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We consider the problem of the generation of large-scale vortex structures such as a tropical 
cyclone under conditions which simulate the turbulence of a tropical depression. We assume that 
the meso-scale humid convection arising on a locally unstable stratification profile is the main 
source of the turbulence. 

1. INTRODUCTION In the present paper we consider the problem of the 

~ ~ d ~ l ~  which take into account the spiral properties of generation of large-scale structures under conditions model- 

turbulence have opened up the possibility of solving a broad ling a tropical depression on the background 

class of hydrodynamical problems about the generation of vective 

large-scale structures. Special interest in those arises when 
one describes processes of the development of cyclonic for- 
mations in the earth's atmosphere. Recently it has been 
shown that one can use them to construct models for the 
initial stage of the development of tropical cyclones. A whole 
series of papersI4 have been devoted to this problem; it was 
shown in those that not only the characteristic shape and the 
parameters for the appearance of large-scale vortex struc- 
tures in the model agree well with the parameters of tropical 
cyclones, but also that such a kind of scenario for the devel- 
opment of instabilities describes the characteristic stages of 
the development of cyclones, starting from a tropical depres- 
sion. 

However, the models constructed up to now neglect a 
number of features of the motions which develop in a tropi- 
cal atmosphere. For instance, the basis of these models is the 
averaging over a characteristic scale of the pulsations of the 
turbulent velocity and the averaged equations of motion 
contain large-scale convective terms. The reason is that con- 
vection is regarded as a large-scale process on the back- 
ground of small-scale turbulence. At the same time it is well 
known that powerful hypercell convection, consisting of a 
set of separate cells arising as the result of the release of 
latent heat by vapor condensation, is indicative of a tropical 
depressi~n.'-~ The motion in these cells can be considered to 
be turbulence. One should, however, note that on sufficient- 
ly large scales the average density stratification is nearly 
neutral and therefore the large-scale structures arising in the 
atmosphere do, generally speaking, not have a convective 
nature. This fact must be taken into account when construct- 
ing a model describing the large-scale motions in the real 
atmosphere. 

In order to model the conditions of a tropical depres- 
sion one must assume the turbulent motions to develop on a 
locally unstable profile. Such a turbulence has a convective 
nature and guarantees that the average profile tends to be- 
come neutral according to the theory of convective accom- 
m~dation. ' .~.~ The large-scale motions are therefore as- 
sumed to develop on a neutral profile. Such an approach 
makes it possible to use successfully the model previously 
proposed for the appearance of large-scale structures and 
approximating it substantially to actual atmospheric condi- 
tions arising in the region of a tropical depression. 

2. STATEMENT OF THE PROBLEM 

Atmospheric turbulence in the region of a tropical 
depression is characterized by volume heating due to release 
of latent heat by vapor c~ndensation.~.' If a sufficient 
amount of heat is released, a local convection process adses 
which lasts a time r and has a characteristic size A. Convec- 
tive motions in the air soon become turbulent because of its 
low viscosity coefficient. It is therefore natural to assume 
that the turbulent motions start from the convective scale A 
and are transferred to smaller scales. It is well known that 
the characteristic size of a convective cloud cell (the largest 
reach 2 km) is much smaller than the thickness of the tropo- 
sphere (approximately 10 to 15 km).5 

The convective accommodation model makes it possi- 
ble under conditions of a tropical depression to determine 
such turbulence parameters in the atmosphere as the turbu- 
lence viscosity and the velocity of the turbulent pulsations. 
The amount of heat released determines the strength of the 
turbulence and the turbulent viscosity v, increases so much 
that the Rayleigh number of the small-scale convection re- 
mains on the level of its critical value Ra, :5,10,'1 

where yo is the moist-adiabatic temperature gradient and y 
the average value of the gradient of the actual temperature 
profile existing after a time r in a region of size il. Hence, the 
velocity of the turbulent pulsations can be estimated using 
the formula 

To describe the large-scale motions in a layer of the 
atmosphere with a thickness h appreciably larger than the 
characteristic energy-scaleil of the convective turbulence we 
must specify a model describing the convection process. The 
simplest problem in convection theory is that of the stability 
of a horizontal plane-parallel layer of fluid with a vertical 
temperature gradient A.10911 Since details of the process of 
the appearance and the course of moist convection is not 
important for the development of large-scale processes, it is 
sufficient to restrict ourselves in the calculation of the 
Reynolds stresses to the simplest model, assuming that the 

833 Sov. Phys. JETP 75 (5), November 1992 0038-5646/92/110833-06$05.00 @ 1992 American Institute of Physics 833 



quantity A corresponds to the difference between the gradi- 
ents of the actual and the moist-adiabatic temperature pro- 
files: 

The convection process in the model hence proceeds on a 
given temperature profile and lasts a time T which may be 
assumed to be comparable to the correlation time of the tur- 
bulent motions caused by the convection. 

Since the convective motions in a tropical depression 
region are influenced by the Coriolis force we shall assume 
that the turbulence arising under those conditions is spiral. 
The concept of spiral turbulence is these days well 
known. 1312-'4 In the present model we shall assume the spiral 
turbulence to be given through an external random force Fj . 
We shall assume the parameters of the turbulent velocity 
field caused by the action of the force Fi to be compatible 
with the parameters of the convection process. To describe 
convection with spiral turbulence in the tropical depression 
model we shall use the following set of equations:' 

Here g is the free-fall acceleration, v the kinematic viscosity, 
x the thermal conductivity, and 0 the thermal expansion 
coefficient. We shall assume the Prandtl number to be equal 
to unity: 

vlx= 1. 

The temperature field T(x,t) is given in the form of a sum of 
the basic state, 

To ( z )  =-Az,  

existing after a time T and the turbulent pulsations 6(x,t): 

3. EQUATION FOR THE AVERAGE FLOW 

The set of Eqs. ( 1 ) to ( 3 )  enables us to obtain, accurate 
to second-order nonlinear terms, the equation describing the 
velocity field under the action of the random force Fj : 

We have introduced here the operators 

where Pi, is the projection operator eliminating the poten- 
tial part of the velocity field. 

We evaluate for the set ( 1) to (3)  the Reynolds stresses 
caused by the spirality of the turbulence and irreducible to 

turbulent dissipative terms. To do this we use statistical 
averaging over small-scale pulsations, assuming the back- 
ground spiral turbulence to be weak (see, e.g., Ref. 1 ). We 
write the velocity field as a sum 

Here (vi ) is the average large-scale flow, v T  are the turbulent 
velocity pulsations caused by the external random force Fi 
and 6, is a small inhomogeneous correction-the result of 
the interaction between the average field and the turbulent 
pulsations, (v) vT , fi (vT . Here 6 is a functional of vT and 
(v). 

We get for the unknown fields (vi ) and Bi from Eq. (4), 
by standard methods to lowest approximation, the equations 

We assume, as we discussed already earlier, the temperature 
profile to be neutral in Eq. (6) for the large-scale velocity 
(v, >. 

To determine the averages on the right-hand side of Eq. 
(6)  we use the Furutsu-Novikov formula," using the func- 
tional dependence of the B, field on the turbulent v T  field: 

where 

QLrT(t-s. s-y) =(r,, '(t.  s)c, '(s. y )  > 

is the correlation tensor of the spiral turbulent field v: (t,x) . 
In the derivation of the Furutsu-Novikov formula it is 

assumed that the turbulence is Gaussian. The assumption 
can be considered to be satisfied in the present model since 
we study the range of energy-scale turbulence for which the 
Gaussian assumption is best applicable.16 

The variational derivative in Eq. (8) is evaluated using 
Eq. (7) and neglecting derivatives of the large-scale velocity 
field (they give a small correction to the turbulent viscos- 
ity): 

f ;3ilgD--'ele,) (5 ( t - s )  6 (x-y), 

where the inverse operator L ,' has the form 

It is convenient, when carrying out calculations using Eq. 
(8),  to change to a Fourier transformation in x and x, and to 
integrate over dy, using S(x, - y)  in Eq. (9). This makes is 
possible to write the quadratic combination 

as follows: 
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We give the spiral part of the Fourier transform of the turbu- 
lence correlator by the formula 

(t-s. k )  = G , , ~ ~ u , ~  csp ( - - I t '  ) i  ( 1 1 )  

To take into account the characteristic properties of the 
convective turbulence it is~ecessary to make the parameters 
of the correlation tensor Q Er agree with the parameters of 
the linear Lq operator of (5)  which describes the process of 
the development of convection. It is natural to assume that 
the characteristic scale of turbulent motions caused by con- 
vection does not exceed the size of the convective cells and to 
give the spectral distribution f ( k )  of the external force in the 
form of a function of the absolute magnitude of the wave 
number k ,  which vanishes when 

1ij.G~. 

where the quantity x guarantees the compatibility of the en- 
ergy-scale turbulence with the convection. We choose the 
way the function f ( k )  decreases with increasing wave num- 
ber k  to be a power law with exponent n: 

f (k)=O(i.li-z) (LC)-". (12)  

We must choose the exponent n such that the magnitude of 
the topological invariant 

II=<vT curl Y-) 

turns out to b~unded:'~." 

Since the main contribution to the integral in Eq. ( 10) 
comes from the energy-scale turbulent convection region, 
the explicit form of the decrease of the turbulence spectrum 
with increasing wave number k  in this case does not affect 
greatly the value of the integral. It is natural to take the 
turbulence correlation time in the present model to be equal 
to the average value of the time T during which the local 
temperature gradient exists. 

One must bear in mind that the convection process and 
hence the convective turbulence is not strictly isotropic. This 
manifests itself in our model in the presence of the scalar 
P,, em en in the integrand. The integration over the wave 
numbers in Eq. ( 10) must thus be carried out taking the 
shape of the convective cell into account. This can be done 
most simply by giving its aspect ratio which is such that 

The integration over the wave numbers then takes the form 

We perform the integration over the angle d p  and over 
the vertical wave number dk, and let x, +x in Eq. ( 10). The 
right-hand side of the large-scale Eq. ( 6 )  takes the form 

Here 

where 

3ne  can easily estimate the quantity I by putting 

and assuming the correlation time T to be sufficiently long, 
which corresponds to the conditions for the generation of 
convective turbulence: 

hZ 
~=-x?-r7(~+l,:)-~-n,2 

v 

The equation for the large-scale motions ( 6 )  must be 
made dimensionless, expressing lengths in terms of the 
thickness of the atmospheric layer h,il and the times in 
terms of h */v,. As a result we obtain the Reynolds equation 
describing large-scale motions on the background of spiral 
convective turbulence: 

where we have introduced the quantity Swhich we shall call 
the convective spirality coefficient. It can be expressed in 
terms of the macroparameters of the problem as follows: 

The Reynolds equation we have obtained turns out to be 
significantly simpler than the corresponding large-scale 
equation studied in Refs. 1 to 4, in which the random exter- 
nal force was not made compatible with the convection and 
the temperature gradient was specified in the whole layer. 
These equations contained convection on the large scale and 
also a second spirality coefficient. The absence of these pa- 
rameters in the large-scale Eq. ( 1 5 )  is connected with taking 
the feedback of the small-scale convection on the tempera- 
ture gradient into account, which leads to the establishment 
of a neutral stratification profile on the large scale. 

The convective spirality coefficient S can be written in 
terms of the topological invariant H, in terms of which we 
can express the coefficient Go: 

The formula for the coefficient S then takes the form 

(18)  

The spirality coefficient S is according to Eq. ( 18) pro- 
portional to the quantity HA /u+ which characterizes the 
energy fraction of the spirality of the turbulence. The param- 
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eter h / A  shows that the coefficient S increases with increas- 
ing thickness of the tropical depression region which is en- 
trained by the turbulence. When the strength of the 
turbulence increases S also increases and although the model 
was constructed for small Reynolds numbers one can draw 
qualitative conclusions about the amplification of the large- 
scale instability for large Reynolds numbers by assuming 
that the tensor structure of the large-scale equations does not 
change in that case. 

4. STUDY OF THE LARGE-SCALE EQUATIONS OF MOTION 

The equations obtained for the average field contain in 
contrast to their laminar analogues terms in which the ten- 
sor E ~ ,  occurs. These terms lead to a positive feedback be- 
tween the toroidal and poloidal components of the velocity 
field and as a consequence to large-scale instability. 

In order to study these effects we write the velocity field 
in the form 

(v>=(v,>+<v,>,  

Here (v,  ) and (v, ) are, respectively, the toroidal and poloi- 
dal components of the (v)  field and $ and q, are, respectively, 
a pseudoscalar and a scalar function. 

Substituting formulas ( 19) into Eq. (15) we get for the 
large-scale fields $ and q, the set 

where A, is the Laplace operator for the horizontal coordi- 
nates. 

It is clear from the set (20) that the connection between 
the toroidal and poloidal fields is realized in terms of the 
spirality parameter S. 

We place the origin of the vertical axis halfway between 
the upper and the lower boundaries of the layer so that the 
upper boundary corresponds to the value z = 4 and the lower 
one to z = - 4. By virtue of the horizontal homogeneity of 
the problem, we check for stability a solution of the form: 

$ (r)  =I$ ( z )  e s p r i  (kLri)+yt], 

Substituting the explicit forms (21) of the functions $ 
and q, into the set of Eqs. (20) we get 

We check the set (22) for stability of solutions with 
large horizontal dimensions, i.e., we shall work in the limit 
as k f - 0. We assume the upper and lower boundaries to be 
rigid, i.e., the vertical component of the velocity to vanish on 
them: 

L'; 1 : = - i [ l = ~ :  I :='h=O. 

For the horizontal component of the velocity at the upper 
boundary we take the condition of free flow along the bound- 
ary: 

It is natural to take into account at the lower boundary slip- 
ping with a friction coefficient ( 1 - {)/g(O<{( 1 ) : 

In terms of $ and q, these conditions take the form 

The set (22) of equations with constant coefficients 
with the boundary conditions (23) to (25) is an eigenvalue 
problem. The eigenvalue is in this case the value of the 
growth rate y. 

We consider the characteristic equation of the system 
(22): 

where the q are the characteristic roots. 
For small wave numbers k, Eq. (26) can be solved by 

asymptotic methods. Expanding q and y in series in the small 
parameter k, , 

q=Ao+.41k,+A2klZ+A~1213+.. . , 
y=yo+ylk,+y2k,2+ y3k13f .  . . , 

we get the first terms in the expansion of the roots q: 

Following the theory of linear differential equations, we 
look for the eigenfunctions of the set (22) in the following 
form: 

8 

where $, and q,, are coefficients. The relations between $, 
and q,, are found from the set (22) : 

To find the values of the coefficients $, and q,, we sub- 
stitute the explicit form (27) of the eigenfunctions into the 
boundary conditions (23) to (25). We get a linear homoge- 
neous algebraic set of equations of sixth order to find the 
coefficients $, and q,, . The necessary condition for the exis- 
tence of a solution is the vanishing of the determinant con- 
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sisting of the matrix elements of the linear system. This de- 
terminant has in an expansion in k, the following form: 

By successively setting the I,, equal to zero we get equa- 
tions for the coefficients in the expansion of the growth rate 
y. This problem has a discrete eigenvalue spectrum. We shall 
be interested in the lowest mode, the generation of which 
starts with the smallest value of the parameter S (we assume 
that S >  0) .  Assuming that in this determinant the growth 
rate y is small and the friction is weak (6- 1 ), we get the 
following formula for the expansion of the growth rate y to 
lowest orders in k, : 

Hence it is clear that in the considered region of small 
wave numbers k, the modes with k, = 0 have the best condi- 
tions for generation. The critical value of the parameter S for 
which the growth rate y becomes positive is easily found 
from (29): 

4- El  
Scr=n + -. 

n 

To study the horizontal behavior of the solutions of the 
problem we consider a spirality parameter which depends on 
the horizontal coordinates. We shall study a system for the 
case when in some region of space S is just above its critical 
value by an amount SS which depends weakly on the hori- 
zontal coordinates: 

In the simplest case we can write SS(r) in the form 

6S,< S,, r,,>> h. (31) 

Using Eq. (29) for small wave numbers k, we can in 
this case establish an equation for the horizontal dependence 
of the potentials e, and $: 

We have obtained an equation of the time-independent 
Schrodinger equation type with an effective potential well 
which is determined by the shape of the function (30). 

Using the explicit dependence (3 1 ) of the parameter S 
on the radius vector r, we construct an axisymmetric solu- 
tion of the form 

using Laguerre polynomials L Lm': 

where 

The eigenvalues of Eq. (32) determine the growth rates 
of the various modes: 

n (z (1-g)6So)' 
y n , m  =- (6s") (1-El - 

4 
(2n+m+l). (34) 

ro 

FIG. 1.  The neutral curve. The critical value of thespirality Sas afunction 
of the horizontal wave number k, . 

We easily find from (33) and (34) the characteristic 
size L and time T for the development of the instability for 
the main mode, assuming a large radius r,: 

In the estimates we have found we substitute values 
which are typical of a turbulent atmosphere under the condi- 
tions of a tropical depression. We take the size of the super- 
critical region to be of order 2 x  lo3 km ( r , ~  loo), the 
height of the tropopause in the tropics to be h~ 16 km, 
vT z 3 x lo3 m2/s, the most probable value for the supercriti- 
cality to be SSZ& - &, and the friction parameter to be 
6 ~ 0 . 9  (weak friction). In that case we get 

I, z S O 0 -  1000 km, 

T =  10--20 days. 

These values of the parameters are in good agreement 
with observational data, although one should remember that 
our system does not take into account the decrease in density 
with height which is characteristic for the atmosphere. 

We checked Eq. (22) numerically for the stability of 
normal perturbations in a horizontal layer of unit thickness. 
We show in Fig. 1 the neutral curve characterizing the criti- 
cal value of the turbulent spirality parameter S for different 
horizontal wave numbers k,. The minimum of this curve is 
reached in the point k, = 0. This means that when the spira- 
lity increases the instability appears on a larger horizontal 
scale. For small values of k, the instability is monotonic in 
character. The neutral curve has a kink caused by the merg- 
ing of two monotonic modes into a complex conjugate pair. 

An important role for the construction of a solution of 
the set of Eqs. (22) is played by the sign of the spirality 
parameter S, since the direction in which the vortex rotates 
depends on it (in accordance with Eq. (28) ). It is clear from 
Eq. ( 18) that the sign of the parameter S depends on the sign 
of 

A= (v curl v). 

The appearance of an average value of the product (v curl v )  
in the atmosphere is connected with the expansion of ascend- 
ing and the compression of descending air flows in the pres- 
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FIG. 2. Velocity field in horizontal (upper picture) and vertical (lower 
picture) sections. The velocity is normalized by the maximum value of the 
projected component. In the horizontal section v,,, = 1 and in the verti- 
cal section v,,, = 0.07. 

ence of the Coriolis force." For the earth's northern hemi- 
sphere we have H>O. In that case the rotation of the 
resulting vortex agrees with the rotation of the air in tropical 
cyclones. 

The configuration of the large-scale velocity field is giv- 
en in Fig. 2 for the axisymmetric lowest mode (m = 0, 

n = 0). The upper figure is the top view of a horizontal sec- 
tion of the structure near the lower boundary of the layer, 
while in the lower figure we show a vertical cut of the vortex. 
For the given parameter values the toroidal (directed along 
a circle) component of the velocity field turns out to be larg- 
er by an order of magnitude than the poloidal (directed to 
the center and vertically) component. The eigenfunction of 
the mode considered is thus a strongly rotating vortex with a 
horizontal velocity component which is practically uniform 
along the height. The presence of poloidal motions is impor- 
tant in the structure of this vortex. For instance, it is very 
clear in Fig. 2 that air flows upwards in the center of the 
vortex, and that there is an ascent and an outflow at the 
upper boundary. At the periphery of the vortex, on the other 
hand, we observe a descent of the air. It was noted in Refs. 1 
and 4 that the poloidal and toroidal motions in such a vortex 
turn out to be linked to one another. 

The study reported here shows that the present model 
can qualitatively describe large-scale instabilities under con- 
ditions of a neutral density stratification. In the framework 
of convective accommodation this makes it possible to use' 
this model to describe the generation of vortices in the region 
of a tropical depression. 
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