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A diagram technique is proposed for describing elastic and inelastic scattering of particles in 
matter. The technique is used to construct a theory of the interference of physically different 
inelastic scattering channels for a fast particle moving in matter. It is shown that the wave 
function of a particle undergoing inelastic scattering of particular physical nature must take into 
account the damping of the wave field of the particle both before and after the inelastic collision; 
in addition, all inelastic processes, including the process in question, contribute to the damping. It 
is determined that when the two-state approximation (employed in the classical theory of the 
optical potential) is used to describe the interference of inelastic collisions in matter, the 
quantum-mechanical reciprocity theorem is violated. As an illustration of the application of the 
formalism developed, competition with inelastic collisions is examined in detail when a fast 
electron undergoes diffraction channeling in a single crystal. It is found that when the inelastic 
scattering channel singled out corresponds to generation of a bulk plasmon, the competition 
between inelastic collisions is the determining physical mechanism responsible for the 
pronounced orientational dependence of the cross section of the corresponding inelastic process. 
Other possible manifestations of the interference of inelastic collisions of different physical nature 
are discussed. 

1. INTRODUCTION 

The interference of different scattering channels as a 
physical phenomena has been known for a long time. In spite 
of this, a satisfactory general theory has been constructed 
only in the case when a particular elastic scattering channel 
is affected by all other scattering channels (both inelastic 
and other elastic channels).'' Physically, an effect of this 
type results in ejection particles from the initial energy state 
and it changes the character of the initial spatial localization 
(coherence) of the particles through different elastic and 
inelastic collision events. Formally, this process is deter- 
mined completely by the amplitude of elastic scattering of a 
particle at zero angle1 and results in spatial damping of the 
wave function of the particle in the particular elastic scatter- 
ing channel as the particle propagates in the scattering medi- 
um; in both the Schrodinger-equation formalism2 and the 
quantum kinetic-equation formalism3 this process corre- 
sponds to an effective complex scattering potential, called 
the optical potential. 

The effect of elastic scattering channels on a particular 
inelastic channel can also, in principle, be given a general 
description. 

The interaction of elastic and inelastic scattering chan- 
nels is most clearly manifested in the case of scattering of 
particles in spatially nonuniform media. In this case, the in- 
terference of these scattering channels can become so impor- 
tant that it has to be treated systematically in order to ex- 
plain the physics of phenomena such as the anomalous 
passage of particles in a crystal (the Borrmann e f f e ~ t ) , ~  to 
predict the appearance of bremmstrahlung of longitudinal 
electromagnetic waves, which is associated with excitation 
of delocalized electronic states by the charged par t i~ le ,~  and 
to show that this phenomena, which is of general physical 
interest, can in principle be observed d i r e~ t ly .~  

In this context the problem of the interaction of differ- 
ent inelastic scattering channels is less obvious. This is ap- 

parently due to two basic factors. First, inelastic scattering is 
more complicated than elastic scattering. Second, different 
inelastic scattering channels can have a significantly differ- 
ent physical nature, and this makes it extremely difficult to 
describe them together on the basis of a single microscopic 
theory. In this respect, it should be noted that we know of 
only one work (Ref. 7) in which the interaction of inelastic 
scattering channels of the same nature is taken into account 
systematically (the effect of the surface plasmon excitation 
channel on the channel associated with the bulk plasmon). 
It seems that the coupling of the inelastic scattering chan- 
nels, as also the interaction of elastic and inelastic scattering 
channels, will be pronounced in spatially inhomogeneous 
media, for example, crystals. In this connection, as an appli- 
cation of the general theory developed below in Secs. 2-5, we 
examine in detail in Sec. 6 the competition between inelastic 
collisions of different physical nature when a fast charged 
particle in a single crystal experiences diffraction channel- 
ing. 

2. SYSTEM OF COUPLED SCHRODINGER EQUATIONS FOR A 
PARTICLE UNDERGOING SCATTERING IN MATTER 

The wave function Y (r,R) of the particle-medium sys- 
tem satisfies the Schrodinger equation 

where r is the radius vector of the particle under considera- 
tion, R designates the set of radius vectors of the sc%tering 
centers of the medium, E is the energy of the system, H(r,R) 
is the Hamiltonian describing the i n t e r~ t ion  between the 
particle and the scattering medium, and H, (R)  is the inter- 
action Hamiltonian for the particles of the medium them- 
selves. 

If the velocity v of a particle is much higher than the 
velocities v, of the scattering centers of the med i~m,~ '  then 
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the total wave function (r,R) can be expanded in a series in 
the complete set of wave functions I Qk (R)  ) of the system of 
scattering centers:' 

Substituting Eq. (2)  into Eq. ( 1 ) and expanding in the bra 
vectors (@;I and (@,I of the ground (i) and excited ( n )  
states of the medium, respectively, we obtain a system of 
coupled equations for the wave functions pk ( r )  of the scat- 
tered particle 

In Eq. ( 3 )  the matrix element Hmk ( r )  is determined by the 
formula 

Hmk (r) = J ~ R  IDm* (R) B (r, R) m k  (R) (4) 

and the diagonal matrix element Hmm ( r )  is denoted as 
Urn ( r ) ;  the quantities E; and E, are the energies of the pgrti- 
cles of the medium in the ground and excited states. The 
wave function pk ( r )  determines the probability amplitude 
for observing the scattered particle at the point r and the 
scattering medium in the state k. 

For convenience, we now switch to the operator form of 
the system (3) of the coupkd equations. We introduce the 
differential tensor operator G - ' ( r  ), whose mk th element is 
determined by the relations 

G~ , - '  (r) = e m - '  (r) 6mkr 
(5) 

Gm-' (r) =fi2 (A+km2) /2m- U ,  (r) . 
h 

The2perator G - ' isihe invyse of the integral tensor opera- 
tor G with elements Gmk = GmSmk; here 

G,f(r)= 1 drf3.(r. r ' .E-~m)f(rO- ( 6 )  

h 

where 9, (r,rl,E - E, ) = (r(G, Ir') is the Green's func- 
tion of the scattered particle and is determined by the differ- 
ential equation 

In Eqs. (5) and (7 )  we have written k i  
= 2mfi -2(E-~ , ) .  

With the help of the definitions (5)-(7) the system (3)  
of coupled equations can be rewritten in a form convenient 
for further analysis: 

k f n  

3. POLARIZATION SCATTERING OPERATOR 

The system (8)  of coupled equations makes it possible 
to perform a formal analysis of the effect of inelastic scatter- 

ing channels on the channel coupled with an elastic channel 
without any additional assumptions. In order to avoid in- 
volved calculations, however, we shall examine this problem 
in the two-state appr~ximation,~ which makes it possible to 
obtain the actual result immediately. 

The crux of the two-state approximation is the assump- 
tion that all quantum transitions of the system out of the 
ground state i into some excited state n proceed without 
additional intermediate excited states. The formal conse- 
quence of this approximation is the vanishing of the matrix 
elements Hmk of the particle-medium interaction operator 
one of whose indices is not equal to the index i of the ground 
state, (this property does not pertain to the diagonal matrix 
elements). 

In the two-state approximation the system (8)  of cou- 
pled equations acquires the form 

The question of justifying the two-state approximation, 
which actually reduces to truncating the infinite series in Eq. 
(8),  remains open from a theoretical standpoint for a wide 
class of physical systems, because it requires eskmation of 
the matrix elements of the interaction operator H. It is ob- 
vious that this problem cannot be solved in its general form. 
At the same time, if the result of solving Eq. (8)  in this 
approximation contradicts some general physical principles, 
then this approximation is unsatisfactory. In particular, we 
show in Sec. 5 that the two-state approximation cannot be 
used to describe the coupling of inelastic collisions in matter, 
since it leads to violation of the quantum-mechanical reci- 
procity theorem. 

It follows from Eq. (9)  that the wave function pi ( r )  of 
a particle in the input channel satisfies the equation 

which is the Schrodinger equation with the effective nonlo- 
cal potential (see, for example, Ref. 8): 

Ai(r, r ')=<rlAilrr)= ~ ~ , ~ ( r ) ! 3 ~ ( r , r ' ,  E - & ~ ) H ~ , ( ~ ' ) .  (11) 
k f  r 

The solution of Eq. ( 10) can be represented in the form 
of an infinite series 

in which the function p P(r) satisfies the equation 

We note that each term in Eq. ( 12) has a clear physical 
meaning, which makes it possible to represent the wave func- 
tion pi ( r )  of a particle in the ith scattering channel in the 
form of a set of diagrams. The first term corresponds to the 
wave field of the particle in the absence of any effect due to 
inelastic collisions. The second term, 
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ei~ipr"=& (x ~ i b 6 k 1 1 k i ) ~ a ' ~  

k i t  i  

describes the particle moving in the elastic channel so that it 
undergoes two successive inelastic collisions whose overall 
effect is that the particle remains in the elastic channel. It is 
natural to call such generation-absorption collisions polar- 
ization collisions. The higher-order terms in Eq. ( 12) corre- 
spond to polarization collisions of higher orders. This inter- 
pretation of the expansion under consideration makes it 
possible to represent this expansion as an infinite set of dia- 
grams (see Fig. la).3' The large hatched arrow in the dia- 
grams corresponds to the wave function pi of the particle in 
the elastic channel, taking into account the effect of inelastic 
collisions; the large unhatched arrow designates the wave 
function e, p of the particle in the absence of inelastic colli- 
sions. A thin sol$ line with an arrow corresponds to the 
Green's operator G of the fast particle, describing the evolu- 
tion of the wave field of the particle between two successive 
collisions; a dashed line with an arrow directed away from a 
vertex corresponds to an inelastic collision accompanied by 
energy loss by the particle moving in the medium (depleting 
collision); correspondingly, a similar line with an arrow en- 
tering a vertex describes a collision accompanied by an in- 
crease in the energy of the fast particle (absorbing collision). 

The infinite sequence of diagrams shown in Fig. l a  can 
be summed, as a result of which the wave function of the 
particle in the elastic channel will be determined by the dia- 
gram shown in Fig. lb. The hatched half-circle in this dia- 
gram corresponds to an infinite sum of polarization loops 
(see Fig. lc) . The result of summation of the diagrams can 
be represented in the analytical form 

A .  

Here i is the unit operator and the operator Xio, represents 
the result of summing an infinite sequence of polarization 
loops (Fig. lc) .  

On the other hand, it is well known (see, for example, 

FIG. 1 .  Diagrammatic representation of the elastic scattering process; p is 
the momentum of the particle in the initial state and q, is the momentum 
lost by the particle in an inelastic collision. 

Refs. 2 and 8)  that when polarization processes are includ- 
ed, the wave field of the fast particle decays in the matter: 

where 

is the polarization operator. In the language of differential 
equations forihe wave field of the particle, this means that 
the function .gig, 9, in contrast to the function e, 7, satisfies 
the Schrodinger equation with the effective nonlocal poten- 
tial ( 1 1 ) : 

h 

The boundary conditions for the function 9 ,pp  are 
identical to the boundary conditions for the function q, p(r). 
$ozespondingly, the equation for the Green's operator 
9, G, of the particle in the coordi~ate representation will 
also differ from the equation for (r(G, (r') in having a nonlo- 
cal potential: 

The boundzry conditions for (r/&,G, ( r t )  are identical 
to those for ( r  1 G, Ir') . 

Thus we have determined the action of the polarization 
operator, associated with the summation of an infinite se- 
quence of polarization diagrams, on the wave functions and 
the propagator. 

4. INTERFERENCE OF INELASTIC SCATTERING CHANNELS 
OF ARBITRARY PHYSICAL NATURE 

When a fast particle moves through a medium, different 
physical processes can occur. As a rule, besides the elastic 
scattering channel, several inelastic channels, differing sub- 
stantially from one another, ca%play an important role. 

Let the total Hamiltonian H(r,R) of the inelastic inter- 
action of the particle with the medium be additive in all 
physical processes leading to inelastic scattering of the parti- 
cle in the matter: 

H (r, R) =Hd(r, R)+Abg (r,R). (19) 

In Eq. ( 19) the Hamiltonian sd is responsible for inelastic 
collisions of the fast particle having a particular physical 
nature. Correspondingly, the remaining collisions, which 
are d i f fe~nt  from these collisions, are described by the Ham- 
iltonian H bg. We term such collisions background collisions. 

We now examine, using the diagrammatic technique 
constructed in the preceding section, the effect of the back- 
ground inelastic scattering channels on the inelastic scatter- 
ing channel which^ we have distinguished. Far from the ener- 
gy threshold of H scattering, the energies of the particle 
before and after the collisions of the specified type are virtu- 
ally identical. This fact makes it possible to describe the in- 
teraction of the inelastic scattering channels by means of 
simple polarization diagrams of the same type as were used 
in the description of the effect of inelastic scattering chan- 
nels on the channel associated with elastic scattering. 
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FIG. 2. Diagrammatic representation of the inelastic scattering process; 
diagramsofthezeroth (a),  second (b),  fourth ( c ) ,  andsixth (d)  orders in 
the background interaction. 

We study first only effects which are first order in the 
specifiedjnteraction. The wave function g, L:i ( r )  (of first 
order in H d ,  of the particle which has experienced a single 
characteristic energy loss E; can be represented, in the pres- 
ence of background inelastic collisions, as an infinite sum of 
diagrams, some of which are shown in Fig. 2. In addition to 
the previously adopted graphical designations, a wavy line 
with an arrow emanating fromAa vertex corresponds to a 
collision of the specified nature H d, accompanied by energy 
loss E;; all polarization loops are due to background colli- 
sions. 

The diagrams of the infinite series under consideration 
can be summed. For this, we divide all diagrams in Fig. 2 
into four groups. The first group consists of a single diagram, 
shown in Fig. 2a. The second group contains all diagrams 
with polarization loops, whose extreme right-hand element 
is the element shown in Fig. 3a. To such diagrams there is 
associated a second diagram in Fig. 2b, the third diagram in 
Fig. 2c, the fourth diagram in Fig. 2d, etc. Their sum, togeth- 
er with the diagram of the first group, is shown in Fig. 4a. 

The infinite sequence of diagrams with polarization 

FIG. 3. 

FIG. 4. Summation of diagrams in the theory of inelastic scattering; p is 
the momentum of the particle in the initial state and q, is the momentum 
lost by the particle in an inelastic collision of the specified type. 

loops, whose extreme left-hand element is the element 
shown in Fig. 3b, comprises the third group of diagrams. 
These diagrams consist of the first diagrams in Figs. 2b, c, d, 
etc. Their sum can be represented by the diagram shown in 
Fig. 4b. The remaining diagrams with polarization loops 
comprise the fourth group. Their sum, as one can easily see, 
is represented by the diagram shown in Fig. 4c. The hatched 
half-circle in Fig. 4 represents the result of the summation of 
an infinite sequence of background polarization loops (see 
Fig. lc).  

Following Fig. 4, we can write down the following 
expression for the desired wave function q, !$ ( r )  : 

(r)  =GnHnidqiU(r) + ~ ; , H , , ~ ~ ~ ~ ~ ~ ' c p , ~  (r) 

+ ~ n ~ b g n ~ n ~ n i d q i o  (r) + ~ ~ i b ~ ~ ~ ~ ~ ~ i d G L ~ q i "  (r) 

After elementary transformations, we obtain 

h 

Here the fun5ion gpq, 7 satisfies Eq. (17), in ^which the 
Hamiltonian H is replaced by the Hamiltonian H bg. Since 
we are not considering enygy threshold effects, far from the 
energy threshold of the H d-scattering channel the energy 
En = E - E, of the particle in the excited state is virtually 
identical to the energy Ei = E - E~ of the particle in the 
ground state and the propagator satisfies the equation [see 
Eqs. (11)  and ( l 8 ) ]  

The nonlocal potential in Eq. (2  1 ) is of a background nature 
and is determined by a formula related to Eq. ( 1 1 ). In order 
to derive its specific form, generally speaking, we must go 
beyond the two-state approximation. 

Equation (20) means that in order to calculate the wave 
function of the particle which is first-order in the specified 
interaction we must take into account the damping of the 
wave function of the particle both in the initial and final 
states. The damping of the wave field of the particle in this 
case is entirely determined by background collisions. 

The physics of the result obtained above is quite ob- 
vious. The result means that the particle, recorded in the 
kna1 state as having lost some energy E: as a result of a single 
H collision, could pass into the excited state n only if before 
doing so the particle either did not experience any inelastic 
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collisions that would transfer the particle out of the ground 
state or if the background inelastic collisions were of a polar- 
ization character, as a result of which, after a series of back- 
ground inelastic collisions, the particle once again ended up 
in the elastic channel. In addition, Eq. (20) takes into ac- 
count the effect of ejection particles from the final state n as a 
result of background polarization processes. In this sense, 
the formula under discussion incorporates the effects of mul- 
tiple inelastic scattering for background collisions. We note 
especially that the equal importance of damping for the ini- 
tial and final states of the particle ensures that the quantum- 
mechanical reciprocity theorem is satisfied. 

In the general case, besides background polarization 
collisions, polarization collisions of the specified nature will 
also play a definite :ole. It is obvious that they lead to the 
appearance of the H d  polarization loops in the diagrams 
shown in Figs. 2 and 4. It is easy to verify that the summation 
of these diagrams gives a f%rmula of the type (20), in which 
the ~ o l a r ~ z a t i ~ n ~ p e r a t ~ r  gbg will be replaced by the opera- 
t o r g = I +  G(zbg + E d ) :  

Thus all possible polarization processes, including the 
specified polarization processes, will contribute to the effec- 
tive nonlocal potential (and therefore also to the damping of 
the wave field in both the initial and final states). This result 
is less obvious than Eq. (20) and is correct if it is assumed 
that inelastic collisions of different nature are not correlated. 

5. DISCUSSION OF THE TWO-STATE APPROXIMATION IN 
THE THEORY OF INELASTIC SCATTERING 

In deriving the formulas (20) and (22), strictly speak- 
ing, we went beyond the two-state approximation, because, 
as we now show,in the two-state approximation the polar- 
ization operator 9, (n#i)  is identical to the uzit operator. 

We start from Eqs. (9).  If the interaction H which we 
have singled out is, in a certain sense, small, then the solutkn 
(9) can be expanded in a series in the multiplicity of Hd 
collisions: 

m 

The wave function q, p,"' describes a particle which has un- 
dergone a collisions of the nature singled out. Atihe same 
time, this function is already "summed" over all H bg colli- 
gons. The latter fact means that when we consider a specific 
H d  collision, we take into account fully the effect of all in- 
elastic scattering processes of the remaining (background) 
nature on this cogision. Assuming the Gependence of the 
Green's operator G on the Hamiltonian H is weak,' we ob- 
tain from Eqs. (9),  (19), and (23) a system of coupled re- 
currence equations for the successive wave functions: 

( a )  C.8 ( a )  qi (r) =ei [ g  H,&:-" (r)+ . qh (r) 1; 
(24) 

cpr) (r) = S, [ ~ , ~ ~ c p ! ~ - ~ )  (r) +HZ:!  cpy) (r) 1. 

In Eq. (24) the wave function q, I") describes the scattering 
of a particle which was initially inAthe ground state i and, 
having undergone a collisions of H nature, remained, as 

before, in the channel associated with elastic scattering. It is 
obvious that under the assumption that the collisions of dif- 
ferent physical nature are ~ncorre la ted ,~ ,~  the particle can 
remain in the input channel after a collisions only if a is an 
even number, and the collisions themselves are of a succes- 
sive depleting-absorbing (polarization) character. This 
means that 

Now, it follows from Eq. (24) that 

( Z P )  
9. (r) = G, [ ~ ~ ~ c p ~ ~ ' - ' )  (r) + 2 cpr') (r)] , 

In the formulas (25) and (26) the integer P> 1. 
We now separate from the total inelastic scattering 

wavelf~nction~the part that describes multiple collisions of 
both H bg and H dnature, the result of which would be a finite 
loss of energy E:', , characteristic for the specified collisions, 
by the scattered particle. This part of the inelastic scattering 
wave function is determined by the formula 

m rn 

cpn,.(r)= cp:'"') "1 =G,,M,,. dz cry-" (r) = d.lI.,"~p. (r). 
HE 1 @ = I  

(27) 

In deriving Eq. (27) we employed the identity (25) and the 
last equation of the system (26). We recall that the wave 
function p, (r) in Eq. (27) satisfies Eq. ( 10). 

Comparing Eq. (27) to Eq. (2;) weAfind immediately 
that in the two-state approximation 9, r I. From this result 
we can draw an important conclusion. It is easy to see that 
the formula (27), derived in the two-state approximation, 
does not satisfy the quantum-mechanical reciprocity 
theorem.'.' This can be understood intuitively, starting 
from the fact that the significance (for polarization pro- 
cesses) of the initial (i) and final (n)  states of the particle in 
the formula (27) is different (or, in other words, starting 
from the asymmetric nature of the wave fields of the initial 
and final states relative to their damping). 

Thus we can draw the following conclusion, important 
for the discussion of the applicability of the two-state ap- 
proximation for describing scattering of particles in mat- 
ter:2*8 When the two-state approximation is used to study 
inelastic scattering processes, the reciprocity theorem, 
which is connected with the symmetry of scattering pro- 
cesses under time reversal, is not satisfied. 

6. COMPETITION BETWEEN INELASTIC COLLISIONS WHEN 
A FAST ELECTRON UNDERGOES DIFFRACTION 
CHANNELING IN A SINGLE CRYSTAL 

The principal mechanisms which transform the energy 
of a fast charged particle of intermediate energy moving in 
matter into the energy of the scattering medium are genera- 
tion of delocalized electronic excitations (bulk plasmons), 
excitation of electrons in the inner shells of atoms (single- 
electron excitations), and phonon generation.'s9 In the 
physics of the interaction of charged particles with crystals, 
these inelastic processes were of interest primarily from the 
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standpoint of describing their effect on the channels for elas- 
tic diffraction channeling." To this end, the role of inelastic 
collisions in the polarization of the crystalline system and 
their contribution to the imaginary part of the crystal poten- 
tial were inve~tigated.~."-'~ Later the theory of diffraction 
channeling was developed in the direction of taking into ac- 
count systematically the multiple character of the inelastic 
and inelastic collisions of a particle and describing correctly 
the interference of elastic and inelastic scattering chan- 
n e l ~ . ~ , ~ * ' ~ - ~ ~  At the same time, the problem of the interaction 
of the inelastic scattering channels of different nature during 
diffraction channeling of charged particles in crystals was 
still neglected. 

It should be noted that when the distinguished inelastic 
scattering channel is the channel for generation of a bulk 
plasmon, the effect of background inelastic collisions, i.e., 
collisions of the particle with phonons and electrons in the 
inner shells of atoms, should result in a strong orientational 
dependence of the angle-integrated cross section for plas- 
mon generation on the direction of incidence of the fast 
charged particle relative to the system of the crystallograph- 
ic planes that is under consideration. This effect of the com- 
peting inelastic collisions, which are of a substantially multi- 
ple character, is ultimately due to the marked spatial 
localization of the corresponding scattering centers. We 
note that the spatial localization of scattering centers in the 
case of collisions with phonons and inner-shell electrons is 
manifested, for example, in the fact that the corresponding 
anomalous absorption coefficient is of the same order of 
magnitude as the normal absorption coeffi~ient;~.~ at the 
same time, the anomalous absorption coefficient for elec- 
tron-plasmon interaction is only a few percent of the normal 
absorption ~oefficient.~~ 

6.1. Inelastic wave field and asymptotic Green's function of a 
fast electron in backscattering from a single crystal 

Consider an elementary act of generation of a bulk plas- 
mon by a fast electron, Laue-diffracted by some system {G}  
of crystallographic planes in a semi-infinite crystal occupy- 
ing the space z > 0. We assume that plasmon generation oc- 
curs only after the wave field of the diffracting particle has 
already formed: 

where I,, is the mean free path of a fast electron with respect 
to generation of a bulk plasmon by the electron and {, is the 
extinction length.4' We also assume that after the plasmon 
has been generated by the diffracting electron, the latter 
electron is incoherently scattered through a large angle and 
exits from the same side of the crystal on which it entered the 
crystal. This space-time picture corresponds completely to 
the picture considered in Ref. 6,  neglecting competition be- 
tween inelastic collisions, and does not include processes 
with the reverse sequence of events: first incoherent scatter- 
ing of a particle by a large angle, followed by generation of a 
bulk p l a~mon .~  

In accordance with the formula (22) of the general the- 
ory, the wave field of the fast electron which has emitted a 
plasmon is determined by the following relation, taking into 
account the competition between inelastic collisions: 

where the matrix element H:: is calculated in accordance 
with Eq. (4)  using the wave functions a, and Qi of the 
electronic subsystem of the crystal in the excited and ground 
states from the electron-electron interaction Hamiltonian, 
responsible for the excitation of delocalized electronic states. 
The wave function q, (k,r) describes an electron with wave 
vector k in the initial state and takes into account the effect 
of all inelastic scattering channels on the elastic diffraction 
channeling channel, and k = 2mfi - * (E - E~ ) . In accor- 
dance with Eqs. (5  ) and ( 17) 

where U, ( r )  is the crystal potential and A i  (r,rl) is the effec- 
tive nonlocal potential, arising due to all possible inelastic 
collisions, for a particle in the input channel. The propagator 
9 (r,rl,E - E, ), describing the evolution of the wave field of 
the electron, which has emitted a plasmon and has under- 
gone incoherent scattering through a large angle, satisfies 
the equation 

2 n ~  p,g(r. r ' ,  E-8%) + 7 [ E - ~ n ] S  (r. r'. 
h 

containing the nonlocal potential A ,  (r,rl) for a particle in 
the final state. Equations of the form (29) and ( 3 0 )  can be 
solved in the optical-potential approximation. 

We shall derive the asymptotic form of the propagator 
9 (r,rl,E - E,) in the limit r +  a, using the well-known 
Fourier representation25926 in the region z > 0, z' < 0 :  

im exp[is (p-Q') -ik,z+ix.z'l 9 (r, rl,F-en) = - - J d* 
2nzfiz k,+% 

(31) 

In Eq. ( 3  1 ) p and z ( p' and z' ) are the tangential and normal 
components of the radius vector r (r ')  with respect to the 
crystal-vacuum interfacez = 0; the vector s = (s, ,s, ) is par- 
allel to this surface; 

and the constant component of the optical potential is 

Introducing into Eq. (3  1 ) an integration over P = (s,s, ), 
where s, = - k,, 

im J dP enp[iP (r-r') + id  (x ,+s , )  3 (r, r', E-E,,) = - - 
2nzfi2 

and using the identity 

k. 
6 (s,+ k,)  = - 8 (-s,)8 ( P )  6 ( P -  k,), 

Ic, 
(33) 

we obtain the following representation for the propagator: 

688 Sov. Phys. JETP 75 (4), October 1992 E. A. Kantsyper 688 



In Eq. (34b) s = Pep, s, = Pe,, and e, and e, are unit vec- 
tors which are parallel and perpendicular, respectively, to 
the crystal-vacuum interface; x is a function of the angle 
between P and r - r', varying slowly compared with 
exp[zT(r - r') ] in the limit r- CO. Following Ref. 1, on in- 
tegrating over P in Eq. (34a) we obtain 

- m exp file, 1 r-r' l I 
3 (r-+w, r',  E-E,)= - -. -kn~(kn,z'). 

nh" 1 r-r' 1 
(35) 

The asymptotic Green's function 3 (35) takes into account 
both the effect of inelastic processes on the propagation of 
the particle in the medium and the effects due to reflection 
and refraction at the interfa~e.~' Analysis of the formula 
(35) shows that coherent effects at the interface between 
two media are significant for angles 0' ,  such that cos 
0 '4 ( I UgPtI/E, )I/', between the direction of the outer nor- 
mal to the interface and the direction of the wave vector of 
the final state, i.e., for glancing exit angles of the electron 
from the medium. The contribution of this narrow angular 
region to the scattering cross section integrated over the exit 
angle is negligible. Neglecting the indicated coherent de- 
fects, we obtain from Eqs. (34b) and (35) 

m exp(ik,r) - . 
3 ( r -  w, r', E-E,,) = - - 

2n%' r 
thin. (kn? r'),  (36a) 

where 

$$,,(k,. r)=exp(ik,r)expI-p"(kn)z/21 (3%) 

is the wave function, and 

is the damping of the wave field of the particle in the final 
state. In deriving Eqs. (36a) and (36b), we assume that the 
real part of the optical potential, determined by virtual po- 
larization processes, is much less than the imaginary part of 
the optical potential, associated with a real polarization pro- 
c ~ s s . ~ , * , ' ~  

6.2. Cross section for bulk-plasmon generation 

Following Refs. 6 and 27, we find from the formulas 
(28), (36a), and (36b) that the cross section for the genera- 
tion of a bulk plasmon by a diffracting electron is determined 
by the formula 

The integration in Eq. (37) extends, in particular, over the 
total energy & lost and the transferred momentum fiQ; 
DR,,, is the retarded (advanced) Green's function of the 

electric field in the crystal; the wave function 4, (k,r) of the 
diffracting electron in the initial state is determined by Eq. 
(29); E k P Q  = fi2(k - Q)'/2m. In Refs. 8-10 it is shown 
that in the optical model in the two-wave approximation of 
dynamic refraction the solution (29) can be represented in 
the form 

where 

P 
I$,, (k, z )  = cosL - exp ( i x , ~ )  esp 

2 

B + sinz - exp (ix,z) exp 
2 

1, (38b) 

Here G is a reciprocal-lattice vector, parallel to the surface of 
the crystal; w = cot p i s  a parameter describing the deviation 
of the electron wave vector from the exact reflected position; 
w = ( Ek - Ek - , ) /2 ( U, 1. The normal p, and anomalous 
Ap, absorption coefficients and the extinction length 6, are 
related to the optical and crystal Fourier potentials by the 
relations 

po=-2 ~ r n  ~ , " ~ ' / f i u ~ ,  ApG=-2 Im u:" lfiv,, 

where v is the velocity of the fast electron. 
Assuming that the electronic subsystem of the crystal is 

homogeneous and isotropic, the expression (37) can be 
transformed into the form 

SOP zma -'" 
opl (w) = ( k2 - ) J j  dz dz.8 (z) 8 (a') 

( 2 r ~ ) ~ a ~ u ~  

B exp (ix, (z-zf ) )+cos2- exp (-ix. (2-2 ) ) 
2 1 

In Eq. (39) S is the surface area of the crystal, q is the wave 
vector of the plasmon, q, is the cutoff wave vector, associat- 
ed with taking into account the strong Landau damping, w, 
is the plasmon frequency, and a, = fi2/me2 is the Bohr radi- 
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us. In deriving Eq. (39) the spatial dispersion of the plasmon 
was neglected and it was assumed that p, (k  - Q )  zp, (k) .  

Each term in braces in the last formula has a distinct 
physical meaning.6' The first term describes the contribu- 
tion made to the integrated scattering cross section by transi- 
tions of the fast electron from a wave of type I in the crystal 
into a plane wave k' = k - Q in the vacuum, which are ac- 
companied by generation of a plasmon and incoherent scat- 
tering of the particle by a large angle; the second term de- 
scribes the contribution of transitions of the electron from a 
wave of the type I1 in the crystal into a plane wave kt in the 
vacuum; the third and fourth terms are due to interference of 
the two preceding scattering processes. The last two terms 
are qualitatively new compared with the analysis given in 
Ref. 6 ,  where the competition between inelastic collisions in 
the diffraction channeling of a fast electron in a single crystal 
was neglected. 

Integrals of the general form 

" JSdz c 1 z ' O ( z ) 0 ( z 1 )  L (a, ,  o , :  az, 0 2 )  = 7 
271 0, 

arose in Eq. (39). These integrals are calculated in the Ap- 
pendix. Keeping in mind the result (A10) of the Appendix 
and defining the orientational function of the cross section of 
inelastic diffraction scattering by the relation 
F,, ( w )  = up, (w)/u,, in which 

00 = 
SOP 

2va,, (leL-2tno,,/fi) ,,L (Po, U P ;  Po1 0 P )  

is the cross section for the generation of a bulk plasmon by an 
electron in a semi-infinite amorphous medium, which is cal- 
culated taking into account the interference of the inelastic 
scattering channels, the orientational function F,, (w) can 
be represented as 

where the function 

is due to transitions of the fast electron of the type I + k', and 

is due to transitions of the fast electron of the type II+kf ,  
and 

- L ( p + ,  mi-; p-, ( 0 2 - 1  I 
x l5-l (Po, 0,; 110, U P )  

is determined by the interference of the scattering processes 
I - k' and I1 + k'. The following notation is employed in Eqs. 
(41b)-(41d): 

6.3. Analysis of the orientational function of inelastic 
diffraction scattering of a fast electron 

The result obtained in Sec. 6.2 for the case of a semi- 
infinite crystal is correct, to a high degree of accuracy, for 
the case of a thick crystal (d)p; I, d is the thickness of the 
crystal). In contradistinction to our result, the results of 
Ref. 6 will be quite accurate for a thin crystal (d<p; I), in 
which, however, size effects are not yet manifested. In what 
follows we shall make a comparative analysis of the pro- 
cesses of emission of a plasmon by a Laue-diffracted fast 
electron in thin and thick crystals. First, we note that on a 
fundamental level the cross section for plasmon generation 
in thick crystals also exhibits orientational resonances, 
called plasmon-diffraction resonances in Ref. 6. As analysis 
shows, their approximate position is determined by the loga- 
rithmic terms in Eq. (41b) [see also the formula (AlO) ] in 
the limit of zero frequency o in the argument of the function 
L ( p - , o ; p - , o ) :  

In the case of thin crystals the formula (42) is exact. In thick 
crystals the height of the plasmon-diffraction resonances is 
finite (see Fig. 5)  and is determined by the energy of the fast 
electron as well as by the properties of the crystal and its 
electronic subsystem: plasmon energy, crystal potential (its 
real and imaginary parts), and the Fermi velocity of the elec- 
trons of the medium. 

In Ref. 6 it was concluded that in the case of a thin (in 
the sense indicated above) crystal under conditions of plas- 
mon-diffraction resonance a plasmon with extremely long 
wavelength (with zero wave vector) can be generated both 
by an electron in a type-I wave and by an electron in a type-I1 
wave, which differ by the degree to which they are localized 
in atomic planes.8s9 The different degree of localization of 
waves of the types I and I1 also explained the different degree 
of manifestation of resonances for w < 0 and w > 0. In contra- 
distinction to Ref. 6,  it follows from Eq. (41 ) that a plasmon 
with extremely long wavelength can be emitted only by an 
electron in a wave of the type I, while emission of such a 
plasmon by an electron in a wave of the type I1 is forbidden 
ultimately by the law of conservation of energy; this funda- 
mental difference between the waves I and I1 in the theory of 
plasmon-diffraction resonance is associated with the fact 
that the wave vector of the electron in the wave I (to within a 
reciprocal lattice vector G )  is less than the wave vector of an 
electron in vacuum, while the wave vector of an electron in 
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FIG. 5. Orientational functions of inelastic diffraction scattering of a 100 
keV electron in the case of thick [curves 1-3, formula (41) of this paper] 
and thin [curve 4, formula (42) of Ref. 61 crystals with different degree y 
of spatial localization of the scattering centers; y = I m U ~ ' / I m U ~ P ' :  
y =  0.75 ( I ) ,  0.50 ( 2 ) ,  and 0.25 ( 3 ) ;  plasmon energy %oio, = 17 eV, the 
crystal Fourier potential lLr,( = 5 eV, the optical Fourier potential 
IImUFtI = 0.1 eV, w,, = 1.553. 

the wave I1 is greater than the wave vector of an electron in 
vacuum. Resonance in the region w < 0 is suppressed, since 
the electron located in a wave of type I and responsible for 
generation of a plasmon with infinite wavelength is, in this 
case, excited more weakly than an electron located in a wave 
of type 11. Conversely, in the region w > 0 the electron is 
predominantly located in a strongly excited wave of type I 
and the plasmon-diffraction resonance is more pronounced. 

It follows from Eq. (41d) that in the case of thick crys- 
tals the interference process from transitions of the type 
I - k' and I1 -+ k', which does not occur in the case of thin 
crystals, makes a nonzero contribution to the plasmon-gen- 
eration cross section. As calculations show, however, the 
contribution of such an interference process is negligible and 
is at most 0.5% of the total orientational function. We note 
that the width of the most pronounced plasmon-diffraction 
resonance in the region w > 0 is about 5 10 - rad, which is of 
the same order of magnitude as the width of the resonances 
in the case of thin crystals. Thus detection of resonances in 
thick crystals could present a significant problem. 

Another interesting question is which plasmon-genera- 
tion mechanism is most sensitive to the presence of the crys- 
tal lattice-bremsstrahlung or "Cherenkov." Our calcula- 
tions show that the contribution of the bremsstrahlung 
mechanism of bulk-plasmon generation is less than 10% of 
the total orientational function, so that plasmons generated 
by the Cherenkov mechanism are more sensitive to the pres- 
ence of the crystal lattice. As a result of this, the orienta- 
tional effects in the inelastic diffraction scattering cross sec- 
tion are determined predominantly by the effect of the 
density. 

We now consider the relation between the sign of the 
density effect and the degree of localization of the scattered 

electron. In the region w < 0 the wave field of the fast elec- 
tron is localized predominantly in the atomic and 
thus gives rise to strong phonon excitation and excitation of 
electrons in the inner shells of atoms. Such stimulation of 
background inelastic processes results in suppression of 
bulk-plasmon generation in this region of angles of incidence 
of the fast electron on the surface of the crystal and corre- 
spondingly the density effect is negative. For w >O, on the 
other hand, the electron wave field is localized predominant- 
ly between atomic planes. This leads to the fact that the 
background inelastic processes are significantly weaker and, 
as a consequence, the cross section for plasmon generation 
increases (the density effect is positive). 

Thus the competition between inelastic collisions in 
thick crystals results in a pronounced orientational effect in 
the cross section for the generation of a bulk plasmon by a 
fast electron when the electron is reflected from the crystal. 
This orientational effect is due primarily to the effect of the 
density, i.e., the strong sensitivity of classical Cherenkov 
plasmons to the direction of incidence of the primary elec- 
tron relative to the atomic planes. The orientational effect 

max min 6opl=(opl -opt )/(o? +OF) 
is about 20%, so that the competition between inelastic scat- 
tering channels is easily observable. 

7. CONCLUSIONS 

In this paper we have formulated a general theory of the 
interaction of physically different inelastic scattering chan- 
nels when a fast particle moves in matter. As an illustration 
of the application of the formalism developed, we examined 
in detail the consequences of the competition of inelastic 
collisions during diffraction channeling of a fast electron in a 
single crystal, when the distinguished inelastic scattering 
channel is the bulk-plasmon generation channel. This exam- 
ple does not exhaust, of course, all possible manifestations of 
this effect. We briefly discuss some other consequences of 
the general formula (22). 

Polarization processes, which result in a finite damping 
of the wave field of the particle under consideration, should 
decrease the effective cross section for the distinguished in- 
elastic process. This is connected with the fact that the wave 
functions of the initial and final states in Eq. (22) are differ- 
ent from a plane wave and decay in space, so that (with the 
corresponding normalization) their magnitude is less than 
unity. In other words, polarization processes decrease the 
number of particles in the ground state which are capable of 
undergoing inelastic scattering of the specified nature and in 
the process can be recorded as such after exiting from the 
medium. 

In addition, since the decay of the wave field caused by 
all possible inelastic processes in the matter can have pro- 
nounced energy and temperature dependences, the phenom- 
enon of coupling of the inelastic scattering channels can play 
a determining role in the energy and temperature depen- 
dences of the cross section of the particular inelastic scatter- 
ing process. 

I thank B. N. Libenson and V. V. Rumyantsev for 
pointing out the connection between the processes discussed 
in this paper, the reciprocity theorem, and the principle of 
detailed balance. 
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APPENDIX 

Calculating in Eq. (40)  the integrals over z and z' we 
obtain 

0 2 - 0 1  -' 
~ ( a , ,  o,: a,, 02 )= (a ,+a2+ i - )  

VI 

where the complex function R ( a , @ )  can be represented in 
terms of the real functions I ( a , o )  and P(a ,w):  

R (a ,  o )  =aZ (a ,  o )  +iP ( a ,  o ) ,  (A21 

The function I(a,w ) can be easily represented in the form of 
single integral: 

Since in the limit uq,/av, - - (fio,/1mu,"pt) ( u / U p )  ) 1 

and I(a,w = 0 )  in the same approximationz8 has the form 
'Ic 

2 J ~ Y  uq 2 oq, 
I (a ,  o=O) = - - arctg - - 111 - , ( A 7 )  

a n ,  q awl a  av, 

we obtain for Eq. ( A 3 )  the approximate result 

/ ( a ,  O )  = J dof+I (a ,  o=O) a@' 

Correspondingly, 

so that L ( a ,  ,a, ;a, ,w, ) is determined by the formula 

"We shall not consider energy threshold effects. 
2' It is assumed that the condition u s  us is satisfied at nonrelativistic ener- 

gies of the external particle. 
"We note that in the exact expansion (which holds outside the frame- 

work of the two-state approximation) topologically more complicated 
polarization diagrams would be present in Fig. la. 

4' It is shown in Ref. 6 that this condition is satisfied for electron energy 
exceeding tens of keV. 

" As U~pt-O the formula (35) goes over to the well-known Green's func- 
tion of a particle with energy En = E - E, in unbounded space. 

6' We employ below the standard terminology of the theory of scattering 
of particles in crystals (see, for example, Refs. 8 and 9). 
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