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The stability of a uniform distribution of magnetization of a ferromagnetic plate is investigated. It 
is shown that when a certain condition is fulfilled a uniform distribution is stable for all 
thicknesses of the plate. The loss of stability against nonuniform deformations is investigated, and 
analytical expressions are obtained for the critical parameters of very thin and very thick plates. 
The results obtained are compared with known results. The phase diagram of a ferromagnet with 
cubic crystallographic anisotropy is investigated. 

For investigation of the stability of a uniform distribu- 
tion of magnetization it is convenient to use the dynamical 
criterion proposed in Ref. 1. The essence of the method con- 
sists in investigating the transient process after the system 
has undergone a small departure from its equilibrium posi- 
tion. 

The Landau-Lifshitz equation of motion can be written 
conveniently in the Gilbert form:' 

where a, is a dimensionless parameter, M, is the saturation 
magnetization, H is the effective magnetic field, M is the 
magnetization, and y is the magnetogyric ratio. In the linear 
approximation, 

where m- M, = 0, M, X H, = 0. The normal modes of the 
motion of the system have the form 

The position of the magnetization vector M is charac- 
terized by the polar angle 6 and azimuthal angle p (thez axis 
is perpendicular to the surface of the layer). Use of the equa- 
tion of motion ( l ) and the well known Maxwell equations 
leads to coupled equations for p and 6 that determine small 
deviations of the system from the equilibrium values p, and 
e,: 

k,2 
[ o + 4 n  + + Wqe ] O+ [k&+4n - 

kZ MOZ sin k2 

Ww + --- + a.o]cp sin o,=o, 
Mo2 sin2 0, 

coordinate system. The nontriviality condition leads to the 
dispersion relation 

k&e Wm 
-(*n-+ ) ' = o .  

k2 MO2 sin 0, 

Stability of the system against uniform deformations leads to 
the well known inequalities 

WW>O; Ww(Wee-4nM: cos 20,) -WqO2>0. (4)  

In a system that is stable against nonuniform deforma- 
tions, only damping oscillations (Re a,,, < 0) arise, and, 
consequently, all the coefficients in Eq. (3)  are positive. The 
appearance of an excitation with Re w >O following a 
change in any particular external factor, the temperature of 
the layer, or the thickness of the layer is possible only if the 
sign of the free term changes. Thus, the vanishing of the free 
term of the dispersion relation (w = 0) can be regarded as 
the criterion for the loss of stability of the uniform state 
against nonuniform deformations. Henceforth, it is assumed 
that a, = 0, and the critical state is determined from the 
condition w = 0. 

To investigate specific critical states it is necessary to 
solve (3)  with allowance for the boundary conditions. Be- 
fore we do this, note that when 

k,k, 
cp sin OO=O. 

(2) all the coefficients of the dispersion relation (3)  are positive, 
- [ " - 4 n F -  M~~~~~~ wTe 1 i.e., the uniform distribution is stable and in the region (5)  

only first-order phase transitions are possible. 
Here q is the exchange-interaction tensor, and the energy Below, we investigate the region outside (5)  but (natu- 
density W is the sum of the crystallographic-anisotropy, rally) inside (4). As can be seen from (3) ,  to each value of 
Zeeman, magnetoelastic, etc., energy densities; W,, are the x = (k  : + k ) "' there correspond six values of k, q ,  

second derivatives of W with respect to the corresponding ( n  = 1, 2, ..., 6). The usual boundary conditions (see, e.g., 
angles, taken in the state of the uniform distribution (p,, 8,) Ref. 3) that must be obeyed by the solutions can be written at 
k, and k, are the components of the vector k in the spherical z = + L (2L is the film thickness) as follows: 
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The critical thickness corresponds to 

x cos (q,L) -qn sin (qnL) r, U: t),,+kWqn sin 0.1 
,,=I 

kn' 
8 

= sin 8, r, 0. sin (y,L), 
"=I 

(6)  
n 

x sin (qnL) +q, cos(q,L) 
(K8'1Un+k9~n sin 00) 

n = 1 
kn2 

To illustrate the application ofthe relations (3)-(6) we 
consider the particular (but frequently encountered) cases 
k a  = a k  2, W,, = 0. It is convenient to investigate two di- 
rections of wave propagation-in the plane containing M 
andthezaxis(k, =O,k; =xcos8,-q,  sinO,),andper- 
pendicular to this plane (k, = x, k ", - q,, sin 8,). On 
the boundary of the region (4)  the system is unstable against 
uniform deformation (x = 0)  for all thicknesses 
(2Lc, = 0). Since W , , M G ~  - 4acos 28, = 6 = 0 is not a 
singular point of Eq. (3),  it should be expected that in the 
limit S+O instability is possible against excitations with 
x -+ 0 for LC, -0. In this case, in the region S & 1 for thin films 
(q,  L & 1 ) the system (6)  is simplified: 

6 6 6 0 

x-  qn2L 
(kn"On+kQqn sin 00) = 0, (6a) 

n=i kn2 

q, sin 8, 
(k.180n-t-kQr. sin oO)- + -- On=O. 

n=l k,* i + x L  

For a wave propagating at a right angle to the Mz filane 
the free term of the dispersion relation is equal to zero: 

(k: = x2 + 9:). From (6a) and (3a), with (2)  taken into 
account, it is easy to show that the uniform structure is un- 
stable against a wave with 8- cos qz, with x satisfying the 
equation 

This equation has a real positive solution for 

Analysis of the roots of Eq. (3a) shows that the approxima- 
tion q, L 4 1 is valid for thicknesses 

2 L 9 2  (u/Ww)"M, sin 0,. 

For a wave in the M z filane we have 

x,, = (6/a)", LC, =-2(a6)"M,2W Be-'. 

Thus, this excitation destroys the structure for W,, < 0 (in 
the first case, for We, - 4n-Mi cos 20, < 0) and for large 
thicknesses, if cos O,, # 0. 

In the region W,,M, -- 4 a  cos 28, = - S (O@( 1 ) 
we must expect loss of stability at large thicknesses, since for 
S = 0 a uniform distribution is stable for all L [this can be 
seen from ( 5 ) 1. It follows from the dispersion relation that 
in this case too we have a x 2  96 ,  i.e., the system is unstable 
against long-wavelength excitations. 

For a wave propagating at a right angle to the Mz, plane 
the dispersion relation has the form 

x 2  
mz + (akn2 + + 'in -) (akn2-6) 

Moz ?in2 0, kn2 (3b) 

Close to the loss of stability ( w  ~ 0 )  the solutions of Eq. (3b) 
have the form 

a k I 2 ~ a x "  6, ak,"-4n sinL OO. 

The solutions k,  and k,  (q: , q: < 0) correspond to sur- 
face waves. From the boundary conditions it can be seen that 
the amplitudes of the surface waves are much smaller than 
the amplitude of the bulk wave, and the influence of the 
surface waves on the magnetization distribution inside the 
layer can be neglected. For a wave with 8- cos q,z it follows 
from (6)  that 

ctg(q,L) k-  (6-an2) "/4n sin 80<l ,  

For a wave with 8- sin q,z we have 

Thus, in a film of thickness 2L there arises a spectrum of 
waves with q,, zn-m/2L (m = 1,2,3 ...), satisfying thedis- 
persion relation 

Each of the branches of the spectrum has a maximum at 
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and touches the axis w = 0 at 

6,=mL,lL 

or for thicknesses 

2L,=2L06-1m. 

~he'uniform distribution loses stability when 

2L,, =2Lo6-', ( 9 )  
2 a x C r 2  =6. 

(10) 
As in the case of thin films, a wave in the Mz plane destroys 
the structure for thicknesses greater than (9) .  

The analogous problem was first solved for the particu- 
lar case of a film with perpendicular anisotropy, placed in a 
magnetic field H parallel to the ~ u r f a c e . ~ . ~  For this system, 

T.V=-0,5pM,L cos2 0 -HMO sin 0 sin cp, 

where p is the anisotropy constant. In all the cases consid- 
ered, sin po = 1 and W,, = 0. From the conditions (4)  and 
(5)  the region of existence of the critical fields for the phase 
with sin 6, = 1 is 

pM,>HP ( p - 4 n )  Mo.  

In the region of large thicknesses, 

-6=aMo-' -p ,  T Y , = H M o q M , 2  

From (9),  

and 

2 a x C r 2  =6, H,, =b-6Mo.  

In the region of small thicknesses, 

6 = H M O - p + 4 n ~ H M o - p . .  

From ( 7 ) ,  

In the uniform tilted structure, sin 6, = B ; ' H M ;  I .  The 
region of fields that destroy the structure is 

In the region of large thicknesses, 

For the case considered in Ref. 3,8)4a holds and, taking 
into account that a ' I 2 < ~ ,  we have 

In the region of small thicknesses, 

All the above results repeat exactly the results of Refs. 3 
and 4. 

To illustrate the application of the results obtained, we 
shall investigate a plate of magnetic material with cubic crys- 
tallographic anisotropoy. If the x, y, and z coordinate axes 
coincide with the [ 1001, [OlO], and [001] axes, the energy 
density is given by the expression 

where K ,  and K, are the anisotropy constants. If we disre- 
gard the metastable states, the principal states are three uni- 
form  phase^,^ for all of which W,, = 0 holds. 

1. cpo=O, Oo= 0.5n [the (1 00) phase] 

This state is stable against uniform deformations for 
K ,  > 0. From (5)  we have 

whence it follows that the uniform ( 100) phase is stable for 
K ,  > 0 for all thicknesses, and in this region only first-order 
phase transitions are possible. The unbounded crystal also 
has an analogous phase in the same region." 

2. cpo=0.25n, 00=0.5n [the (1 10) phase] 

The phase is stable against uniform deformations in the 
region 

The region of stability for all thicknesses is, from (5),  

and coincides with the region of stability of the analogous 
phase of the unbounded crystal. In the region 2K, + K,  < 0 
the uniform state is stable for layer thicknesses smaller than 
a certain critical value that decreases to zero on the straight 
line 2K, + K2 + 8a = 0. 

3. cpo=0.25m, 3K2 sin *00= K2 3 K 1  -[(K2+3K,)z44mK2]1'2 

This phase (the tilted (1 lo ) ,  phase) is stable against 
uniform deformation in the region 

The region of stability (5 )  against nonuniform deformations 
is well approximated by the expression 

The phase diagram of the layer is given in Fig. 1. For K,, 
K2 ) a the diagram goes over into the well known phase dia- 
gram of the unbounded crystal.6 The transitions between the 
phases are first-order phase transitions (they are not shown 
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FIG. 1. Phase diagram of a layer: I )  (K' + 3K,)'= 24~K,;  2) 
2K1 + K2 = - 8 ~ ;  3; (K2 + 3KI )' = - 8?rKz; 4) 2KI + K2 = 0; 5) 
2K, + K2 = - 127. 

in Fig. 1 ). The segment of the transition between the ( 1 10) 
and ( 1 lo),  phases for 0 > K ,  > - 16rmay be an exception. 
It is necessary, however, to take into account that on the line 
2K, + K, + 877 = 0 the critical thickness of the uniform 
phase is equal to zero, i.e., for any layer of finite thickness the 
transition between phases 2 and 3 occurs via a nonuniform 

state. The type of phase transition on this segment requires 
additional investigation. 

Thus, the problem of the stability of a uniformly magne- 
tized magnetic plate has been solved in general form in this 
paper. The expression ( 5 ) ,  which determines the region of 
stability of uniform magnetization in a plate of any thick- 
ness, has been obtained for the first time. The results of the 
paper have been tested on well investigated3v4 magnetic lay- 
ers with perpendicular anisotropy. The phase diagram of a 
layer (perpendicular to the [001] axis) of a magnet with 
cubic crystallographic anisotropy has been investigated. 
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