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A general relation is found in the Markov approximation for the retarded Green's function of a 
subsystem interacting with a reservoir in thermodynamic equilibrium; we use it to describe 
spectra of anharmonically coupled high-frequency valence and resonant deformation vibrations 
of molecular subsystems in the condensed phase. The theory takes into account the degeneracy of 
the libration resonant modes which are characteristic for molecular complexes with hydrogen 
bonds and the presence of thermally activated reorientations of surface groups of atoms. We 
develop a perturbation theory for the Pauli equation and use it to calculate second-order 
corrections to the rate at which subsystems leave a given group of states. The results obtained 
agree with the observed spectra of actual molecular subsystems. 

1. INTRODUCTION 3 .. i 
HPs( t )+  xiA,+(i.),+B.(t).bs(t) I 

Practically any experimental study of an arbitrary sys- 
tem reduces to measuring the response of some physical 0 

i 
characteristic A of the system to a probing external action = - !- dr Tr[Ai', [ v ~ ~ [ . ~ ( ~ s + l i a ) ~ ]  
corresponding in the general case to some other characteris- ?i2 - w 
tic B. The required response is then described by a retarded i 
Green's function (GF) which is convenient for the calcula- x*^vexpl- - ( B ~ + A ~ ) T ]  , ba(t)bI~]]. 
tions and which contains sufficiently complete information f i  

about the states of the system: 
(4) 

AP-P-(P),, ( P ) ~ = T ~ ( & P ) ,  
G ( t )  = - i B ( t )  ( [ A  ( t )  , B(0) I) ,  

whereb, is the equilibrium reservog operator (the expres- 
i 

~( t )=exp(-&)A exp(-+At). sion with a nonvanishing operator ( V), is derived in detail 
ti ,,, inRef.3). 

\ I )  In the present paper we obtain a Markov approximation 
(. . .)=sp(p..  .), ~ = ~ X ~ ( - A I T ) I S ~ [ ~ X ~ ( - B I T )  1, for the G F  ( 1 ) which is expressed in terms of the G F  of the 

A h  

where A and B are the operators of the physical quantities A 
and B and j? is the equilibrium statisti%al operator of the 
system determined by its Hamiltonian H and the absolute 
temperature T (in energy units). In many cases one is int%r- 
ested in the properties of a subsystem with a Hamiltonian H, 
which is coupled with the remaining large part (reservgr) 
of the total system, dzscribed by the Hamiltonian H,, 
through an interaction V. We have then 

A h  A A 

H = H s  + H R  + V ,  (2)  
A A A 

and the operators A and B occur only in the Hamiltonian H,. 
This fact by itself d o e s ~ o t  lead to any simplification of Eq. 
( 1) since the operator Vcontaining the variables of t h~sub-  
ystem and of the reservoir does not commute with H, or 
H R  . 

On the other hand, there exist well developed methods 
for calculating states of subsystems using the Markov ap- 
proximation for the reduced density matrix (statistical oper- 
ator) of the subsystem@, = Tr (Tr indicates the trace over 
the variables of the reservoir) .2 The average value of a phys- 
ical quantity A ( t )  now will be determined by the trace of the 
product of operators of the subsystem only: 

and the response to %n external action described by a time- 
dependent operator HB ( t )  will be included in the operator 
b, ( t )  satisfying the equation 

differential Eq. (4).  The latter turns out to be extraordinar- 
ily convenient for analyzing the spectral characteristics of 
molecular subsystems in the condensed phase and enables us 
to study relaxation processes in systems with a finite number 
of states of a given kind. We discuss in detail the range of 
applications of the proposed approach. 

At the present time there are a number of experimental 
examples of a strong temperature dependence of the line 
shape of high-frequency local oscillations of different mole- 
cular subsystems in the condensed phase. Among them we 
have the valence vibrations of the OH groups on a silica 
~urface ,~  CO groups absorbed on the ( 11 1) surface of Pt 
(Ref. 5)  and of Ni,6 hydrogen on the (100) surface of Si,' 
and also molecular complexes with a hydrogen bonds.9 (see 
also the surveys in Refs. 10 and 11 ). The frequencies w,  of 
these oscillations are much higher than the Debye frequency 
w, so that the observed temperature dependences are ex- 
plained by dephasing of the local oscillation by low-frequen- 
cy random reorientations of the m~lecules"~ '~  or low-fre- 
quency torsional deformation ~ s c i l l a t i o n s . ' ~ ~ ' ~ - ~ ~  In the first 
case this coupling appears due to orientational factors in the 
correlator of the dipole moments and in the second case 
through the occurrence in the Hamiltonian of an anhar- 
monic coupling of the modes considered (exchange dephas- 
ing m ~ d e l ' ~ ~ " ) .  The low-frequency molecular modes in that 
case interact resonantly with the phonons of the reservoir of 
the condensed phase. 

The use of the Markov approximation in the framework 
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of the exchange dephasing model made it possible in Refs. 18 
and 19 to obtain analytical expressions for the spectral line 
shape of the valence oscillations. However, comparison with 
experimental data showed that for a quantitative description 
of the observed dependences one must overestimate by an 
order of magnitude the value of the coefficient of the anhar- 
monic coupling between the valence and the torsional oscil- 
la t ion~. '~ Since this coefficient is the only anharmonic pa- 
rameter of the exchange model its overestimated value 
indicates the need to include other sources of anharmonicity 
in the systems discussed. 

The torsional oscillations are strongly anharmonic; 
they are characterized by well defined values of the energy 
barriers AU separating equivalent (with a rotation angle 
9 = 2a)  or nonequivalent (with q, = 21i-/I, I = 2,3, ...) equi- 
librium orientations of the molecules in the condensed 
phase. One can talk about torsional oscillations only for suf- 
ficiently low values of the energy E < A U, whereas for E 2 A U 
stochastic reorientation processes dominate which lead to a 
broadening of the spectral lines by the magnitude of the aver- 
age reorientation frequency." The simplest way to take into 
account the anharmonicity of the torsional oscillations thus 
consists in considering a limited number of orientational 
states (with E < AU), which leads to the observed Arrhen- 
ius-type temperature dependence of the line width in the 
factor exp( - A U/T). The pre-exponential factor depends 
on the relations between the parameters of the problem 
which were established in the classical considerations of Ref. 
21. 

The problems discussed here are closely connected with 
the problem of calculating the rate at which a particle leaves 
a potential well, which determine the speeds at which chemi- 
cal reactions proceed. The most consistent description of 
low-temperature chemical reactions taking tunnelling and 
dissipation processes into account was given in Ref. 22. We 
shall be interested only in the thermally activated contribu- 
tion which dominates for many systems at not too low tem- 
peratures. 

We list the main results established in the present paper. 
The general expression obtained in Sec. 2 for the GF in the 
Markov approximation is made specific for the cases of reso- 
nant oscillations and for local high-frequency oscillations 
which are anharmonically coupled with the phonons of the 
reservoir through several low-temperature exchange modes 
(Sec. 3). Since the GF of resonant oscillations caused by the 
anharmonic coupling of a given mode with the quasi-contin- 
uous spectrum of the reservoir modes can be represented in 
an exact analytical form its comparison with the results of 
the Markov approximation enables us to judge the domain of 
applicability of the latter and to justify a number of simplifi- 
cations which are used in the exchange model when one con- 
siders local low-frequency oscillations. In contrast to the re- 
sults of Refs. 18 and 19 we take into account in Sec. 3 several 
noninteracting exchange modes. When they are degenerate 
the expressions for the line shape simplify and give a simple 
formula describing a strong one-sided temperature broaden- 
ing of the spectral bands of the molecular complexes with a 
hydrogen bond in the condensed phase. 

We show in Sec. 4 that the problem of determining the 
line shape of a molecular valence oscillation which is anhar- 
monically coupled with resonant deformation oscillations, 
described by a subbarrier transition in the potential of a hin- 

dered rotation, reduces to the solution of the Pauli equation 
with perturbed transition rates. The latter are the sum of two 
contributions arising due to ihe anharmonic coupling with 
the deformation mode and transitions from the subbarrier 
into superbarrier states. 

A perturbation theory for the Pauli equation is devel- 
oped in Sec. 5. The results of this section are equations for 
the position of the maximum and the spectral line width 
which take into account a finite number of subbarrier defor- 
mation states and therefore simultaneously describe not 
only exchange dephasing, but also thermally activated reor- 
ientation broadening mechanisms. The second order of per- 
turbation theory made it possible to generalize and make 
more precise the well known expressions for the rate of ther- 
mally activated departure of a particle from a potential well 
for the classical21 and low-temperaturez3 limits and also for 
the case of a single subbarrier level." In Sec. 6 we discuss 
how these relations apply to actual experimental systems 
and the prospects for using the approach developed here to 
solve other problems. 

2. MARKOV APPROXIMATION FOR THE GREEN'S 
FUNCTIONS 

We find the linear response of a subsystem in contact 
with a reserv0if;t.o an external perturbation corresponding to 
some variable B of the subsystem and depending on the time 
through a function F( t)  , so that the corresponding perturba- 
tion operator can be written in the form 

We substitute ( 5 )  into Eq. (4) and we shall look for a solu- 
tion of the latter in the form 

whereb, is the equilibrium statistical operator of the subsys- 
tem. The matrix elements of the linear response F ( t )  in the 
basis of the eigezstates of the Hamiltonian Hs(GpAq. ( t )  
= (qIGb(t) lq'), Hslq) = E, Iq)) to the perturbation H, ( t )  

will satisfy the following equation: 

Here pq is the diagonal matrix element of the equilibrium 
statistical operator b, of the subsystem and the matrices fl 
and r with four indices are given as follows (see, e.g., Ref. 3 
where these quantities a F  obtained taking into account a 
nonvanishing operator ( V), and nonvanishing frequency 
shifts arising from principal-value integrals which are usual- 
ly neglected in other sources) : 
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lWqq, (T)= exp ( - H R t  * ) AP,,. exp (-ifiIl~), 

We introduce the GF, with four indices, of the left-hand 
side of Eq. (6):  

in terms of which one can easily express the linear response 
(f): 

6pqq, (t) = - - ; 2 j dttgqqb ( t  - tl) BG. - P;) P F). 
49' -m 

(9 )  

Substituting (9 )  into (3)  we are led to the usual way of 
writing down the time-dependent average value of a physical 
quantity A ( t )  as the linear response to the perturbation (5):' 

in which the required G F  ( 1 ) is determined by the following 
expression: 

Together with Eqs. (7) and (8),  Eq. ( 1 1 ) solves the given 
problem of finding the G F  of a subsystem in the Markov 
approximation. 

3. RESONANT AND HIGH-FREQUENCY LOCAL 
OSCILLATIONS 

To begin with we consider the model of resonant oscil- 
lations which allows an exact analytical solution, which we 
shall compare with the result ( 11 ) of the Markov approxi- 
mation. Assume that some mode with frequency w ,  (which 
we shall relate to the subsystem S )  is harmonically coupled 
with the phonons of the reservoir w ,  : 

(here X ,  describes interaction of the modes S and k) . The 
contributions of ( 12) to the Hamiltonian (2)  of the system is 
a quadratic form of the second quantization bose operators 
b,, b g ,  b, ,  b ,+ which can easily be diagonalized by means 
of a unitary transformation: 

so that 

a = n%(fi.-p. + I / . ) .  

v 

I f ~ e  choose the bs and b ,+ operators for the operators 
Â  and B which occur in the general definition ( 1 ) of the GF,  
the exact expression for the latter takes the form 

Assuming the phonon spectrum of the reservoir to be quasi- 
continuous (with the frequency gaps between the levels go- 
ing to zero, Aw, + 0 )  and using the idea developed in Ref. 24 
for describing such spectra, one can easily show that the 
absolute values of the squares I C,,, l 2  of the coefficients of the 
unitary transformation which we need to have a resonance 
form: 

( C , , ( ~ = , ~ ( O ~ )  A O ~ ( [ O . , - O ~ - ~ ( O ~ ) ] ~  + di jZ(~v)) - ' ,  
(16) 

where 
m 

Substituting (16) into ( 15) and the Aw, -0 limit replacing 
the integral sum by an integral, we are led to an exact expres- 
sion for the G F  of the resonant oscillations: 

4 ( o )  e-'"'do 
G(t)=-ie(t) J - 

[o-os-P(o) 12+n2ij2(o) * ' 
(18) 

- - 
In connection with the derivation of Eq. (18) given 

here it is interesting to note that the Lorentz resonance form 
of Eq. (16), necessary to describe dissipative processes on 
the basis of reversible dynamic equations,25 arises in a very 
natural way from the definitions formulated in Ref. 24 of the 
quasicontinuous spectrum of the reservoir. 

We now obtain the G F  of the Markov approximation, 
using Eqs. (7) ,  (8) ,  and (1  1). For the Hamiltonian (24, 
( 12) of the system we have 

Substituting (19) into Eq. (8 )  and summing it over the in- 
dices q and q' we find the equation 

for 

(21 
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according to ( 1 1  ) we can express the required G F  in terms of 
this quantity: 

Solving Eq. ( 2 0 )  and subsequently summing over 4 is ele- 
mentary and gives the following result of the Markov ap- 
proximation: 

A comparison (23 ) with the exact Eq. ( 18) shows that the 
Markov approximation is valid for slowly changing i j ( w )  
and P ( w )  in the vicinity of o = w ,  for ij(o, ) gw, .  The val- 
ue of the integral in ( 18) will then be approximately deter- 
mined by the pole 

of the integrand, which leads to Eq. (23  ) . 
The formulated restrictions on the functions p ( w )  and 

@ ( w )  are important for an understanding of a number of 
approximations which have been made in the exchange de- 
phasing when finding the spectral line shape for a 
high-frequency local o~cillation.'~.'~ The Hamiltonian of 
this model with a high-frequency mode w ,  and a single low- 
cequencl exchange mode w ,  is given ky Eq. ( 2 )  in which 
HR and V are given by Eqs. ( 12) while Hs has the following 
form: 

where a  and a+ are the second quantization operators of the 
mode a .  The high-frequency mode is coupled through the 
anharmonicity coefficient y with the resonant oscillations 
having frequency w ,  [or, more strictly, having the renor- 
malized frequency ws + P ( w s ) ] .  The required G F  of the 
high-frequency mode is in the Markzv appxoximation ob- 
tained from the general Eq. ( 11) for A = a, B = a+  and the 
GFgqqrqq with q = {na ,nb)  (a+aln, )  = n, In,), b +b In,) 
= nbInb) ) :  

In this formula we have used the inequality ha ) T, thanks 
to which it is sufficient to consider states with n, = 0  and 1, 
and also to p ~ t p , , ~  = 0  (the quantity pOnb is denoted by pnb ). 

Equation ( 8 )  for g,,,; ( 1 )  contains the matrix element with 

four indices rqqqq, of the collision integral, which has the 
structure of the corresponding expression in (19) with 
q = q' = n,, 4 = 4' = n;,  and with the difference that due to 
the last term in ( 2 4 )  the quantities i j (w,  ) and n, depend on 
the frequency w ,  to within a term proportional toy. Since we 
have assumed the function ij ( a )  to be slowly changing in the 
vicinity of the point w  = a , ,  for y g w ,  we can neglect this 
difference. 

In the Markov approximation for @(us ) and y g o ,  the 
G F  gnflL ( t )  will therefore satisfy the equation 

The structure of the left-hand side of Eq. ( 2 6 )  is the same as 
the homogeneous equation of Ref. 17 for the matrix elements 
pon,l,, of the reduced density matrix of the subsystem con- 

. . 

sidered. A numerical solution of that equation was given in 
Ref. 13. Exact analytical expressions for the spectral line 
shape of a high-frequency local oscillation were obtained in 
terms of this model by generating-function" and tempera- 
ture-GF19 methods. Using the approach of Ref. 18 one can 
easily obtain an analytical expression for the G F  ( 2 5 )  in the 
case of several low-frequency exchange modes wj 
( j = 1,2, ..., 1 )  which do not interact with one another either 
directly or through the reservoir: 

(1-Ej)exp ( - i h t )  
G ( 8 ) = - i O ( t ) e n p ( - i o . f )  

j,, l-gj exp ( - h i t )  
. ( 2 7 )  

Here we have 

l - p  g, A = - - ( I - p ) ,  if s v = - b  i r l (1-f  p2) 

1-8 ( 1 - z ) ~  ' 

and to simplify the notation we have omitted the index j of 
the quantities g, y, 7, p, E, A, and Y. 

One can simplify Eq. ( 2 7 )  in the case, important in 
practice, of I degenerate exchange modes which is realized, 
for instance, for molecular complexes with hydrogen bonds. 
For the high-frequency mode w, one can use the valence or 
deformation oscillation of a hydrogen atom which is anhar- 
monically coupled with four ( 1  = 4 )  degenerate libration 
modes, the low frequencies of which are caused by the rela- 
tively weak interactions of the hydrogen bond of two molec- 
ular fragments (Fig. 1 ) . The spectral function of the high- 
frequency oscillation near w ,  for the I degenerate exchange 
modes, after we have expanded the denominator in ( 2 7 )  in a 
series and integrated over the time, takes the form 

FIG. 1.  Low-frequency modes of librational oscillations of a molecular 
complex with a hydrogen bond. 
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For I  = 1 the expression obtained reduces to the results ob- 
tained in Refs. 18 and 19 and in the high-temperature limit 
( T )  fiwj ) and for v( y gives a simple formula1 for the 
strong single-sided temperature broadening of the spectral 
lines of complexes with hydrogen bonds: 

The exact Eq. (29) takes into account the effect of the 
reservoir (the condensed phase) on the spectral line shape 
through the parameter 7. Consideration of an actual micro- 
scopic model of the valence-deformation oscillations makes 
it possible to estimate the basic parameters y and 77 of the 
theory and to introduce the anharmonicity of the exchange 
mode which is connected with the presence of a reoriented 
barrier of the deformation oscillations and thereby to fully 
exploit the advantage of the G F  representation in the form 
( 1 1 ) which allows summation over a finite number of states. 

4. VALENCE-DEFORMATION OSCILLATIONS OF 
MOLECULAR SUBSYSTEMS WITH HYDROGEN BONDS 

As a simple model which takes into account valence and 
deformation oscillations of molecules and which is imbed- 
ded in the condensed phase we consider a diatomic molecule 
with two degrees of freedom corresponding to valence (in 
the radial variable r)  and torsional (in the angular variable 
p) oscillations: 

where m is the mass of the atom subject to angular deforma- 
tions, m* is the reduced mass of the molecule, ro is the equi- 
librium radial distance, and the approximate expression for 
the potential U(r,p) describes the valence oscillation of fre- 
quency w, and the hindered rotation of the molecule in the 
I th well potential ofthe surrounding atoms. A reduced Ham- 
iltonian was used in Refs. 3 and 11 for the description of the 
vibrational states of surface groups of atoms with rotational 
degrees of freedom and can serve as a microscopic model 
which takes into account the basic factors that form the spec- 
tral line of the high-frequency valence oscillation of a mole- 
cule coupled with the low-frequency deformation mode. 

The presence of the radial variable r in the operator of 
the angular kinetic energy and the radial dependence of the 
reorientation barrier AU(r) guarantees the coupling of the 
radial and the deformation motions. The largest contribu- 
tion to the broadening of the spectral line of the valence os- 
cillations with the high frequency w, > 3w, (w, is the 
Debye frequency) comes from the fourth-degree anhar- 
monic coupling terms, which are proportional to 
( r  - r0)2p and which take into account the self-scattering 
of the local oscillation interacting with the low-frequency 

 mode^.^'.^^ The third-degree anharmonicity ( r  - ro)p 
gives a contribution of comparable order of magnitude to the 
temperature-dependent shift of the same line (in the expres- 
sion for the line shift the corresponding anharmonicity coef- 
ficients Crr,, and C,,, occur in the combination C,, 
- C,,, C,,,/m*w; and the first and second terms turn out to 

be of the same orderz9). The conclusion from Ref. 17 which 
has entered the literature, namely, that the contribution of 
( r  - r0)'p also dominates in the line shift was based on the 
simplification that all anharmonicity coefficients are equal 
to unity. Neglecting (as in Refs. 13 to 19) the anharmonic 
terms which do not contribute to the spectral line broaden- 
ing, after changing to the second-quantization operators of 
the plence oscillations we get the following representation 
for H,, : 

where w, -- 1 ( AU /2mr2, ) 'I2 is the characteristic frequency 
of the torsional oscillations. 

In Fig. 2 we show schematically the eigenvalues E,~, of 
h 

the Hamiltonian Hr, which depend on the radial, n, , and the 
deformation, a ,  quantum numbers. For E,, 4 A U  the levels 
are grouped so that the gaps between groups are approxi- 
mately the same and equal to fio, whereas the tunnelling 
splitting which occurs for I >  1 in each group of I levels is 
exponentially small in the parameter 4AU/fio,.3311 Ne- 
glecting the tunnelling splitting we can assume the eigen- 
states IOU) to be localized in the wells of the deformation 
potential so that 

When the molecule has a single equilibrium orientation 
( I  = 1) the deformation potential is also characterized by a 

FIG. 2. Transitions guaranteeing the departure of a molecule from hin- 
dered rotation subbarrier states for n, = 0. 

752 Sov. Phys. JETP 75 (4), October 1992 V. M. Rozenbaum 752 



well defined barrier A U which separates the equivalent mini- 
ma. The subsystem Hamiltonian (24) used in the exchange 
dephasing with w, = w,, w, = w,, and 

correctly describes only the subbarrier deformation states 
(the operators b and b + are now defined by the standard 
expressions for the rnatri~~elerne~ts of the subbarrier states 
only). For the operators A and B in the G F  ( 1) when we 
describe the high-frequency response, taking the orientation 
of the molecule into account, we must put 

A =a cos cp, B=af cos cp. (35) 

By virtue of the properties of (33) the matrix elements A,., 
and Bqq in ( 1 1 ) will be diagonal in the q~antum~numbers a 
only for the subbarrier states, and the operator V takes the 
form ( 12) for those states. 

Indeed, it is shown in Ref. 12 (see also Ref. 3) that the 
interaction of the reorienting molecule with the matrix of the 
solid (in which it is embedded due to the rigid coupling with 
a single of its atoms) can be written as the energy of the 
d'Alembert force-mii in the noninertial frame of reference 
of the center of mass of the molecule undergoing an accelera- 
tion ii due to the vibrations of the solid: V = mrii. Expressing 
the deformation vector u in terms of the second quantization 
operators of the phonons of the reservoir and using the fact 
that the operators band b + arise due to the presence of sin p 
in the vector r = r,(cos pgin p ) ,  we arrive for the subbar- 
rier states to Eq. ( 12) for V with 

wherep is the density of the medium and V the volume of the 
basic region. In the case of a Debye spectrum for the pho- 
nons of the reservoir, characterized by the average sound 
speed c or the Debye frequency oD and the mass M of the 
elementary cell, the width of the resonant deformation mode 
takes the form1' 

For real systems we have m < M, ( ~ , / w , ) ~  4 1, fi/2mriw, 
< 1 and the estimates (34) and (37) satisfy the conditions v, 
y 4 w, formulated in Sec. 3 for the Markov approximation. 

Transitions between superbarrier states ( a >  N, see Fig. 
2) bring in elements of the density matrix which are off- 
diagonal in a and which for A U > Tgive a small contribution 
to the spectral function at frequencies of the order w, 
+ ( E ~ ,  - E ~ ,  )/fi (a# a'). As we are interested in the spec- 
tral function at frequencies near w, we can neglect this con- 
tribution. 

The required expression for the G F  of the high-frequen- 
cy mode, taking into account the anharmonic coupling of the 
latter with the exchange deformation mode, which is charac- 
terized by a well defined value of the reorientation barrier 
AU, thus takes the form (25) with a restricted summation 
over the quantum numbers n, = a = 0, 1, ..., Nof the subbar- 
rier states. It is then expedient to rewrite Eq. (26) in the 
following form: 

which corresponds to the Pauli equation with transition 
rates that are perturbed relative to W,,. . The perturbations 
o, determine the rate at which the molecule leaves the sub- 
barrier states which in Fig. 2 are enclosed by the dashed 
lines, and they consist of two contributions: departures due 
to the anharmonic coupling of the valence and the torsional 
oscillations and those due to the strong anharmonicity of the 
torsional oscillations which in the present model are deter- 
mined by the magnitude of the barrier A U. The last contribu- 
tion which is proportional to w,(N + 1)c was neglected in 
Ref. 13, since an equation of the type (38) with finite N was 
used for a numerical approximation of the N-. co case. In the 
next section we consider the properties of the G F  of the Pauli 
equation with unperturbed transition rates W,,, satisfying 
the principle of detailed balance, we construct a perturba- 
tion theory in the small corrections to the transition rates, 
and we give detailed results for a model with v, and W,, , of 
the form (39) and (40). 

5. PERTURBATION THEORY FOR THE TRANSITION RATES 
IN THE PAUL1 EQUATION 

We consider a subsystem characterized by states with 
energies E, and transition rates W,,, from a state q' into a 
state q, satisfying the principle of detailed balance. 

We write the Pauli equation3' for the probability p,  ( t )  for 
finding the subsystem in the state q at time t in  the following 
form, which is convenient for further transformations: 

d -pq(t)+ w ~ ~ . ~ ~ . ( ~ ) = o .  w , ~ = B , - ~  wq-,.-w.q,.(42) 
d t  

'I' 'I' ' 

The principle of detailed balance, valid for the quantities 
Wqq., guarantees the diagonalization of the nonsymmetric 
matrix W,,, with nonnegative elements: 

where the eigenvalues p, are also nonnegative and the or- 
thonormalization relations for the matrix elements C,, are 
defined with weights p, : 

If we denote the initial probabilities for state occupation at 
time t = 0 by p, (O), the solution of Eq. (42) takes the fol- 
lowing form: 

'I' 

The quantities introduced here have a number of prop- 
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erties necessary for establishing thermodynamic equilibri- 
um of the subsystem with the reservoir for t+  w . First of all 
we note that by virtue of the definition (42) the summation 
of the matrix elements Wqq, over the first index gives zero. 
Therefore summation over q of both sides of Eq. (43) makes 
the productp, 2, C,, vanish. As the rows C, of the transfor- 
mation are linearly independent it follows that there exists at 
least one eigenvalue p, equal to zero. We denote the corre- 
sponding index v by zero and we have then po = 0 and 
2,CqV = 0 for v#O. Summing the first of Eqs. (44) over q 
and using the fact that 2, p, = 1 we find 

These properties lead to the physically obvious conse- 
quences of the solution of (45) : 

pq ( f )  = pq for pq (0) = p,, and p, ( w ) =p,  for arbitrary 
initial conditions. 

The frequency Fourier component gg? (w) of the G F  of 
the unperturbed Pauli equation (42) [satisfying Eq. (42) 
with - S(t)Sqq, on the right-hand side], if we take (44) into 
account, has a pole for o = 0: 

Here E,,. (a) is determined by the general expression for 
gi:? (w) in which we exclude from the sum over v the term 
with pv = 0 so that, for instance, E,,. (0) is, when we take 
into account the weight factor p,, a pseudo inverse matrix 
with respect to Wqq, and satisfies the following identities: 

We now consider perturbations of the transition rates, 
adding to W,,, the contribution u,Sqq, which is diagonal in q. 
The perturbed G F  gqq, (w) will then be connected with the 
unperturbed one through the Dyson equation 

To second order in v, the required retarded G F  (25) is equal 
to 

and apart from the factor - iO(t) determines the probabili- 
ty that the subsystem leaves the given group of states (e.g., 
the one enclosed in the box in Fig. 2). The quantity T ac- 
quires the meaning (since u, and T can take on complex 
values) of a generalized loss rate. The spectral function cor- 
responding to Eqs. (25) and (38) acquires a Lorentzian 
shape: 

The first term in the expression (50) for T has a simple 
physical meaning: it sums the perturbed loss rates from each 
level of the subsystem, taking into account the equilibrium 
probabilities for their occupation. The second term, on the 
other hand, already depends on the unperturbed rates for 
transitions between states of the subsystem and by virtue of 
the definition of E,,. (0) is inversely proportional to them. 

We evaluate the pseudo-inverse matrix E,. (0) of the 
transition rates (40) between N + 1 low-energy states of a 
harmonic oscillator which interacts resonantly with the 
phonons of the reservoir. For this it is necessary to carry out 
the following operations: 1 ) write gg? (w) as the ratio of the 
appropriate cofactor and the determinant of the matrix 
iwSqq. - W,,.; 2) expand this quantity in a Laurent series in 
w and then the principal part of the Laurent series gives the 
first term of the right-hand side of Eq. (47) and the terms of 
zeroth degree in w from the regular part of the Laurent series 
determine the required E,,, (0) matrix; 3) calculate the de- 
terminants which appear and their derivatives with respect 
to w for o = 0 using relatively simple recurrence relations 
obtained by expanding a determinant of quasi-triangular 
shape (like the matrix (40) for W,,.) with respect to an 
arbitrary row or column. As a result we get 

Hereq, q' = O,1, ..., Nand it is understood that for q = q' = 0 
and for q = N sums with an upper limit of summation 
smaller than the lower one vanish. One checks easily that Eq. 
(52) found here satisfies the identities (48). 

For the problem (38) to (40) to second order in the 
perturbation theory of (50) and (51), which is valid for 
747 and 6 N+ 4 1 we can now find the half-width r of the 
spectral function and the shift Aw of the maximum relative 
to a,: 

where 

For a single subbarrier level we have A , ( g )  = 1, 
B,(g) = C0(6) = 0, and the half-width of the spectral func- 
tion is determined solely by the reorientation rate, which is 
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equal to the transition rate to the first excited state of the 
deformation  oscillation^:'^ 

r=qn (av) ,  n(a,) = [exp (hl?o,/T) -1 I-'. (56) 

For two subbarrier levels ( N  = 1 ) Eqs. (55) are an approxi- 
mation for 64 1 of the result of the two-level problem, valid 
for any values of <: 

Finally, in the other limiting case, N-. C O ,  the functions 
BN ({) and CN (5) are approximately equal to unity and Eqs. 
(53) and (54) reduce to the results of Ref. 13 for y 4 q. 

We draw attention to the fact that in first order of per- 
turbation theory we have A,  ({) = 1 and B, ({) = 0 in Eq. 
(53) for any Nand the expression for the rate of departure of 
the molecule from the subbarrier states reduces to two well 
known special cases. The first of these corresponds to the 
low-temperature limit 4-0 for 

The second special case corresponds to the classical limit 
1 - {+Tm,/T-0 and gives Kramers' re~ul t :~ '  

in which the parameter w, serves as the "viscosity" coeffi- 
cient. In second-order perturbation theory the coefficient 
AN ({) makes the first-order result more precise. For N )  1 
and 6 5  0.5 we get from (55) the asymptotic expression 

6. DISCUSSION 

The main results of the present paper which can be used 
for describing spectra of high-frequency local oscillations of 
molecular subsystems in the condensed phase are contained 
in Eqs. (29), (30), and (53) to (55) which involve two pa- 
rameters, y and q. According to the estimates of Ref. 31 
molecular complexes with hydrogen bonds are character- 
ized by values y = 3 cm- ' of the anharmonic coupling coeffi- 
cient and frequencies wj ~ 3 0  cm-', much less than the 
Debye frequency a,, of the librational oscillations. This fact 
leads to the inequality q ( y and the validity of Eq. ( 30), in 
agreement with the experimental data of Refs. 8 and 9 (a  
discussion of this problem is given in Refs. 11 and 26). 

Estimates of the parameters y and 7 for surface groups 
of atoms, carried out by using Eqs. (34) and (37) or similar 
relations in Ref. 13, show that y/q -0.1. If we put y/q = 0.1 
in (53) the reorientation contribution to the broadening 
starts to dominate over the anharmonic contribution with 
the coefficient y, starting at temperatures T>O.5&, for 
N  = 3 or T >  0 . 9 h ,  for N = 5. Assuming that the values of 
the barriers A U for CO bridge groups on Ni( 1 11 ) corre- 
spond to N S  3 and with the realistic estimates w, z 184 
cm-', w,  z 1900 cm- I, y- 1 cm-', q z 3 0  cm-' the reor- 
ientation contribution to Eq. (53) can explain the broaden- 
ing of the spectral lines of the valence CO oscillations ob- 
served in Ref. 13. Apart from the contribution (54) from the 

fourth-degree anharmonicity ( r  - ro) ,e, ,, even the third-de- 
gree anharmonicity of the form ( r - r,) e, ,, and also other 
low-frequency oscillational modes of the substrate,29 will 
give a comparable contribution to the shift of the maximum 
of the same line. Neglecting the other low-frequency modes 
and taking into account only a single harmonic (N-. co ) 
mode overestimates by an order of magnitude the value of 
the only anharmonic parameter y for the description of the 
observed 

The purely reorientational broadening mechanism with 
a single threefold quasi-degenerate subbarrier level is char- 
acteristic for the spectral line of the valence oscillations of 
the OH groups on a SiO, surface. Equation (56) describes 
the observed temperature dependence of the halfwidth of the 
line for w, ~ 2 0 0  cm-' and 7 ~ 4  cm-' (for this system 
yz0.9 cm-' holds and in (56) we have ? / q ~ 0 . 2  cm-', 
which is much less than the value of q).3.",'2 Equations 
(53), (54), and (57) can be used for the system of OD 
groups on a SiO, surface as in that case one can put the 
number of subbarrier levels equal to two due to the doubled 
mass of the reorientat,ing atom. 

Note that the value of the results of the present paper is 
not exhausted by the application to actual systems. Equation 
( 1 1 ) for the G F  in the Markov approximation and the devel- 
opment of the perturbation theory for the Pauli equation 
which describes many physical systems satisfactorily have a 
rather general character. An example of the use of the pro- 
posed approaches is the problem of calculating the rates of 
transitions of a particle between locally coupled subsystems. 
The description of the spectrum of the latter considered in 
Ref. 32, which was carried out by means of quantum-me- 
chanical GF, can easily be reformulated in terms of the GF 
of the Pauli equation. 

In conclusion the author expresses his gratitude to 0. 
M. Braun for useful discussions of this work. 
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