I n f  (0)  

FIG. 6. (a)  In f ( 0 )  vs d,,. The variation of q is depicted by an arrow. (b) 
The same dependence at n = 1 obtained through an analytical estimate. 
The Cl represent the results of numerical calculations. 

the function F C ~ ( ~ ) )  follows the universal asymptotic be- 
havior. Its contribution to the integral is obviously small, 
proportional to exp( - 2,). For p(po the smallness is ab- 
sent and must be balanced by the smallness of f(O), whence 

The presence of the factor q," - ' leads to an increase in f(0) 
with n and in turn is balanced by the obvious substitutions of 
nq, for q, and of nf for f used above to study the limit of 
n- W .  

The presence of the factor exp [ - ( d  - 2)q, '/4] in @ is 
the result of the transformation properties of field q, under 
scaling. The perturbation theory based on this factor oper- 
ates least effectively for small values ofd. On the other hand, 
as d-4, the value of zo increases, the solution degenerates 
into the q, 4-model, and estimates of the form (A2.5) lose all 
meaning. In the final analysis this is due to the scaling prop- 
erties of q, and technically manifests itself, within the frame- 
work developed here, in the loss of accuracy of numerical 
calculations as d-4. In this limit the quantity r] is of the 
order off '(O), SO that the expansion in f(0) is actually done 
in terms of r]"2, as in the traditional appr~ach . '~  In the op- 
posite limit, 2<d<3, the dependence of r] on f(0) becomes 
linear (Fig. 7) and the expansion within this range is done in 
r ] ,  as expected in the first apriori ideas concerning the possi- 
bility of an expansion in the Fisher index. 

Summarizing, we can say that the perturbation theory 
based on the exotic small parameter f(0) aexp 
[ - ( d  - 2)q, :/4] is the most effective at d-3. 
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FIG. 7. Plots of 7 vs f(0) on the log-log scale. Crossover from 7 a fZ(0) as 
d - 4  to 7a f(0). 

APPENDIX 3. ALLOWING FOR ANISOTROPY 

Our discussion up to now has been restricted to the iso- 
tropic case. Real physical systems usually require anisotrop- 
ic models for their investigation (for reviews see Refs. 9 and 
32). In such cases there is need to consider free-energy func- 
tional~ with a large number of fluctuating fields and/or var- 
ious invariants in each order in powers of the components 
p 7. It is well known that phase trajectories leave the region 
within which the fourth-order anisotropic form discovered 
within the framework of the &-expansion is positive definite. 
Customarily this is said to signal a possible sudden transfor- 
mation of a continuous phase transition to a discontinuous 
one, caused by  fluctuation^.^^.^^*^^ Confirmation of this can 
be obtained by theoretical means via approximate free-ener- 
gy calculations, by the ring approximation,35 and in exactly 
solvable models.36 But there is always the suspicion that, 
apart from the use of the &-expansion or the limit n - co , the 
results are corollaries of the p 4-model, of which, as the above 
shows, the fluctuation region is in itself a crude approxima- 
tion. 

A rigorous answer to the question of the possibility of a 
fluctuation transformation of a phase transition can be ob- 
tained only by solving the exact RG equation in variational 
derivatives. As shown above, however, even the local version 
serves is a very good approximation. Bearing in mind that 
allowing for anisotropy greatly complicates the problem, we 
start with the local RG equation. A formal generalization to 
the anisotropic multicomponent case can be done very sim- 
ply: 

The simplicity of Eq. (A3.1) is illusory because f is a func- 
tion of various invariants (allowed by specific symmetry) 
built on the basis of the vectors (p 4 )  and the partial deriva- 
tives mix the components p 7. Even a numerical solution is 
highly problematical. 

Nevertheless, several general statements can be made 
concerning the fixed points of Eq. (A3.1). First, the 
n = 8ni-component O(n)-symmetric free-energy-func- 
tional density f = f ( p  2),  where e, ' = 29, f,  always has a 
straightforward isotropic solution. One can easily show that 
the sum of noninteracting solutions, f = Zf(pi ), is a solu- 
tion, too. Next we allow for the fact that asymptotically 
f z p 2 / 2 .  This means that the isotropic solution 

f(p ') = Z p  f/2 has the same asymptotic behavior as the 
sum 8f(pA). On the other hand, any physical solution of the 
equation R f = 0 must also have the asymptotic forms f =:p '/ 
2, which coincides with the asymptotic behavior of the sum 
of noninteracting solutions: 

The symmetry group transformations do not change 
this isotropic asymptotic form but formally  ma^ f = Zf(pi ) 
into the remaining solutions of the equation Rf = 0, com- 
patible simultaneously with the symmetry of the system and 
the requirement f +p '/2 as e) + co . AS a result we can name 
all the fixed points without solving Eq. (A3.1) . 

A similar effect should occur in the &-expansion. To 
confirm this statement, we take the simple example of a te- 
tragonally symmetric system: 

where p = p : + p :. For this system the RG equations in 
the first &-approximation are 

The respective fixed points are 

Let us now perform the only rotation allowed by the symme- 
try group of the system. We have 

which corresponds to the following substitution: 

We can easily see that (A3.5) maps pr and p: into each 
other, but does not change the isotropic pzint pf .  A similar 
procedure can be applied to the equation Rf = 0. Bearing in 
mind that in the given case a rational basis of invariants 
consists of x = p and y = p ip :, we have f = f(x,y). It is 
convenient to introduce a new variable, s = 2y112, and write 
the equation as 

The transformation p ,,, = (p + ~ ) / 2 ' / ~  takes on the form 
g, = x + s. We assume that f(x,s) is a solution to Eq. 
(A3.6). Let us now show that f = f(g+ + f({-) is a solu- 
tion, too, that is, 

R( j (E+l+f(E-) )=Rf(~+l  
+ R f ( E - ) = O .  

Directly substituting {, = x + s into Eq. (A3.6) yields 
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TABLE 111. 

The inverse transformation maps f = f({+) + f(6-) into 'K. G. Wilson and G. Kogut, Phys. Rep. C 12,240 (1974). 

the solution f(x,s). 'K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28,240 (1972). 
%.-K. Ma, in Phase Transitionsand Critical Phenomena, Vol. 6, edited by 

the fixed points C.  Domb and M. S. Green, Academic Press, New York (1976), p. 250. 
answer the question of the global structure of the phase por- 4E. K. Riedel, G. R. Golner, and K. E. Newman, Ann. Phys., Lpz. 161, 

trait. Even a numerical solution of Eq. (A3.1), however, 176 
'K. E. Newman and E. K. Riedel, Phys. Rev. 30,6615 (1984). 

with the conditiOnf-*~ *I2 asp* cc, is "F. J. Wegner, in Phase Transitionsand Critical Phenomena, Vol. 6, edit- 
highly problematical as noted earlier. At the same time, this ed by C. Domb and M. S. Green, Academic Press, New York ( 1976), p. 
portrait can easily be obtained by truncating the hierarchy of 
equations for the coefficients ("vertices") of the expansion 
f = Bg, 0, (pi ) ink th-order invariants. For Eq. (A3.1) this 
procedure is done in a simple way in the E-e~pansion.~' 
Truncation of the series forfbecomes nonphysical for values 
of d much smaller than d = 4 (d<3). Below we show that 
this operation can be corrected with allowance for the phys- 
ical asymptotic behavior fzcp */2. 

Let us write the system of equations for the g, in the 
isotropic case: 

gh= [ d -  (d-2) k ]  gh ( ? a )  + (2k-n) (k+I) gh+, (n)/2 
k+ 1 

This system can be solved as a recursion formula determin- 
ing all leading vertices in terms of f(0) = go: 

The vertex g,(n) in turn is determined uniquely on the phys- 
ical branch, so that the sequence ofg, + , (n)  can be calculat- 
ed in a simple manner. Table I11 list several such first ver- 
tices g, ( n )  for n = 1,2, ..., 5. Clearly, despite the large 
discrepancy between the g,(n) for different n, the sequence 
of g, ( n )  becomes universal as k increases, that is, 
g, (n )  +gk ( 1 ) . Indeed, since the asymptotic behavior 
fzq,  */2 is controlled by the sequences ofg, (n )  for large k, 
the sequences of g, (n )  must become indistinguishable for 
the scalar and multicomponent cases. This property can be 
used to truncate the series naturally for an anisotropic sys- 
tem. Instead of the formal condition g,, , ,,, = 0 (see Ref. 
9) used in an &-expansion, we can use the condition 
gk + /gk = A (gk 1, where A (gk ,,, can be found 
from the data of Table 111. 

The procedure described has been implemented for a 
tetragonal system and has led to a phase portrait that is qual- 
itatively similar to the one obtained in the q, 4-model. 
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