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The dynamics of domain walls in weak ferromagnets (of the YFeO, type) is investigated, taking 
into account the magnetoelastic interaction with the acoustic subsystem of the crystal. Special 
attention is devoted to the range of domain-wall velocities close to the velocity of sound, where the 
magnetoelastic interaction has a resonance character. An equation describing the dynamics of a 
domain wall and other nonlinear waves in a weak ferromagnet is derived, taking into account 
dissipation and interaction with the acoustic subsystem of the crystal. This equation reduces to 
the well-known sine-Gordon equation, if the dissipation constant and magnetostriction are made 
to approach zero. A method of successive approximations is proposed for determining the 
structure and the velocity of a domain wall as a function of the external magnetic field. It is shown 
that the velocity of a domain wall as a function of the magnetic field exhibits an anomaly near 
some branch of elastic waves. The main feature of this anomaly is that a section with negative 
mobility, where the stationary motion of a planar domain wall is unstable, is present. It is shown 
that the magnitude of these magnetoelastic anomalies depends strongly on the direction of motion 
of the domain wall relative to the crystallographic axes. The nonstationary dynamics of a domain 
wall and the accompanying deformation of the wall are investigated on the basis of a "condensed" 
description of the domain wall with the help of the coordinates of the center of gravity of the wall. 
It is shown that as the domain wall decelerates a localized elastic deformation (elastic soliton), 
propagating in the form of a wave packet with the velocity of longitudinal or transverse sound, 
separates from the wall. The character of the spatial distribution of the deformation and its 
evolution in time are studied. On the whole, they agree with recent experimental data on Brillouin 
scattering of light by a moving domain wall in YFeO, . 

1. INTRODUCTION 

In the study of solitary waves-moving domain walls 
(kinks) and solitons-the question of the interaction of the 
waves with other degrees of freedom of the system is funda- 
mental. This question is especially important and interesting 
in the case when this interaction is resonant. This situation is 
encountered in the case when a domain wall (DW) moves 
with velocity u, close to the velocity si of some branch of 
elastic waves, in a magnetically ordered medium. It is natu- 
ral to expect that under resonance conditions (for v-si) the 
magnetoelastic (ME) interaction can radically change the 
character of the domain wall motion. 

Indeed, significant anomalies in the dynamics of do- 
main walls in yttrium orthoferrite were observed in Refs. 1- 
4. Yttrium orthoferrite is an antiferromagnet with ortho- 
rhombic symmetry (space group D i: ) and it exhibits weak 
ferromagnetism. The maximum velocity of domain walls in 
this material is e q ~ a l ~ . ~  to c = 2 X  lo6 cm/s, i.e., the reso- 
nance conditions v-si < c are obviously satisfied in it. This 
situation can also be realized in other weak ferromagnets of 
this class (RFeO, ) as well as in orthorhombic weak ferro- 
magnets (for example, in iron borate FeBO,, hematite a- 
Fe, 0, , and other materials). In all these materials the maxi- 
mum velocity of domain walls is virtually identical to the 
phase velocity of spin waves (in the nonlinear section of the 
spectrum) and exceeds the velocity of sound in them. 

In the first experimental work on the dynamics of do- 
main walls near the velocity of sound in weak ferromagnets, 
characteristic steps (or shelves) were observed on the curves 
of the velocity of a DW versus the magnetic field v(H) at 

values of the velocity close to the velocities of longitudinal 
and transverse sound. 

These anomalies originate with the strong increase in 
the amplitude of the wave of deformation, accompanying the 
moving DW, as the velocity of the DW approaches the veloc- 
ity of ~ o u n d . ~ - ' ~  A theory of these anomalies was proposed, 
under somewhat different assumptions, in Refs. 9 and 10. In 
Ref. 10 it was predicted that the planar front of a DW will be 
unstable near the velocity of sound. Different manifestations 
of this instability, including the formation of a very interest- 
ing dissipative structure on the front of the DW, were inves- 
tigated in detail in Refs. 14-16.'' 

Many interesting experimental results concerning the 
behavior of DWs in the region v>s were obtained by M. V. 
Chetkin and his colleagues with the help of double-frame 
high-speed photography (see the review Ref. 5 and the refer- 
ences cited there). 

Brillouin scattering of light by a moving DW was re- 
cently investigated in Refs. 19-21. These experiments make 
it possible to trace directly the amplitude of the deformation 
wave (by acoustic phonons), accompanying the DW, and to 
investigate very fine details of the interaction of a DW and 
the elastic subsystem, in particular, the behavior of a solitary 
elastic wave under unsteady DW conditions, detachment of 
the wave from the DW, phonon damping, etc. 

All this made it necessary to elaborate the theory. The 
problem of magnetoelastic interaction at v-s has still not 
been completely solved, in spite of much theoretical work 
that has been performed."9~'03'2 In Refs. 3,10, and 12 a mod- 
el system consisting of a ferromagnet with one sublattice was 
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investigated. In Ref. 9 a two-sublattice antiferromagnet was 
studied. But the domain wall was assumed to have the same 
structure as a DW at rest. These and other model assump- 
tions not only limit the possibility of making a quantitative 
comparison between the theory and experiment, but they 
leave some fundamental questions open [for example, the 
question of the dependence of the magnetoelastic anomalies 
on the direction of motion of DWs in a crystal and the real 
structure of the wall (curvature) 1. 

Some aspects of the nonstationary motion of DWs near 
the velocity of sound were discussed in Refs. 14 and 16 under 
the assumption that the domain wall and the elastic wave 
move together as a unit, i.e., leaving open the question of the 
possible decoupling of these two waves. 

In the present paper we give a theoretical description of 
the phenomenon, discussed above, on the basis of a quite 
realistic Lagrangian of the nonlinear magnetoelastic field of 
a two-sublattice antiferromagnet exhibiting weak ferromag- 
netism and a phenomenological Rayleigh dissipative func- 
tion. In analyzing the nonstationary processes we focus at- 
tention on the decoupling of the magnetic and elastic degrees 
of freedom and we discuss some new possibilities, opened up 
here, for experimental investigations. 

2. LAGRANGIAN ANDTHE RAYLEIGH DISSIPATIVE 
FUNCTION 

Consider a weak orthorhombic ferromagnet of the 
YFeO, type. We describe it in a two-lattice approximation 
with the help of the dimensionless ferromagnetism vector 
(m) and antiferromagnetism vector (1). We characterize the 
elastic deformation of the crystal by the displacement vector 
u. Minimizing the thermodynamic potential of the system 
@(m,l,u) with respect to m and using the facts that 

we represent cP as follows (see, for example, Ref. 22) : 
@ = @ M  + @ E  +@ME, (1) 

@, =lI2ca ( v ~ ) ~ - ~ / ~ x ~ [ H ~ -  (HI)'] -m,OH,1,-rn,OH,L, 
+'/2Ka,l,2+'12K.blv2, (2a) 

@ E = ' / ~ c ~ E ~ ' +  ' / Z C ~ & ~ ~ + ~ / ~ C ~ E Z I ~ + C ~ E X X E ~  

+ c ~ E , & , , + c , & , , E , , + ~ c , E ~ ~ + ~ c ~ E ~ L ~ + ~ c ~ E ~ ~ ~ ,  (2b) 
QME =6,~,+6,,~,f 6 z z ~ z z + 2 6 ~ ~ ~ u + 2 6 ~ ~ ~ ~ ~ + 2 ~ ~ ~ ~ ~ ~ ,  (2c) 

where 

6,=6, (lS2-1;) + 6, (1,"1,"), 6,,=63 (1,'-1;) +tip (1,2-1,2), 
6,,=65 (1,2-1z2) +66 (ly2-1z2), 6Lv=S71x1u. 

6,,=6~1,lZ, 6,,=691ulZ, 
&,k='/z (d~~ldxkf auk/dxl), (3) 

A is the inhomogeneous-exchange constant, X ,  = Mo/2HE 
is the transverse susceptibility, m: and rn; are components 
of the weak-ferromagnetic moment, KO, and K,, are anisot- 
ropy constants, and c, and 6,  are, respectively, the elastic 
and magnetoelastic constants. 

In the expression for cP, we neglected the anisotropy of 
inhomogeneous exchange and the fourth-order anisotropy 
constants, which are not significant in the phenomena we are 
studying. Small terms associated with the antisymmetric 
components of the distortion tensor of the crystal are 
dropped in cP, and @,,, and terms of the form ~,,m,l,, 
which are small compared with the E,, I, I ,  terms and have 
virtually no effect on the final results, are neglected in the 

magnetoelastic energy. In what follows we assume that in 
the homogeneous equilibrium state of the crystal the antifer- 
romagnetism vector 1 is oriented parallel to the a axis (and 
ml(c axis). We assume that the external field is oriented 
along the c axis: 

H= (0, 0, H).  

In order to describe the dynamics of the system we em- 
ploy the following Lagrangian density L and Rayleigh dissi- 
pative function R, which depend only on the antiferromag- 
netism vector 1 and the displacemendector u : ~ . ~ ~ - ~ ~  

where y = 2p,/fi is the gyromagnetic ratio for Fe3 + ions, a 
is the damping constant for the magnetic subsystem, r],,,, is 
the viscosity tensor of the elastic subsystem and has the same 
symmetry properties as the tensor of the elastic moduli in 
Eq. (2b), andp is the density of the crystal. 

It is easy to derive from Eqs. (4)-(6) the corresponding 
equations of motion for the angles 8 and p,  determining the 
orientation of 1, where I ,  = sin 8 cos p, I, = sin 8 sin p, and 
I, = cos 8, and the displacement vector u: 

e-ci;%in % cos %+yHip sin 2%+ (yaE/Mo)6@/6%+aw,B=0, 

U+ sin2 O+ipO sin 2%-yH6 sin 2%+ (yo,/Mo)6@/6q (6) 

+UO& sin2 %=0, (7) 

p ~ = - a @ l a ~ - a ~ l a ~ ,  (8) 

where o, = 2 yHE = yM, /x,. 
In what follows we confine our attention to the analysis 

of the basic equations and formulas for the particular case of 
the motion of a domain wall along a definite crystallographic 
axis. We discuss the results for the general case without de- 
tailed derivation. 

Of the two possible types of DWs realized in orthofer- 
rites, depending on the ratio of the anisotropy constants K,, 
and K,, and characterized by the rotation of the vector 1 
either in the ac plane (ac-type DW, K,, < K,, ) or in the ab 
plane (ab-type DW, K,, > K,, ), we confine our attention to 
ac-type DW, which is the most typical type. 

Consider a planar ac-type DW, oriented perpendicular 
to the a axis (x  axis). For H = 0, when the DW is at rest, 
Eqs. (6)-(7) have the exact solution p = 0 and 8 = 8(x) ,  
corresponding to rotation of 1 and m in the ac plane. During 
the motion of the DW in the presence of an external field and 
dissipation, this plane, strictly speaking, will no longer be 
the plane of rotation of 1. As shown in Ref. 13, however, for 
the typical conditions of observation of DWs ( v z s , ,  and 
HG200 Oe), the deviation of 1 from the ac plane does not 
exceed 0. lo and can be neglected. As a result, the equations 
(6)-(8) for the angle 8 and the displacement vector u as- 
sume the form 

A (6"-O/cZ)=-K,, cos % sin 8-m,OH cos %+61u11 sin 2% 
+6ru,' cos 2%+ (aMal~)  6, (9)  

pu,-~~u,"--q~lt~"=6~%' sill 28, (10a) 

pu,-c,ul"-r)fltt"=fit~' cos 20, (lob) 

where 
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where 

the second component of the transverse deformation satis- 
fies u, = 0 in this geometry, and 

The quantity 

is the maximum velocity of a DW, equal to the spin-wave 
velocity .' 

3. NONLINEAR EIGENVALUE PROBLEM: FORBIDDEN 
VELOCITY BAND AND BRANCHING OF THE SOLUTIONS; 
MECHANISMS OF MAGNETOELASTIC ANOMALIES 

We seek the solution of Eqs. (9)-( 10) in the form of a 
solitary wave, describing the stationary motion of the DW, 
l.e., 

Substituting these functions into Eqs. (9)-( 10) we obtain a 
nonlinear eigenvalue problem, in which the velocity u is the 
eigenvalue and the magnetic field is an external parameter. 

The idealized model of an antiferromagnet is described 
by the sine-Gordon equation. It presupposes that the follow- 
ing conditions hold: the magnetic anisotropy has the sim- 
plest quadratic form (which is satisfied in YFeO, to a good 
degree of accuracy ); there is no dissipation, external mag- 
netic field, magnetoelastic interaction, etc. In this case the 
moving domain wall is a soliton (kink), whose velocity can 
assume arbitrary values in the interval ( - c,c), i.e., 

This degeneracy reflects the existence of a definite dynami- 
cal symmetry in the problem: in the present case, with re- 
spect to the Lorentz transformation with the limiting veloc- 
ity c. 

The dependence u(H) of the domain-wall velocity on 
the external field is determined when the interaction with an 
external field, dissipation, and in our case magnetoelastic 
interaction are taken into account simultaneously in the 
equations of motion. Taking these perturbations into ac- 
count removes the degeneracy, as a result of which to each 
value of the field H there corresponds one or several values of 
the velocity, i.e., branching of the solutions is possible. 

Before analyzing Eqs. (9)-( 10) we present some quali- 
tative considerations, which explain the mechanism by 
which the magnetoelastic interactions affect the structure 
and character of the motion of the domain wall. 

As we have already mentioned above, magnetoelastic 
anomalies appear in the motion of domain walls primarily as 
a result of the strong increase in the magnitude of the elastic 
deformation accompanying the wall as the sound velocity is 
approached. In the absence of dissipation in the elastic sub- 
system, according to Eqs. (101, the deformations behave as 
follows in the case of steady motion of the DW: 
r l l r = - ~ I 1 '  cos 0 sin ~ / ( I - V ~ / S , ~ ) ,  u,'=E,O cos2 0 / (1 -v2 /s , " ) ,  

(11) 

i.e., as the sound velocity is approached they increase with- 
out bound. Dissipation limits the increase in the deforma- 
tion. 

a )  Dynamic renormalization of the thermodynamic po- 
tential; forbidden velocity band. A consequence of the 
strong increase in the amplitude of the elastic wave accom- 
panying the DW is significant renormalization of the mag- 
netic-anisotropy energy in the ac plane: 

G,=@,i+cP,, + c ~ , = ' l ~ R , ,  sin? O + ' l r R 2  sin4 8, (12) 

where 

Near st  and s, the increase in the magnetoelastic energy 
is so significant that the total anisotropy energy can change 
sign. The change in the anisotropy alters the structure and 
size of the domain wall, which in turn can affect the dynami- 
cal behavior of the wall. The differential equations describ- 
ing the DW can, in this case, have bifurcation points, i.e., 
points at which the phase portrait of the equations changes 
qualitatively. Then, in some interval of velocities near s, or s, 

as the analysis" for a nondissipative system shows, there are 
no solutions at all of the solitary-wave type with prescribed 
equilibrium position at infinity. Thus a gap appears in the 
spectrum of admissible velocities of solitary waves of the 
DW type.2' The appearance of such forbidden bands is a 
direct consequence of the existence of resonances in the mag- 
netoelastic interaction.'0329 This is probably a general prop- 
erty of the dynamics of solitons interacting with the resonant 
subsystems. This mechanism for the magnetoelastic effect 
on the dynamics of DWs can also operate with weak dissipa- 
tion in the elastic subsystem, when the amplitude of the mag- 
netostriction deformations with u-s,, is quite large. 

b)  Branching of solutions. A second consequence of the 
increase in elastic deformations as u +s is that the dissipation 
in the elastic subsystem increases. The dissipative function 
of the elastic subsystem 

in this case has a maximum at the points u = s, and u = s,. 
The increase in dissipation near the sound velocities results 
in an increase of the magnetic field, creating pressure on the 
DW, as a result of which on the u(H) curve near u = s, and 
u = s, sections appear where the velocity remains practically 
constant as the field increases (see Fig. 1).  Under certain 
conditions this mechanism results in a multivalued magnet- 
ic-field dependence u(H) which contains a section where the 
differential mobility 

is negative. We show below that this mechanism is primarily 
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FIG. 1. Domain-wall velocity versus the external magnetic field: I )  the 
normal to the plane of the DW is parallel to thea-axis; 2 , 3 )  the normal 
of the plane of the DW is inclined to the a-axis in the ac-plane by 7 = 4" 
and 8", respectively. The vertical lines depict transitions, which corre- 
spond to Maxwell's rule, between stable branches of the curve 3. 

responsible for magnetoelastic anomalies in the dynamics of 
domain walls in orthoferrites. 

4. PERTURBATION THEORY FOR SOLITONS: 
DETERMINATION OF v(H) 

We assume that the damping in the elastic subsystem is 
strong enough that the renormalization of the anisotropy 
constants is insignificant in the entire range of velocities of 
the DW (strongly dissipative approximation). In this case 
the deformations can be assumed to be small and the equa- 
tions of motion can be solved by the method of successive 
approximations. The small parameters will then be the 
quantities 

where 

Ao= "', 

for which we introduce the single designation v. We discuss 
below in greater detail the applicability of this approxima- 

0,,(x--) =-n/2,  8, ( x - - - )  =nl2, 0,' (x+*-) =0, ( 14a) 

the solution of Eq. ( 14) is 

Bor=-A-' cos go=-*/A ch t ,  s i n  Bo=th 5, (15) 

where 

g= ( x -o t ) /A ,  A ( v )  =Ao (1-v2 /cZ)  %, AO= (A/Ka,) 'h.  

Substituting Eq. ( 15) into Eqs. (9)-(10) we obtain to 
first order in the small parameter Y 

l5 (0) =f (00,  x ) ,  (16) 

where 

j (en, X )  =-m,OH cos 0,- ( a M , ~ / ~ ) O , ' + 0 , u ~ '  s i n  20" 
t 8 1 ~ 1 '  cvs 20o (17) 

The deformations in Eq. ( 17) are determined by Eqs. 
( l o ) ,  in whose right-hand side 8, ( x  - vt) from Eq. (15) 
must be substituted. The solutions of these equations with 
the boundary conditions 

tion. First we examine the case of steady motion of a DW. u , , ~  ( x 4 f  m )  - =u,,, I (x'f m )  =uIT1 I I  ( x + f  =)=O (0') We seek the solution of Eqs. (9)-(10) in the form of a 
solitary wave, which describes a domain wall moving with 
constant velocity, i.e., 

0=0 (x - v t ) ,  ux,,=ux., ( 3 - v t )  . 

In the zeroth-order approximation in the small parameters v 
the dependence B(x - vt) is determined by the equation 

e (0,)  =A  (I -vZ/c2)  0,  " +Ka, cos go s i n  Oo=O, (14) 
h 

where we have introduced the nonlinear operator L ( 8 ,  ). 
Under the boundary conditions 

have the form 
m3 

u,,,= ( ~ ~ . ~ / 2 n )  jdqpf , ,  (q ,  v )  exp[ is (x-ut)  I /  - rn 

q Z ( ~ t , l - l ) 2 - i ~ q f ) l , t ) ,  (18) 

where 

q1 (9. 0) =nq2A2/ch (nqA/2), c p ~  ( q ,  V )  =scq2A2/sh (nqA12) .  

sf , t=(cl , t /p)~'~ 
(19) 
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are the velocities of transverse and longitudinal sound, re- 
spectively, and 

Expanding 8(x  - vt) in Eq. ( 16) in powers of the small pa- 
rameter Y 

where 

we find that the first-order correction 8, satisfies the equa- 
tion 

The nonlinear equations ( 14) 

with the boundary conditions ( 14a) has a continuous veloc- 
ity spectrum, i.e., its solution 8, depends on the velocity v as 
a parameter, varying continuously in the interval 
- c < v < c, as follows from Eq. ( 15). When a magnetic field 

is switched on in the presence of dissipation, a definite value 
of the velocity, depending on the magnitude of the field and 
the dissipation parameters, is selected." This value of the 
velocity can be found with the help of the well-known meth- 
od for eliminating secular terms in the higher-order equa- 
tions. According to this method, the following condition 
must be satisfied in order for the inhomogeneous equation 
(21 ) to be consistent: 

m 

where ~ ( x )  is the solution of the homogeneous equation 

L*x=O. 

It is easy to verify that 

Using the formulas ( 15), ( 17), and ( 18 ) we can obtain 
from Eq. (22), after some transformations, the following 
equation for the function v(H) : 

where 

is the mobility of the domain wall in the absence of magne- 
toelastic interaction, 

F g ~  ( u )  =- ( ~ 6 ~ ~ 1 5 j ~ , l / n ~ )  J dqcpt:, (q ,  v )  / 

and p , ,  (q,v) are determined by Eqs. ( 19). 

The first term on the right-hand side of Eq. (23) gives 
the familiar magnetic-field dependence v(H) in the absence 
of magnetoelastic interaction: According to this dependence 
the velocity of as H+ oo the DW saturates.'s8 The second 
term is determined by the strong decelerating force F,, (v), 
arising as a result of the interaction of the DW with elastic 
deformations. To within a constant factor, this decelerating 
force is the rate of dissipation in the elastic system. The de- 
pendence F,, ( u )  can be approximated in the form (see also 
Ref. 5)  

where 

The expressions (26) are identical to Eqs. (25) with 

as well as with 

As one can see from Eqs. (25 )-(26), as v-st  or s, ,  
when the deformations u,,, (18) and the associated rate of 
dissipation in the elastic subsystem increase, the correspond- 
ing quantities IF,, ( v )  1 reach a maximum, and this can re- 
sult in the appearance of sections with negative differential 
mobility of DWs in the magnetic-field dependence v(H). 

5. ORlENTATlONAL DEPENDENCE 

In order to compare the theory with experiments per- 
formed with different directions of motion of the DW rela- 
tive to the crystallographic axes, we used the scheme de- 
scribed above to calculate the elastic deformations and the 
magnetic-field dependence v(H) for a planar ac-type DW, 
moving along some direction in the crystal given by the an- 
gles 0 and 7 (see inset in Fig. 1 ). In the coordinate system 
( f , j , Z )  tied to the DW (the x-axis is perpendicular to the 
plane of the DW), the components of the displacement vec- 
tor u are equal to 

m 

i r .=u.=( i / inp)  jdq[i6,,lp1 (q ,  V )  +tj,,cp,(q, 011.  - m 

x exp[iq ( x - v t )  ] / q Z ( s , 2 - v 2 - i ~ q ~ l ) r  

and analogously for utl -u ,  with the substitutions in Eq. 

(2%) 

where 

6,,= [ (26,+6))  cog $+ (283+61) sinr P] cos' q+ (26,+6,) sinL q, 

6,,=6, cos $ sin 2q. 

6t , ,=' /2 [ (26,+6,) - (2&+6,) ]cos q sinL $. 
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6t,,=-6, sin P sin q, (28) 
6,,,=L/, [ ( ~ 6 ~ + 6 ~ )  - (26,+62) COS' p- (263+61) sinZ sin 211. 

6,,*=6* COS q COS p. 

In deriving Eq. (27) we assume for simplicity that the 
elastic subsystem is isotropic. This presumes that the elastic 
constants are related by 

and the damping constants vi are related by analogous rela- 
tions. We note that, as follows from Eq. (27b), the shear 
deformation utlz is determined not only by the comparative- 
ly small "transverse" constant 6, but also by the large "lon- 
gitudinal" constants 26, + S,, etc., appearing in SrII and 
Sf2,, and for this reason it can be comparable to u, when the 
DW moves is an arbitrary direction. 

The function v(H) for the case at hand will be deter- 
mined by the formulas (23) and (24), in which 

The maximum width of the shelves at v = st and v = s, 
on v(H) can be estimated using Eq. (29) as well as Eqs. (23) 
and (26): 

One can see from Eqs. (28)-(30) that for a DW 
moving along the crystallographic axes a ( P  = 7 = O), 
b(D = n/2, 7 = O), or c (P  = 0, 77 = n/2) the anomaly 
(shelf) in u(H) at v = s, occurs in any case, while the anom- 
aly at u = s, occurs only when the DW moves along the axes 
a or c. Figure 1 shows v(H) evaluated numerically from the 
formulas (23), (28), and (29) for YFeO, with the following 
values of the parameters of this crystal: 

28, + S,=:2S3 + S ,z  - 2 . 3 ~  10' ergs/cm3, 

28, + S, z 6 X lo7 ergs/cm3 (Ref. 22), 

S,z0.5 x lo7 ergs/cm3 (Ref. 33), 

s, = 4.1 x lo5 cm/s, 

s, = 7 x lo5 cm/s (Ref. 3), 

,uo = 4~ lo3 cm/s.Oe (Refs. 3 and 21), 

c=2x106cm/s(Ref .2) ,  A,= 1 . 1 ~ 1 0 - ~ c m .  

Since there are no data on the sound damping coefficients 7, 
for YFeO, , we employed the values 7, = 0.5 ergs.s/cm3 and 
vt = 0.1 ergs.s/cm3, which are of the same order of magni- 
tude as for ErFeO, (Ref. 34). 

As one can see from Fig. 1, when the DW moves strictly 
along the a-axis (curve 1 )  distinct anomalies occur both at 

u = s, and v = s,. We note that the anomaly at v = s,, with all 
other conditions being equal, generally speaking, is appre- 
ciably smaller than the anomaly at v = s,, since it is deter- 
mined by the small value of the shear-deformation constant 
8,. The magnitude of this anomaly increases rapidly as the 
direction of motion of the DW deviates from the crystallo- 
graphic axes. Thus when the normal to the DW deviates 
from the a axis toward the c axis by only 4"-8" the quantity 
AH, increases by several times (see curves 2 and 3 in Fig. 1 ) . 
This also refers to the DW moving along the b axis with the 
normal to the DW deviating from it by a small amount in the 
bc plane. The vertical lines in Fig. 1, schematically showing 
transitions between the stable branches of v(H), are deter- 
mined from Maxwell's generalized rule (Ref. 16; see Sec. 10 
below). 

When the DW moves in a direction, lying in the ab 
plane, at an arbitrary angleb between the normal to the DW 
and the a axis, the quantity AH, (8) remains virtually con- 
stant, while AH, (P) decreases as P-+ n/2. The dependence 
AH, (P) is illustrated in Fig. 2 for the cases when the normal 
to the DW lies in the ab plane ( 7  = 0; curve I ) and when the 
normal to the DW deviates from this plane by a small angle 
7 = 4" (curve 2) .  We note that if with 

the quantity AH, (P) decreases monotonically (curves I and 
2 in Fig. 2), then even a small difference in these quantities, 
resulting in StII #O (28), can cause a peak to appear in 

AH, (Dl. 
For DWs of the intermediate type2,5*11,19-21 (the plane 

of the plate is perpendicular to the optical axis of the crystal, 
which in YFeO, lies in the bc plane at an angle 8, = 52" to 
the c axis and the plane of the DW is perpendicular to the a 
axis), which are most often encountered in experiments, the 
magnetic-field dependence v(H) in the case when the DW 
moves strictly along the a axis or in a direction deviating 
slightly from the plane of the plate is almost completely anal- 
ogous to the corresponding curves shown in Fig. 1. However 

AH,, Oe 

a-axis l' b-axis 

FIG. 2. Orientational dependences of the width of the magnetoelastic 
anomaly AH,: 1 ,2 )  with a change in the direction of motion of the DW in 
theabplanefrom thea axis (N6el DW) to the baxis (Bloch DW) (I-the 
normal to the surface of the DW lies in the ab plane; 2-the normal to the 
DW surface is inclined to the ab plane by an angle 71 = 4"); 3) for a DW of 
the intermediate type, the normal to whose surface deviates from the a 
axis in the plane of the plate. 
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FIG. 3. Transverse deformation distribution for different 
stationary velocities of the DW: v/s,  = 0 ( a ) ,  0.9 (b) ,  
0.99 (c),  1 (d) ,  1.1 (e),  and 1.5 ( f ) .  

when the normal to the DW deviates by a small amount from u l ' s  ( F . , ~ I D , )  exp ( K I E )  1 - l l c h  z+K1 (Elch E+arccosth t-rt ) 1 ,  

the a-axis in the plane of the plate the magnetoelastic anoma- 
ly increases very strongly at the velocity of transverse sound ( 3 1 ~ )  

(in contrast to the plate perpendicular to the c axis). Curve 3 and for v -- s, 

in Fig. 2 illustrates for this case the increase in the width u,'=- (e lo /D, )  exp ( K , E )  [th 'g-sigll K, -K ,  (k t h  E-],, 2 ch 5 )  1, 
corresponding to the shelf AH,. 

(31d) 
6. STRUCTURE OF A SOLITARY DEFORMATION WAVE where 

We now examine the distribution of the deformations E = ( ~ - u t ) l A ,  Kt., ( v )  = ( l - ~ ~ / ~ t , ~ ) / ~ ~ , ,  ( v ) ,  
U ;  (x) and u: ( x ) ,  accompanying the moving DW. We first 
analyze the case when the DW moves strictly along a crystal- r,= (1-sign K t )  n l k ,  
lographic axis, for example, along the a axis. From the ex- 
pressions ( 181, far from the sound velocities we have for and ,:, and D , ,  are determined, respectively, in Eqs. ( 11) 
4.1 (XI and (26). 

u , ' z ( ~ ~ ~ l c h  E )  [-th E+ (vlc) ( 2  thz t - 1 ) / 2 q t  ( l - v Z l s , 2 ) 2 ] ,  For simplicity we assumed v <c in Eqs. (3  1 ). The for- 
mulas ( 3  1 ) are in good agreement with the numerical results 

(3 la )  for the deformations computed according to ( 18) and pre- 
u , ' ~  ( E ? / c ~ '  z )  11- ( v i e )  th Elqt ( ~ - V ~ I S ~ ~ ) ~ ] ,  (31b) sented in Figs. 3 and 4 for 7, = 7, = 0.5 ergs.s/cm3. 

Near v = s, We note the following features of u: (6) and u; (c). The 

u; l(u; lo 

-1 

-4 FIG. 4. Longitudinal deformat~on distribution for dlffer- -2 ent stationary velocities of a domatn wall: u/s, = 0 ( a ) ,  
0.9 (b),0.99 (c),0.999 ( Id) ,  1.001 (2d), 1.1 (e),and 1.5 
( f ) .  

-I 

-4 
-2 
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symmetry of the distribution of the deformations in a mov- 
ing DW is lower than that of a DW at rest. At v = s, the 
deformation u: once again becomes symmetric with respect 
to the center of the DW, but it has a qualitatively different 
form than in the case v = 0 (see Figs. 3a and d).  At the point 
u = s, the longitudinal deformation does not satisfy the 
boundary conditions (14a)-it is discontinuous. At this 
point there is no continuous solitary-wave solution of the 
with the boundary conditions ( 14a). For any small devi- 
ation of the velocity from s,, however, there does exist a 
solution of the desired form. As the velocity passes through 
the sound velocity s, the character of the deformation u; 
changes. For v < s, a slower drop in the deformation from the 
center of the DW to the periphery occurs behind the moving 
DW (Fig. 4c), while for u > s, the dropoff occurs in front of 
the moving DW (Fig. 4e). This jump in the distribution of 
the deformation u; accompanying the DW nonetheless does 
not result in a discontinuity in the field dependence of its 
velocity at the transition through the velocity of longitudinal 
sound, i.e., H(u) does not have a jump at u = s,. But a dis- 
continuity appears in the derivative of this function, i.e., 
H(v) is not smooth at v = s,. The distribution of the defor- 
mation changes continuously as the velocity passes through 
the transverse sound velocity, and for this reason H(v) is 
smooth at v = s,. 

In the case when the DW moves in an arbitrary direc- 
tion the distribution of each component of the deformation 
u;(<) and u , ~ , ~  (6) will be, according to Eq. (27), a linear 
superposition of the longitudinal and shear deformations ex- 
amined above. 

We now refine the condition under which the strongly 
dissipative approximation, which we employed and accord- 
ing to which the renormalization of the anisotropy constants 
due to the magnetoelastic interaction should be small, is ap- 
plicable. It follows from Eqs. (3  lc )  and ( 3  Id) that the maxi- 
mum deformation at v ~ s , ,  is 

(u:, 1 m a x ~ ~ : t / ~ , , I = 6 t , r ~ , ! ~ t , t ~ i , ~ .  

As a result, we obtain from the condition 

61,ll u:! 1 rJmxKKac 

the criterion for applicability of the strongly dissipative ap- 
proximation: 

2 2 
~ t , ~ ~ ~ ~ , , = 6 t . / A " / K ~ ~ ~ t , , .  

Assuming that 

KO, -- 6 x lo5 ergs/cm3, 

6, -- (2-6) X lo7 ergs/cm3 (Ref. 22), 

S,,--0.5 x lo7 ergs/cm3 (Ref. 33), 

st  = 4.1 x lo5 cm/s, 

s , = 7 ~ 1 0 ~ c m / s  (Ref.3), 

A,= l . l ~ l O - ~ c m ,  

we obtain 77 = 10-2-10-3 ergs-s/cm3 and = l o p 4  
ergs.s/cm3. According to the data from Ref. 34 the sound 
damping constant in orthoferrites at room temperature is of 
the order of 3 ergs.s/cm3, which indicates that the strongly 
dissipative approximation is applicable. 

7. NONUNIFORM MOTION OF A DW; CONDENSED 
DESCRIPTION OF DW DYNAMICS 

An equation describing the nonuniform motion of a 
DW can be derived by the approach developed above (elimi- 
nation of secular terms). We employ the "condensed" de- 
scription of a DW with the help of the coordinates of its 
center 

In this case the distribution in the moving DW is found in the 
form 

0 ( t ,  r) =O [ (x-xo (t, y, z) ) / A  ( t ,  y. a )  ] =O ( z )  . (32) 

Substituting Eq. (32) into Eq. ( 11 ) for 8 and assuming 
once again that the magnetoelastic interaction is a small per- 
turbation (strongly dissipative approximation), we seek the 
solution in the form of an expansion (20) in the small pa- 
rameter Y (see above). The following equation of motion for 
the center of the DW can be derived from the condition that 
the secular terms (22) be eliminated in the equation for the 
higher-order approximation (8, ) : 

d (m~o) /~ t+mxo/~+div ,  (mc2 grad, x,) 

where 

m=mo/ (1-xt/c" "-, mo=2~,lySAo 

are the effective masses per unit area of the moving and sta- 
tionary DWs, respectively; 

is the decay time of the magnons; 

is the gradient of the inhomogeneous magnetic field; 

+ (6,, ,  sin 28"+ 6,,, cos 28,)ut,'f (6,,, sin 2t),,+6,,, cos 28,) ~ ~ ~ ' 1 ,  

is the magnetoelastic decelerating force acting on a DW 
moving in an arbitrary direction in the crystal (see above) .4' 

The quantity 8, (g) is determined by the formulas ( 15) and 
the deformations u;,, ( t , x )  are determined from the corre- 
sponding Eqs. ( 10) and ( 8 ), describing the nonuniform mo- 
tion of the elastic subsystem. For a DW moving along the a 
axis, the corresponding quantities u, and u, = ut2 (u,, = 0)  
are determined by the expressions 

c.. 

u;,:) ( t ,  x) = (&,,1/2J') Idqq , , ,  (fl, ~ O ) X I , I  (!I, t ,  vo)ex~(i!lx-tr~+!) 3 
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where 

In deriving Eqs. (35)-(37) we assume that initially (at 
t  = 0 )  the u , ,  (0,x)  are determined by the distribution ( 1 8 )  
for uniform motion of a DW with the velocity v  = v,. The 
extension of the expressions for the deformations to arbi- 
trary direction of motion of the DW does not present any 
difficulties and actually reduces to replacing in Eq. (36)  the 
quantities 

etc., by analogy to the case of uniform motion [see Eqs. ( 1 8 )  
and ( 2 0 ) ] .  

Substituting the corresponding displacements (35)- 
(36)  into Eq. (34) ,  we obtain after some transformations the 
following expression for the magnetoelastic decelerating 
force: 

FG,= (i6:,/2np) [ J d t ' j  dgqt.1 (g, 50)cpl.t (9. &'I ( q ~ t . ~ ) - ' .  
n -= 

x sin[ (t-t') s:,~ lexpiiq ( I -xOf)  - (t-t') rt.1 I - 

At t  = 0  these quantities transform into the expressions 
(25) .  An important feature of the expression (38 )  is that for 
nonuniform motion of the DW the magnetoelastic decelerat- 
ing force depends on the previous history of the motion. 

8. STABILITY OF A PLANAR DW 

In the case of stationary motion of a DW, for 
x , ( t )  = u,t, Eq. (33)  gives the previously obtained [see 
Eqs. (23 ) ,  (25) ,  and (29)  1 field dependence of the velocity 
of the DW. We now investigate the stability of this solution. 
For simplicity we assume Ix l/c g 1. Let x(t,y,z) = v,t 
+ x ,  (t,y,z). Then the linearized equation for x ,  has the 

form 

where 

Assuming x ,  - exp ( - iwt + i  k ,  r, 1, we obtain the follow- 
ing equation for the characteristic frequencies: 

where 

- W,,,  (q, v,+ o l y )  llicl), 

For small frequencies (w - 0 )  we have 

where F g ,  ( v )  is determined by the expression (25) .  
It follows from Eq. (42 )  that for ( l / r  - T,, ) <O the 

uniform motion of a flat DW will be absolutely unstable. In 
the limit w  -0, as follows from Eqs. (45 )  and (25 ) ,  this 
condition is satisfied near the sound velocities st,, on the sec- 
tions of the curve u ( H )  which correspond to negative differ- 
ential mobility of the DW. In these velocity ranges the DW 
should be expected to deviate from a planar shape. 

9. EVOLUTION OFTHE DEFORMATION WAVE DURING 
DECELERATION OF A DW 

When the DW moves with constant velocity the elastic 
deformation of the crystal is localized on the wall. When the 
motion of the DW is nonuniform, for example, deceleration, 
under certain conditions the elastic deformation localized on 
the DW can become "detached" and propagate freely in the 
crystal in the form of a wave packet of elastic waves. This 
follows directly from the expressions (35)-(36)  for the elas- 
tic displacements u,,, ( t , x ) ,  in which the center of the moving 
DW x, ( t ) ,  generally speaking, may not coincide with the 
region in which the distribution u , ,  ( t , x )  is l~cal ized.~ '  

This detachment of the elastic deformation accompany- 
ing a DW moving with a velocity close to the sound velocity 
(s, ) has actually been observed experimentally by means of 
Brillouin light ~cattering.~'-~' This happened as the DW de- 
celerated and was observed only at low temperatures 
( T-4.2 K) ,  when the sound damping decreases significant- 
ly. This was manifested in the Brillouin scattering spectra as 
a series of lines, one of which corresponded to scattering by 
the DW moving with velocity u <sf  and the others corre- 
sponded to an elastic wave propagating with velocity 
v  = st ( V  = S ,  ). In addition, Demokritov et ~ 1 . ~ ~ ~ ~ '  were also 
able to determine the distribution of the deformation de- 
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tached from the DW in the elastic wave propagating with the 
velocity of transverse sound u = s, : It had a sharp leading 
edge and a very flat (extended) trailing edge. 

We now analyze on the basis of the expressions (35)- 
(36) for the elastic displacements the evolution of the defor- 
mation wave arising when the DW decelerates rapidly, for 
example, as a result of a decrease in the strength of the driv- 
ing field. We assume that prior to deceleration the flat DW 
moved along the a axis of the crystal with velocity 

and after deceleration it moved with velocity v: 

xo ( t )  =u(t-to). 

We are not interested in the short time interval during which 
the deceleration occurs. We assume that initially (at t = 0)  
the velocity of the DW drops rapidly to the value v. Substi- 
tuting 

into Eq. (35), we obtain 

where p,,, and x, ,  are determined by the expressions ( 19) 
and ( 3 7 ) ,  respectively. The first term in Eq. (46) is the elas- 
tic deformation localized on the DW and propagating to- 
gether with the wall with velocity v; the second term is the 
free elastic deformation, detached from the DW and propa- 
gating in the form of a wave packet with velocity (s,, ).6' 

Generally speaking, this wave packet is damped and 
spreads out, since the damping rate 

depends on the wave vector q. 
According to the experiments of Refs. 20-21, phonons 

with q-2x lo5 cm- ', excited by the DW, have a lifetime of 
- 100 ns at T = 4.2 K. Hence it follows that 

In order to determine the character of the evolution of 
the elastic deformation which becomes detached from the 
DW, we performed a numerical calculation of the distribu- 
tions u;,  ( t , x ) ,  using the expression (46) (see Fig. 5 ) . We 
assumed that the sound attenuation constant 

ut,t= (8t,l/2n) Jdq exp(iqz) [cp,,, (q ,  u)exp(- iqvt)/ a=~t.l/2s,,lAn 
- rn 

is a -- 10 - ' (which corresponds to 7, = 0.005 g/cm.s and 
qZ(~1,21-v2-i~~qqt,1) 

77, = 0.0084 g/cm.s). All other parameters were assigned 

+ex~(-tri,i) [~ i , l ( q ,  u n ) ~ , , ~  (Y* t l  vn)-(~i,t (4, ~ ) ~ i , l  ( Q ,  1, ~ ) l  I ,  the same values as in the calculation of the field-dependence 
v(H) (see above); the initial and final velocities of the DW 

(46) were equal to 

FIG. 5. Distribution of transverse ( a )  and longitudinal ( b )  
deformations, detached from the domain wall, at different 
times relative to the time at which the wall stops ( t  = 0):  a: 
t = 0 ( I ) ,  14 (2) ,  28 (3) ,42  ( 4 ) ,  56 ( 5 )  ns; b: t = 0 ( I ) ,  0.04 
(2) ,  0.08 (3), 0.12 ( 4 ) .  and 0.16 (5)  s. 
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and 

in the calculation of the transverse and longitudinal defor- 
mations, respectively. 

As one can see from Fig. 5, the character of the distribu- 
tion of the transverse and longitudinal deformations in the 
corresponding wave packets and their evolution are qualita- 
tively different. The transverse deformation (Fig. 5a) has 
the form of a narrow wave packet with a width of the order of 
A,; this packet spreads out rapidly with time and decays 
(since it contains primarily harmonics with large values of 
4). 

At the same time the distribution of the longitudinal 
deformation, characterized by a sharp leading edge and a 
very flat trailing edge, decays much more slowly than the 
transverse deformation and practically retains its shape. We 
note that the "tail" in the distribution of the longitudinal 
deformation, whose length, according to Eq. (3  Id) ,  is equal 
to 

lengthens as the velocity v, approaches s, (see also Fig. 4).  
The character of the distributions of the longitudinal 

and transverse deformations studied above occurs only 
when a planar DW moves strictly along definite crystallo- 
graphic directions (in this case the a axis). When the direc- 
tion of motion of the DW deviates from a crystallographic 
axis or as a result of inhomogeneous distortions of the profile 
of the wall (see below), the distribution of each component 
of the elastic deformation will consist of a linear superposi- 
tion of these longitudinal and shear deformations with their 
characteristic singularities. Since the shear deformation is 
small in magnitude and decays rapidly, the shape of the dis- 
tribution of the elastic deformation, propagating with the 
velocity of transverse sound, as in the case of the deforma- 
tion propagating with the velocity of longitudinal sound, can 
also have a sharp leading edge and a flat (extended) trailing 
edge, as observed in the experiments of Refs. 20-21. 

10. DISCUSSION AND CONCLUSIONS 

Before discussing the experimental data and comparing 
theory with experiment, we point out the difficulties arising 
here. The magnetic-field dependence presented above for the 
stationary motion of DW u(H) (Fig. I ) ,  in particular, their 
S-shape and the existence of unstable sections with negative 
differential mobility indicate that here we are dealing with a 
strongly nonequilibrium system, which should exhibit criti- 
cal behavior near the sound velocity with fluctuations signif- 
icantly affecting the character of the observed processes. It 
can be asserted that fluctuation-induced first-order nonequi- 
librium phase transitions between two stable branches of the 
magnetic-field dependence v(H) occur as the magnetic field 
is varied. Such critical behavior is manifested, in particular, 
in the wide spread of the experimentally observed u(H) 
curves for different samples, methods of observation, and 
other experimental details (compare, for example, the 
curves v(H) in Refs. 2,3, 11,21, and 37). The widths of the 

"shelves" vary, for example, from 30 to 500 Oe for DW mov- 
ing along the a axis. 

A fundamental manifestation of the critical behavior of 
a moving DW near the sound velocity is that in reality the 
transition of the system from one branch to another as the 
magnetic field increases or decreases occurs not at the end- 
point of the stable section of a branch, but rather is deter- 
mined by a rule analogous to Maxwell's rule for equilibrium 
phase transitions.16 The size of the observed "shelf' in the 
curve u(H) is significantly smaller than that given by the 
nonlinear problem for the eigenvalues u(H) . We note, how- 
ever, that the measured field dependence v(H) presented in 
Ref. 21 shows that different velocities coexist for the same 
value of the field; this is entirely typical for first-order phase 
transitions, because Maxwell's rule requires that the transi- 
tion between stable branches must proceed quite slowly (ad- 
iabatically). 

The second important factor, which must be taken into 
account in any analysis of experiments, is that under realistic 
conditions a moving DW is not planar. There can be differ- 
ent reasons for this. For example, the presence of some addi- 
tional and entirely natural surface deceleration of the DW 
makes the DW convex, the more so the closer the velocity of 
the wall is to the sound velocity. It is then obvious that by 
virtue of the orientational dependence of the magnetoelastic 
stopping force (the Rayleigh dissipative function), an addi- 
tional contribution to the magnetoelastic anomaly arises 
which is not small (compare curves I and 2, 3 in Fig. 1 ). 
Curvature of the profile of the DW over the thickness of the 
plate can also arise as a result of a nonuniform planar field 
H, (z), necessarily present in many experimental situations 
where a gradient of the field H, (x) was employed. 

We call attention to the natural and interesting possibil- 
ity of spontaneous perturbation of the profile of a DW (pos- 
sibly nonuniform). It is associated with the well-known con- 
cept of formation of dissipative structures in the 
thermodynamics of strongly nonequilibrium systems. 

Indeed, according to this concept, an open system far 
from equilibrium tries to transform into a state or, in other 
words, rearrange itself so that the dissipation of negentropy 
flowing into the system would accelerate." Applying this 
principle to our situation, we can expect that a moving 
planar DW restructures itself so that stronger dissipation 
mechanisms would be activated. In particular, such restruc- 
turing could be associated with bending of a DW across or 
along the plate. Such dissipative structures have been ob- 
served previously in YFeO, (Ref. 39) and they were investi- 
gated theoretically and experimentally in Refs. 14 and 40, 
but, it is true, in somewhat stronger fields, where they are 
easily observed visually. 

Turning to the experimental data, presented, for exam- 
ple, in Refs. 2, 3, 11, 21, and 37, we note first of all that the 
orientational dependence of the velocity of a domain wall as 
a whole agrees poorly with the computed dependence [see 
Eqs. (23), (24), (28), and (29) 1. Indeed, according to Eqs. 
(28) and (30), the length of a "shelf' with transverse sound 
for a Bloch wall moving along the b axis is close to zero3' or 
appreciably smaller than for a NCel domain wall moving 
along the a a x k 3  The orientational dependence v(H) ac- 
companying a change in the direction of the velocity of the 
DW in the ab  plane was investigated in Ref. 41; this depen- 
dence also aqrees with the computed dependence (Fig. 2).  
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The second important question arises in connection 
with the anomalies in the velocity of longitudinal sound. Ac- 
cording to the theory, for known values of the parameters 
the anomaly should be stronger than in the case of transverse 
sound (if the DW moves along rational axes of the crystal). 
On the other hand, significant anomalies for longitudinal 
sound which are appreciably stronger than the anomalies 
observed for transverse sound are not observed in experi- 
ments. This can be explained, as noted above, by a "jump" 
(nonequilibrium phase transition) of the system from the 
bottom stable branch of u(H) directly into an upper stable 
branch, bypassing the intermediate branch or with a rela- 
tively short delay determined by Maxwell's rule, in an inter- 
mediate state. When Maxwell's rule is taken into account, 
the computed field dependence u(H) (Fig. 1 ) is qualitative- 
ly very close to the experimentally observed dependence 
(see, for example, Refs. 1 1 and 2 1 ) . 

As concerns the quantitative comparison of theory and 
experiment, it is observed that in cases when a planar DW 
moves strictly along rational crystallographic axes the 
lengths of the "shelves" at uzs , ,  calculated from the known 
values of the magnetoelastic constants and attenuation pa- 
rameters of sound, have a tendency to be smaller than is 
observed. This indicates, in our opinion, that inhomogen- 
eous distortions (possibly, unsteady) appear in the profile of 
the DW as the velocity of sound is approached. In this case 
the magnetoelastic anomalies increase significantly (see 
curves I and 2, 3 in Figs. 1 and 2) as a result of the strong 
orientational dependence of the magnetoelastic retarding 
force (the Rayleigh dissipative function). 

This situation is most pronounced when a flat Bloch 
DW moves along the b axis. The magnetoelastic anomaly at 
u-,s,, according to Eqs. (28) and (30a), formally vanishes 
and at the same time strong dissipation arises with small 
variations of the normal to the DW relative to the b axis (for 
example, as a result of the curvature of the DW). The anom- 
alies in u(H) for vllb, which were observed in Refs. 3 and 37, 
are probably related to this. 

A comparison of phonon amplitudes and the singular 
points of the curves u(H) indicates the same thing (see Fig. 4 
from Ref. 2 1 ) . Indeed, it follows from them that the ampli- 
tude of the deformation field increases significantly only 
when the velocity reaches the "shelf' at u = s,, and in addi- 
tion a distinct break is observed at this point in u(H). It is 
here that the retarding force increases sharply, possibly be- 
cause of spontaneous perturbations of the profile of the DW. 

Analysis of the nonstationary motion of a DW and the 
numerical experiments showed that when a DW moving 
with a velocity close to the sound velocity (u-s,, ) deceler- 
ates, a localized elastic deformation (elastic soliton), propa- 
gating in the form of a wave packet with the sound velocity 
(u - s , , ) ,  detaches from the wall. The distribution of the 
transverse deformation then has the form of a narrow wave 
packet whose width is of the order of several widths of the 
DW. The distribution of the longitudinal deformation, how- 
ever, is characterized by a significantly larger width and 
weaker attenuation and the shape remains unchanged for a 
significant time. The distribution of deformation, observed 
in Brillouin light scattering e ~ ~ e r i m e n t s , ' ~ - ~ '  in a wave 
packet propagating with the transverse sound velocity has a 
shape characteristic not of transverse deformation, but rath- 

er of longitudinal deformation. This could possibly indicate 
that under real conditions the deformation accompanying a 
DW is not a purely shear or longitudinal deformation, but 
rather it is a linear superposition of the two, probably, as 
discussed above, due to the inhomogeneous distortions of 
the DW profile which grow at u-s,. 

An interesting problem arises in connection with the 
longitudinal phonons observed in Ref. 2 1, which were gener- 
ated by a DW in stationary motion with velocities which, on 
the whole, do not exceed s,. This unexpected effect can be 
explained on the basis of the same picture of the perturbed 
(multidimensional) motion of a DW in the critical region 
L~ZS, .  Indeed, as discussed above, unsteady perturbations of 
the front of the DW, which propagate along the DW with 
velocities up to the maximum velocity c = 20 km/sec and 
can excite both transverse and longitudinal acoustic phon- 
ons, are possible. In particular, nonlinear kink perturba- 
tions, which can be excited with rapid deceleration and a 
change in the direction of motion of DW are interesting. 
They are especially likely to be excited if the sign of the cur- 
vature of the profile of the DW changes when the direction of 
motion of the DW reverses. Such fast kinks with significant 
amplitude have been observed in nonstationary dynamics of 
DW in YFe0, .39 We also note that kinks moving with su- 
personic velocities can be a source of "true" Cherenkov 
emission of transverse and longitudinal phonons, in contrast 
to a strictly planar DW for which Cherenkov emission is 
forbidden by the laws of conservation of energy and momen- 
tum of the phonons. 

We thank N. M. Kreines and A. I. Kirilyuk for a helpful 
discussion of this work. 

" Solitary magnetoelastic solitons were studied in Ref. 17 and then in a 
number of other works (see Ref. 18 and the detailed bibliography cited 
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tons." 

'' A situation which is, in a certain sense, similar is examined in a recent 
work (Ref. 28) on resonant interaction of solitons with impurity 
centers. 

"The effect of magnetoelastic interaction on DW dynamics in the case of 
a ferromagnet was analyzed recently in Ref. 30 on the basis of soliton 
perturbation theory.''~'* 

4 '  In deriving Eq. (34) we neglected the distortions of the plane of the 
DW. Such distortions require a separate analysis. 

"The effects discussed in this section are related to the appearance of a 
magnetoelastic gap and quasilocal magnetoelastic oscillations in a mov- 
ing DW, which were examined in Refs. 35-36. 

6' We note that this term indeed includes two wavepackets, corresponding 
to the motion of a free elastic wave parallel and antiparallel to the direc- 
tion of the DW. The latter wave, however, has a small amplitude and 
can be neglected. 
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