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We consider propagation of light having arbitrary statistics in a medium capable of multiphoton 
absorption or enhancement. The limiting shot-noise suppression level is 33% for two-photon 
absorption and 50% for m-photon absorption as m -+ co . The noise is lowered in a broad 
frequency band. The Langevin approach is used to analyze the transport equation for the 
electromagnetic-field density matrix. 

INTRODUCTION 

Many proposals to generate light in a nonclassical state 
(NCS), i.e., having sub-Poisson statistics or in a squeezed 
state, are based on the use of optical systems with cavities 
containing a nonlinear medium.'-' Just such systems were 
realized in a number of experimentsG8 in which squeezed 
states of light with suppressed noise were obtained. Practical 
interest attaches not only to the level but also to the band of 
noise suppression. In cavity systems, the band is limited 
usually by the cavity width. In cavity-free cases, when the 
light propagates through a medium, the noise suppression 
band may turn out to be substantially different. 

We consider here the variation of the statistical proper- 
ties of light propagating through a nonlinear absorber. Mul- 
tiphoton absorption is extensively discussed in the study of 
an NCS field. It is the subject of many studies, e.g., Refs. 9 
and 10, an extensive list of which is given in Ref. 11. Thus, 
the photon-number dispersion and the distribution of the 
number of photons emerging from the medium have been 
investigated in detail. However, properties such as the spec- 
trum of the radiation noise or the spectrum of the photocur- 
rent, which are usually measured in experiments on NCS- 
field generation, have not been considered. The reason is 
that light propagation in a medium is far from a trivial prob- 
lem in quantum electrodynamics. The standard approach is 
based on a spatiotemporal analogy in which the temporal 
coordinate is replaced by a spatial one, t-z/c, and the initial 
conditions are replaced by boundary ones. As a result, the 
spatial evolution is obtained from the temporal one. In the 
spirit of this analogy, we have considered all the multipho- 
ton-interaction problems known to us. This approach, how- 
ever, does not permit spectral properties to be calculated, 
particularly the noise spectrum, for which one needs to 
know the unequal-time propagators or the correlation func- 
tions taken at one spatial point. 

We calculate the radiation noise by the transport-equa- 
tion method,'' which permits the propagation of light in a 
medium to be described in the context of quantum electrody- 
namic. This method was used in Ref. 13 to consider the 
transformation of the statistical properties of light in a para- 
metric medium. Since its development in the case of multi- 
photon absorption is not unitary, the procedure used in Ref. 
13 to calculate the observed properties cannot be applied 
directly. To analyze a non-unitary transport equation we 
used the Langevin equations that follow from the Fokker- 
Planck equation for the Glauber and the generalized quasi- 

probabilities. The complications encountered in the descrip- 
tion of NCS with the aid of a P-function are well known. 
They are due to the singular behavior of these quasiprobabi- 
lities, which leads to a negative diffusion matrix in the 
Fokker-Planck equation. It was shown in Ref. 14 that a 
transition from such an equation to Langevin equations can 
be rigorously justified in the framework of the Ito procedure. 
Note that the entire justification is only a question of inter- 
pretation. 

Our results for the photon-number dispersion in m- 
photon absorption agree with the known data.I5 The ob- 
tained limiting noise-suppression level is [m/(2m - 1 ) ] i,, 
where i, is the shot-noise level. The noise is lowered in a wide 
frequency band Am, which can exceed substantially the 
width of the excess noise of the initial light. This result de- 
pends neither on the statistics of the input light nor on the 
type of the working transition in which the absorption takes 
place. 

To formulate and verify the Langevin approach, we 
consider in Sec. 1 a test problem for which an exact solution 
of the Heisenberg equations of motion was obtained in Ref. 
13. In Sec. 2 we calculate on the basis of this approach the 
statistical properties of the light and present numerical esti- 
mates for a two-photon interaction. Section 3, where a gen- 
eralized P-representation is used, contains the results for m- 
photon interaction. 

1. LANGEVIN APPROACH FOR THE TRANSPORT 
EQUATIONS 

Using the test problem dealt with in Ref. 13, we consid- 
er methods of defining correlators of Langevin forces by 
starting from a Fokker-Planck equation written in transport 
form. 

We recall first the principal premises of quantum trans- 
port theory, which we cite for the simple case of propagation 
of one-mode light along the z axis. By forming packets of 
plane waves with wave numbers k in the interval [k, - IT//, 

k, + r / l ]  and centered about a selected mode k, = 2rA ; ' 
( f i  = c = e = 1 ) , where I is the cell dimension in the auxilary 
normalization volume LS, (A, 4 I < L) ,  the operator of the 
electric field can be expressed in the Heisenberg representa- 
tion as 

E ( z , ~ ) = -  iz( W-)"' 
2LS,&" 

a, ( t )  exp ( i k z )  + H.a. 
h-h., 
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Here [ a ,  ( t ) , a , .  ( t  + T) ] = exp(iwkr)6,,., and for the op- 
erators c + and which can be interpreted as photon cre- 
ation and annihilation operators at the point z (space cell 
with dimension I ) ,  we obtain the commutation relations 

[C(z, t), C+(Z, t i % )  I =exp (iooz) l6( (T), (1)  

sin (2/21) 
lim 16r ( r )=  
u- - 2/21 . 

The operators c + and can be used to express all the 
necessary mean values, particularly the radiation.photocur- 
rent-spectrum $*'(a)  or the noise spectrum. This is precise- 
ly the quantity measured in experiments on light statistics. 
The expression obtained in Ref. 16 for $* ' (a)  takes in the 
plane-wave approximation the form 

I 
ie' ( Q )  = A [(n(z) )1-1+2q2-2 ~e J dr  r"'g(z, r ) ]  . 

0 

where q is the quantum efficiency of the photogeometry 
whose geometry is accounted for by the factor A a q. 

A resonance variant of parametric frequency division 
or of subharmonic generation in an extended medium was 
considered in Ref. 13 for the case of a classical pump wave 
whose frequency o is at resonance with the atomic transition 
o,,: w = w/2 + w/2~w,, .  The transport equation ob- 
tained for the density matrixp of a signal-wave subharmonic 
of frequency w/2 corresponds to the unitary development: 

(ar+az)~(z, t)=-i[V, p], 

V=h(Cf )'+ H.a., 

C=C exp ( -ha t ) ,  

where the interaction constant A is proportional to the com- 
plex amplitude of the pump wave, the development of which 
can be considered independently. A solution of (2)  for speci- 
fied boundary conditions is easily obtained by changing to 
the Heisenberg equations of motion for the operators C: 

As a result of which all the observable quantities of interest 
at the exit from the medium are expressed in terms of mean 
value at the entry. 

The method of Langevin equations, which can be deter- 
mined from the transport equation, is a varient of the Hei- 
senberg picture for non-unitary development (and inciden- 
tally, also for the unitary). To formulate it we rewrite (2)  in 
the P-representation: 

Note that Eq. (3)  is exact. 
We introduce the polar coordinates a = r exp ( ip )  and 

make the change of variables p -. $ = 2 p -  pH ,  where 
q, = arg A is, apart from an additive constant, the phase of 
the pump wave. We assume that the signal-wave field fluc- 
tuates weakly about the semiclassical values: 

The conditions (4)  make it possible to linearize the coeffi- 
cients in (3)  and to obtain for $" and n the semiclassical 
equations 

(a,+a,)go (z, t)=-4(II sin go, 

(a,+a,)n(z, t)=4lhln cos zpo 

with specified boundary conditions. The system (5)  has an 
integral 

Equation (3)  can be linearized in the form 

I'=4lh)eos 90, rI=-4lji,ln sin go, 

Qec=21hl n cos go, Q,,=-21hlsin $Ja, 

Q,=-21 Iln-I cos go 

It is quite evident that the diffusion coefficients can be nega- 
tive here, thus attesting to the NCS of the field, since we are 
using here the Glauber quasiprobability. 

Let us write down the Langevin equations correspond- 
ing to ( 7 ) .  As shown in Ref. 14, the transition procedure can 
be rigorously substantiated. These equations take the form 

Given the boundary conditions, we choose the random-force 
correlators in the form 

All other correlators are equal to zero. 
Equations (8)  and (9) make it possible to calculate all 

the necessary mean values. Thus, 

g(z, z)=n2(z)+(e(z, t )e  (z, t i z ) ) ,  

where n ( z )  are determined by the solution of the semiclassi- 
cal problem. 

It follows from (8)  that 
I 

E (L, t ) = e  (0, t - z )oxp  (~dr , I ' (z , ,  t-z) 
0 
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where ~ ( 0 ,  t - Z) are the values on the boundary of the medi- 
um. To calculate g(z, T) we use a simple situation in which 
the phase difference on the front boundary is $,(O): 
sin $,(O) = 0. It follows from (6) that it is conserved as the 
light propagates through the medium: sin $,(z) = 0. As a 
result we have 

where K = n (z)/n (0)  and n (0)  is the average number of 
photons on the boundary. The correlator at the input is as- 
sumed given. It can be expressed by specifying the field sta- 
tistics on the boundary. To confine ourselves only to phys- 
ical states of the field, we consider cavity sources that 
generate light both in the classical state and in the NCS. A 
model of such a source was considered, for example, in Ref. 
17. We have for it 

Here r, is the width of the amplitude-fluctuation spectrum, 
n and 6 are respectively the stationary number of photons 
and the statistics parameter ( (n2) - (n2) = (n) ( 1 + c) ) 
inside the source, and Cis the cavity width. We have used in 
( 10) the connection between the mean value inside the cav- 
ity and on its boundary: 

As a result, omitting the terms independent of T, we have 

g2 (z)=KnE exp (-raz), 

g~(.r)=nK(K-1). 

Calculation of g ( z , ~ )  with the aid of exact solutions of 
the Heisenberg equations leads in ( 1 1 ) to an additional term 
g,(lS, (T) )' (Ref. 13). It describes spontaneous parametric 
scattering, i.e., the onset of subharmonics at n (0) = 0. This 
difference is due to the use of the small-fluctuations approxi- 
mation, in the framework of which purely spontaneous pro- 
cesses with n(0) = n(z) = 0 cannot be directly analyzed. 
This is the basic limitation of the considered method. The 
approximations employed, however, can be readily moni- 
tored and do not lead to unphysical singularities. Thus, the 
noise spectrum corresponding to ( 1 1 ) is of the form 

where we have introduced the power of the light incident on 
the medium, P(0)  = w,n(O)l-'. For the chosen source 
models we have 6> - 1/2 (the case { < 0 correspond to sub- 
Poisson statistics of the photons). For { = - 1/2 and 
C = r, we have $"(a)  > 0. 

Note that the above method is based on the Fokker- 

Planck equation for Glauber quasicoherence. In this case the 
P-function is certainly singular because of the NCS of the 
field. The Langevin approach obviates the need for explicit 
determination of the P-function to calculate the observables 
and obtain directly normally ordered mean values. 

2. PROPAGATION OF CLASSICAL AND SUBPOISSON LIGHT 
IN A MEDIUM WITH TWO-PHOTON ABSORPTION 

Let the light incident on the medium have a frequency 
w,, a power P(O), and arbitrary statistics. After passing 
through a layer ofthe nonlinear medium the light is incident, 
after going through a filter tuned to the frequency w, and 
having a pass band Aw, lands on a photoreceiver, and the 
noise spectrum i"'(S2) is subsequently measured (Fig. l a ) .  

The medium is simulated by a set N of identical immo- 
bile atoms with a working transition a e b  at a frequency w,, . 
The energy scheme of the atom is shown in Fig. lb. Incoher- 
ent pumps A, and A, ensure stationary populations pa and 
p, of the upper and lower levels. This model, used for the 
model discussed in Ref. 4 for four-wave mixing processes, 
makes it possible to consider two important physical cases. 
These are the Lamb-Scully two-level system with an inter- 
mediate-level working transition, and a two-level model of 
the Haken type, where the lower level is the ground state. 

To describe the two-photon interaction we use the tra- 
ditional effective Hamiltonian 

where s,+ and s, are single-atom operators corresponding to 
atom transition between working levels, fkIk2 is the coupling 
constant," 

Using the standard procedure of adiabatic exclusion of 
fast atomic variables, of the L a m b - S c ~ l l ~ ' ~ ~ ~ ~  or of the Ha- 
ken2'.22 type, we write down the kinetic equation for the field 
in the P-representation. To change over to the transport 
equation, we form a packet of plane waves with central fre- 
quency w0zo,,/2 and a , ,  w,: and with frequencies 
o, + w,zw,,. We consider the two-photon interaction in 
the lowest order in the coupling constantj  In this case the 
modes with frequencies o, and w, as well as the mode o, 
separated by a filter evolve independently. We can therefore 
confine ourselves to the simple one-mode approximation. As 
a result we obtain for the P-function describing the propaga- 
tion of the mode w, 
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FIG. 1.  System with multiphoton absorption: 
a--Optical scheme (NM-nonlinear medium, 
F-filter, PD-photodetector); b--energetic 

N M PD structure of the working levels of the absorber. 

a 
b 

Here yab is the transverse-relaxation constant of the work- 
ing transition, and the quantity b, for which we write the 
dimensional expression ( [ b ]  = c- ' ) , 

is connected with the cubic susceptibility d3' (Ref. 23) de- 
scribing two-photon resonance processes. The stationary 
populations pa,, are expressed in terms of a set of relaxation 
constants and of the pumping rate: 

The quantity pa is obtained from @, by making the substitu- 
tions y, - y , ,  y,  - y , ,  a -b ,  b-a.  

Equation ( 13 ) is written in the lowest approximation in 
the two-photon interaction, so that the effects connected 
with the change of the level populations by the field are not 
taken into account. This imposes on the field strengths con- 
straints that are of no importance in what follows. As a con- 
sequence of this approximation, the structure of ( 13) is inde- 
pendent of the type of transition. We have confined ourselves 
in ( 13) to derivatives with respect to a of order not higher 
than second; i.e., we have used the diffusion approximation. 

Let us linearize ( 13), assuming the fluctuations to be 
small: 

For n and p, Eq. ( 13 ) leads to the quasiclassical boundary- 
value equations 

It is convenient to express the solution for n in terms of di- 
mensional powers P(0)  and P(z) of entry into and exit from 
the medium: 

where we have introduced the dimensional light intensity at 
the entrance boundary: 

After linearization, Eq. (13) takes the same form as 
(7); 

The corresponding Langevin equations are 

(a,+d,)~=I'~e+f~ (z, t ) ,  

(at+a.)p=-rZ&+j,(z, t), 

where the nonzero random-force correlators are defined in 
accordance with (9) .  It is seen from (17) that the intensity 
fluctuations do not depend on the phase fluctuations. In the 
presence of detuning (S#O) the phase fluctuations are in- 
fluenced by the intensity fluctuations. With account taken of 
the relation 

which follows directly from ( 14), the solutions of ( 17) with 
the specified boundary conditions will be 

a 

n(z)r 
a ( r ,  t )  = R e  (0, f-z)+ dz,( -) f, (z,, t-z), 

n(z1) 

p(z. t)=p(O, t-I)+ 0 J L ~ I - - ~ , & + ~ ~ ( Z ' ,  t-r) I .  

K is defined in ( 15). It has the meaning of gain or loss. We 
have K = 1 at the boundary of the medium, meaning at 
z = 0, K > 1 for amplification, when pa > pb , and K < 1 for 
absorption. Using ( 18), we get 

(E  (2. t) e (z, t+z))=K4<e (0, t-Z)E (0, t+?--z)) 
-'/3n(z) ( I - K 3 )  [1+4~e!(cp,-~pb) 116r(z). 
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From this we obtain for T = 0 an expression for the normal 
dispersion of the number of photons leaving the medium 
((n2(z)) - ( n ( ~ ) ) ~ ) ( n ( z ) ) - '  - 1 = (~ (z , t )~ (z , t ) ) / n ( z ) ,  
which agrees with the value obtained in Refs. 10 and 15. 

For field states on the forward boundary, which are de- 
fined in accordance with ( lo) ,  we obtain 

This expression shows how the light noise is transformed 
either classically (ga0)  or with sub-Poisson statistics 
(6 < 0) in the case of two-photon interaction with a layer of 
the medium. Thus, as the light propagates the excess noise of 
the initial radiation [the second term in ( 19) ] is altered by 
addition of a broadband component [last term in ( 19) 1. 
Amplification only increases the noise. In the absorption re- 
gime (K < 1 ) the excess noise of the source decreases in pro- 
portion to K and the broadband component tends to its 
limiting value qiJ3. Thus, in the case of a long absorbing 
medium, when K 9 1, the noise-suppression level can 
amount to 33% of the shot-noise level. The noise-suppres- 
sion band Aw can be estimated from two conditions. First, 
the rate of field evolution, 4bn in this case [see Eq. ( 14) 1, 
should be much slower than the atom-development rate y,, 
which reduces to the atomic relaxation constants 
yAT = {y ; ,  y;, yab). Second, we have assumed in the trans- 
port equations that the field is practically constant over the 
length Iof the auxiliary cell, viz., I(0)IB -' 4 1. As a result it 
follows for Aw a I -' that 

Figure 2 shows the noise spectrum for = 0 and q = 1 
as a function of K, i.e., of the length of the medium, when 
coherent light (6 = 0) or sub-Poisson light (6 = - 1/2) 
with fully suppressed noise ( C  = r, ) is incident on the 
boundary. 

We present now numerical estimates. Let the photore- 
ceiver be ideal, i.e., q = 1, - Imx"'- A.s .V-~ (Ref. 
23). A, = 0.5 pm. For the case of absorption under condi- 
tions of exact resonance (pa, S = 0)  we have in Eq. ( 16) 
B = 6.10' W/cm. At an absorber length I = 1 m and at entry 
intensities I (0 )  -6-54 MW/cm2 the value of K 3  is 10-'- 

FIG. 2. Dependence of noise spectrum on the length of the medium: I- 
coherent light incident on the boundary of the medium; 2-light with fully 
suppressed noise is incident on the boundary of the medium. 

lop3. This means the excess noise of the source is suppressed 
by a factor 10-lo3. For a long medium, e.g., 1 = 1 km, the 
same values of K are assured at much lower intensities, 
1(0)  - 12-54 kW/cm2. Note that for sources of power 10 
mW-10 W and for a beam diameter on the order of 10 p m  
(fiber optics) the intensity is 11 kWkm2-1 1 MW/cm2. 

3. m-PHOTON INTERACTION 

We use for this case the effective Hamiltonian (12), 
where 

We calculate the noise spectrum using the generalized P- 
r ep re sen ta t i o~~~  

Theintegration measuredp (a,P) = S ( a  - 0 *) in (20) cor- 
responds to the Glauber quasiprobability, while 
d p ( a , a + )  = d2ad2a+,wherea+ =P*andaaretwoinde- 
pendent variables, corresponds to a positive P-representa- 
tion with quasiprobability P(a ,a f  ). The latter is in an ana- 
lytic function of the variables a and a+. The use of the 
generalized P-representation makes it possible to formulate 
the problem in the framework of traditional diffusion pro- 
cesses. 

In the considered case we obtain for P ( a , a + )  an equa- 
tion containing high-order derivatives with respect to a and 
a+. The diffusion approximation, in which derivative of or- 
der not higher than the second are used, leads to a Fokker- 
Planck equation with a non-negative diffusion matrix: 

Here 

A,=- abmmam-' (a+)"-'(i-i&d, 
~2=t/raabmm(m-1)am-'(a+)m-2(~-i~m), 

A,= bmmaam-I (a+) "-'cp. ( q h - ~ b ) . - ' ,  

6"= ( o * - m o ~ )  ra-'. 
b,=N I f'"' 1 (cpa-qs) ['f* ( 1+6mZ) 1 "a 

The corresponding Langevin equation is 

(a,+a,) ( :+ ) = - ( A:) + D:~~.(Z. t ) .  
Ai 

(21) 

where the diffusion-matrix elements are 

For a random source 

which describes in this case a Wiener process, the nonzero 
correlators are defined by the relations 
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<r) (z, t ) q ( z n 1  t') )=(q+(z1  t )q+  (z ' ,  t') >=161( t - t ' )6 (~ -~ ' j r  

Methods of noise-spectrum calculation with the aid of 
an equation such as (21) are well known, see, e.g., Ref. 25. 
They duplicate formally the derivations of the preceding sec- 
tions. Thus, introducing the polar variables I = a a + ,  
@ = ( 1/2i)ln(a+/a) we use for the calculation of the mean 
valueg(z,~) = (I(z,t)I(z,t + T)) ,  the small-fluctuation ap- 
proximation: I = n + E,  E < n. For n we obtain from (2 1 ) the 
quasiclassical equation 

As a result, the expression for the noise spectrum takes the 
form 

where K = P(z)/P(O) . 
It follows hence that NCS fields with suppressed noise 

appear only in the case of absorption at m > 1. Independent- 
ly of the statistics of the field at the entrance in the cae of a 
long medium (K< 1, p, ~ 0 ) .  

The shot noise can thus be suppressed at q=: 1 by a factor m/ 
(2m - 1 ) . As m -+ w the suppression level of the shot com- 
ponent of the noise is 50%. 

Note that Eq. (21 ) is precisely the differential equation 
obtained by using the diagonal representation with a+ +a*. 
Calculations using the Glauber quasiprobability for the 
noise spectrum lead to the same result as those based on 
P ( a , a +  ) . This circumstance allows us to assume that a diag- 
onal representation can be used to calculate the observables 
if the field is in an NCS. 

CONCLUSIONS 

Light propagation in a medium produces broadband 
structures in the intensity-fluctuation spectrum. For a mul- 
tiphoton absorber this lowers the noise output to below the 
shot value. The obtained shot-noise suppression level is 33% 
for two-photon absorption and 50% for m-photon absorp- 
tion as m-+ a. These values are not the theoretical limit, 
which can reach 100%. But the noise suppression takes 
place in a broad frequency band Aw whose value can exceed 
substantially the width of the excess-noise contour of the 
initial source. 

Effective suppression of excess noise of light calls for a 
long absorber, I(0)zB -' % 1. The latter is ensured either by 
high input light intensity I (0 )  or by using an extended medi- 
um with large z. Numerical estimates show that a reduction 

of the excess noise by, say, a factor of one hundred takes 
place at I(0)zB -'=:3.6; i.e., for z = 1 m we have I ( 0 )  = 22 
MW/cm2, for z = 100 m we obtain I ( 0 )  ~ 2 2 0  kW/cm2. 

The necessary condition for suppressing shot noise of 
light is the onset of an NCS of the field. In multiphoton 
absorption there is produced a sub-Poisson light which un- 
der the above conditions is squeezed in amplitude. Our anal- 
ysis of the phase fluctuations shows that states squeezed in 
phase are produced neither in absorption nor in amplifica- 
tion. This is due to the absence of a physical mech- 
anism that stabilizes the phase fluctuations. 

A Langevin approach was proposed for the calculation 
of the statistical characteristics of light propagating in a me- 
dium. It yields observable properties without an intermedi- 
ate calculation of the quasiprobabilities. The results of the 
diagonal representation and of the generalized P-representa- 
tion agree. This attests to the possibility of using the diagonal 
representation along with others in problems with an elec- 
tromagnetic field in the NCS. 

In conclusion, the authors thank A. S. Troshin for con- 
stant interest in the work and Yu. M. Golubev for their at- 
tention to the possibility of using Green's functions to solve 
analogous problems. 
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