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We give a theoretical discussion of the passage of light through a system of two bistable thin films 
of two-level atoms (centers). We show for the limiting case of an inertialess medium that, 
depending on the external parameters, the light dynamics of the system admit the occurrence of 
both regular and chaotic regimes. Ifthe distance between the films is an integer multiple of the 
wavelength the system of the two films behaves as a separate bistable element. Self-oscillations 
arise if an odd number of half-wavelengths can be fitted between the films and absorption in the 
medium is inappreciable. We prove that it is possible for the system to operate as a multivibrator 
with different regimes. 

INTRODUCTION 

Optical bistability is nowadays a well studied property 
of the nonlinear interaction between light and matter.',* The 
practical application of bistability is first and foremost con- 
nected with the construction of an optical computer where 
the role of the elementary cell is intended for the bistable 
element while different elements are coupled by a beam of 
light. With this goal in mind the problem of the passage of 
light through a chain of several bistable elements is of imme- 
diate importance. 

The problem of the propagation of light through a chain 
of coupled nonlinear elements can be considered from the 
point of view of an approach which has been called synerge- 
t i c . '~~  Such an approach assumes that a set of several inter- 
acting subsystems (in the present case bistable elements) as 
a combined system demonstrates a new aspect which is not 
present in an elementary subsystem. In Ref. 5 the collective 
dynamics of coupled nonlinear elements was considered (us- 
ing the Ikeda model6 ); the idea was expressed there that it is 
possible to use the collective properties of a chain to store 
and process information. The present paper can be consid- 
ered as a first step in the study of the collective properties of a 
set of optically bistable thin films. 

As a basic model we choose in the present paper a thin 
film of two-level atoms (centers). This model has recently 
attracted the attention of many  researcher^.'-'^ For our pur- 
poses the following facts were the main ones for choosing the 

give an analysis of the stability of the stationary states and 
determine the possibility for the occurrence of complex re- 
gimes (including a dynamic chaos regime). In the Conclu- 
sion we analyze the main properties of the system. 

1. EQUATIONS OFTHE MODEL 

We consider the following construction of thin films 
where the films are positioned at a distance I from one an- 
other (Fig. 1 ) in a medium with a complex refractive index 
n,  = n - ix. The thickness L is assumed to be much smaller 
than the wavelength of the incident field. 

We write the linearly polarized light fields in the form 

sj(+' ( z ,  t)  = E i + )  ( z ,  t)exp {i [a t - k  (2 -z j ) ]  ) + c.c., ( 1 ) 

& t - ' ( z ,  t ) = E j l - ' ( 2 ,  t ) e x p { i [ a t f  k ( z - z , ) ] }  + c.c., (2)  

where j = 0, 1, 2; E j  + ' and E,( - ' are the slowly varying 
field amplitudes and k = n,w/c is the wavenumber. The 
" + " superscript corresponds to the field propagating in the 
positive z direction and the " - " superscript to propaga- 
tion in the negative z direction. It is clear that the field gj  + , 
differs from gj  by the magnitude of the secondary field 9, 
induced by the atomic polarization of the jth film. One can 
show by solving the Maxwell  equation^'^.'' that the follow- 
ing equations hold for the field amplitudes: 

model. .$:' (z,, t ) = ~ j : ; ) ( ~ ~ ,  t) - 2 i n n o ~ ~ ~ ( t ) / c ,  
1. The small film thickness (much smaller than the 

wavelength of the incident radiation) makes it possible to 
avoid solving complicated partial differential equations and 
the problem reduces to a study of a dynamic system. 

2. The equations for the film turn out to be identical to 
the equations for the case of an optical bistable nonlinear 
interferometer in the mean field approximation.' This fact 
indicates the possibility of applying the results of the present 
paper to other bistable elements. 

3. Because it is thin the film is sensitive to the phase 
properties of the light. This makes it possible to use in addi- 
tion to characteristics such as the intensity yet another con- 
trol parameter of a coherent light beam-the phase of the 
field. 

The paper is organized as follows. In Sec. 1 we write 
down the basic equations of the model and then consider the 
nonlinear mapping to which the problem reduces. We then 

where P, ( t )  = P(z, ,t) is the slowly varying part of the polar- 
ization produced by the atoms of the jth film. The complete 
expression for the atomic polarization has the form 

FIG. 1. Bistable films (thickness L )  at a distance I from one another in a 
medium with a refractive index n, = n - ix. 
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Pj(+) (2, t)=Pj(t)exp[iot-ik(z-z,)] + c.c., (5)  

pi(-' (2, t)=Pl(t) exp [iot+ik (z-zj) ]+ C.C. (6)  

In Eqs. (3) - (6)  we have used the fact that the thickness L of 
the film is much smaller than the wavelength, so that the film 
is a "point source" relative to the z axis. The following equa- 
tions follow from Eqs. ( 3  ) and (4)  : 

which corresponds to the total field amplitude being con- 
stant to the right and to the left of each film. 

The dynamics of the polarization for the films are de- 
scribed by the Bloch equations16 

where W, is the difference in populations between the levels, 
R, is the slowly varying part of the off-diagonal element of 
the density matrix of the two-level atom, p is the transition 
dipole moment, and TI and T2 are the longitudinal and 
transverse relaxation times. We assumed for Eqs. (8)  and 
(9) that the condition of exact resonance between the inci- 
dent field and the atomic transition was satisfied. The polar- 
ization in the film is F', = pNR,, where N is the density of the 
two-level atoms. The quantity E, in Eqs. (8)  and (9)  is the 
effective electric field acting on the atoms. The effective field 
is determined not only by the external incident field, but also 
by the internal polarization of the medium. It was shown in 
Refs. 10 and 11 that one can write the effective field in the 
form 

where the quantity TR = iic/2mNLwp2 is the characteristic 
parameter of the thin film and determines the superradiation 
processes in it.".14 The presence of the last term in Eq. ( 10) 
reflects the internal feedback between the atoms in the film. 
Thanks to this fact a mirrorless optical bistability is realized 
in the system. When substituting ( 10) into (8)  and (9)  for 
the stationary case (dRj/dt = 0,d W,/dt = 0) we are led to 
the relation 

. , 

C=T,/2TR, z=Ej,  y=~j'-?,) (zj, t)+E;-' (zj, t), 

which was first obtained for describing the optical bistability 
of nonlinear interferometers in the mean field approxima- 
tion.' We draw attention in Eq. (11) to the fact that the 
phases of the incident ( x )  and the transmitted ( y )  fields are 
the same. This fact turns out to be very important for the 
interaction of light with films. The similarity of the thin film 
model and the nonlinear interferometer suggest that the re- 
sults of the present paper may be used for other bistable 
devices. 

One must note that in considering the problem of the 
effective electric field (10) in Refs. 8 and 12 the necessity 
was discussed of introducing yet another term, a+.rrP, 
which corresponds to the Lorentz correction." The prob- 

lem then becomes more complicated and we do not consider 
the Lorentz correction in our paper. 

We refine the values of the E, fields acting on the atoms 
of the two films: 

ihR, ( t )  
E, (t)=E,, (0, t) -i--- 

pTR 

ihK,  ( t )  
E2(t)=Ezi(l, t )  - - 

PTR 

where E,, (0,t) and E,, (1,t) are the amplitudes of the exter- 
nal fields which are incident, respectively, from the left on 
the first and from the right on the second film. The terms 
with retardation in Eqs. ( 12) and ( 13) indicate the effect the 
films have upon one another. The factor exp( - ikl) indi- 
cates that in our problem not only the amplitude, but also the 
phase relations between the incident fields are important. 
For instance, depending on the phases, the films may turn 
out to be either in the nodes or in the antinodes of the stand- 
ing wave formed by the coherent light fields propagating in 
opposite directions to one another. We give the incident 
fields in the form 

{ 0. t c o  
E,, ( 1 ,  t)= 

E,,. t>O 

where E,, and EZi are real time-independent amplitudes. 
The final dynamics of the passage of light through films is 
described by Eqs. (8) ,  (9 ) ,  and (12)-(15). 

2. CASE OF AN INERTIALESS MEDIUM 

Equations (8),  (9),  ( 12), and ( 13) with the conditions 
( 14) and ( 15) constitute a set of six nonlinear differential 
equations with retarded arguments. In view of the impossibi- 
lity of finding a general solution of the set we consider some 
simplifications. We assume that the medium is inertialess, 
i.e., that the relaxation times T, and T2 are sufficiently 
small: 

so that after a feedback time nl/c relaxation processes are 
damped in the films. One can then neglect the derivatives in 
(8)  and (9)  and consider all changes occurring in the system 
on a time scale At = nl/c. Equations (8)  and (9)  are then 
reduced to the following mapping: for the first film 

-2iC{a-k-,(m+.l)+[b-~r,(m) ]e- 'k')  (17) 
r,(m+l)= ----- , 

If la-ir, (m+l) +[b-ir,(m) ]e-'k'12 

and for the second film 

-2iC(b-ir, (m3-I) +[a-ir, (m) ]e-'k') 
r, ( m+ 2 ) = --------- -, (18) I + /  b-ir,(nz+l) f [a-ir, ( m )  ]e-"" l 2  
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where we have introduced the notation 

while increasing m by unity corresponds to increasing the 
time t by At = nl /c. If we assume that when the fields are 
incident on the films the atoms are in the ground state, we 
can write the initial conditions in the form 

If the incident fields a and b are equal to one another the 
problem becomes symmetric (see Fig. 1 ). The processes oc- 
curring in the two films turn out to be identical. Expressions 
( 17) and ( 18) are the same. The dynamics of the system are 
described by the same mapping, ( 17) or ( 18). This case 
turns out to be equivalent to the problem, considered in Ref. 
13, of the passage of light through a thin film of two-level 
atoms behind which there is a reflecting surface. 

Note that r, (m + 1) in the mapping ( 17) depends sole- 
ly on r2 (m), but is independent of r, (m); i.e., the state of the 
first film at the m + 1st time depends solely on processes in 
the second film at the mth time. The same is true for the 
second film, described by the mapping ( 18). The change in a 
film thus affects the film itself through the other film after 
the lapse of a time interval 2At and the two-dimensional 
mapping reduces to two one-dimensional ones. 

We have thus succeeded in the limit of an inertialess 
medium to reduce the problem to two nonlinear complex 
mappings given in implicit form. It is well knowni8 that even 
the simplest logistic mappings have chaotic dynamics so that 
we have every reason to expect complex dynamic regimes in 
our system. To explore this problem we turn to finding sta- 
tionary states and to studying their stability. 

3. STATIONARY STATES AND STABILITY 

We find the stationary states of the set (8)  and (9)  [or 
the fixed points of the mapping ( 17) and ( 18) 1. We obtain a 
set of algebraic equations for the quantities r,, and r,, which 
characterize the stationary values of the polarizations in the 
films: 

The stationary values of the populations are given by the 
expressions 

Because they are complex the equations are still rather 
complicated. We consider two limiting cases, when the 

I 

value of exp( - inwl /c) equals 1 or - 1. The case 
exp( - inwl /c) = 1 corresponds to the case when between 
the films one can fit an integer number of wavelengths and 
the fields arrive at the films with the same phases. If 
exp( - inwl /c) = - 1 holds the distance between the films 
contains an odd number of half wavelengths and the waves 
"quench" one another. In those cases the equations simplify 
and it is possible to carry out an analytical study. We denote 
exp( - xol/c)  by s (Is1 < 1); i.e., we introduce a quantity 
indicating the attenuation of the light beam when it passes 
from one film to the other. We also introduce the notation 
r, = uj + iv,, j = 1,2. Since the external fields are real quan- 
tities it follows from the equations that the quantity u, ( t ) ,  
which is initially zero, remains the same also in what follows. 
Equations (20) and (21) become real and take the form 

In the s = 1 case (medium without absorption) the right- 
hand sides of Eqs. (24) and (25) are the same. This means 
that the stationary states for v, and v2 will be equal to one 
another: v,, = v,, = v,. According to (24) and (25) one 
finds the quantity v, from the standard expression ( 11) for 
the bistable characteristic where x = a + b + 2v,, 
y = a + b + us. The system of two bistable films thus repeats 
the properties of a separate bistable element. The system be- 
haves also similarly when exp( - inwl/c) = - 1 with the 
difference that the stationary values for the polarizations 
satisfy the equation v,, = - u,, = us while the quantity v,< 
can be found from Eq. ( 1 1 ) where x = a - b + 2u,, 
y = a - b + v,. The phase difference of the incident waves 
leads to the fact that in the first case (s = 1 ) the fields mag- 
nify one another while in the second case (s = - 1) they 
weaken one another. According to (22) and (23), the sta- 
tionary values of the populations are equal to one another 
both in the first and in the second case. 

We turn to a study of the stability of the stationary 
states. First of all, we find the condition for stability of the 
original set (8) to ( 10). To do this we consider the dynamics 
of small perturbations 

Arj ( t )  =rj ( t )  -rje, 

AWj(t) =Wj( t )  -W,,. 

After substituting the perturbations into the equations 
and linearizing in the standard wayi9 we obtain a set of 
algebraic equations to find the growth rate a characteri- 
zing the growth of the perturbations with time 
[ Arj ( t )  c exp (ot) , A W, ( t )  cc exp (a t )  1. The condition for 
the compatibility of the algebraic system is the vanishing of 
the determinant 
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where we have f = a + v,, + (b + u,,)s, g = b + u,, 
+ (a  + v,, )s, T = ( TI T2 )'I2, and S - ( T, /T2 ) 'I2. The 
determinant (26) is written down for the 
exp( - nlw/c) = + 1 case. The vanishing of the determi- 
nant can be somewhat simplified and be reduced to the form 

We have thus obtained a transcendental equation for finding 
the parameter a. We note that each of the determinants on 
the left-hand side of Eq. (27) corresponds to the stability 
condition of a separate bistable film. By putting a = 0 in 
(26) and (27) we get a relation between the control param- 
eters a, b, s, and Cof the system which gives us the boundary 
of the stability region of the stationary regime. 

In the case of an inertialess medium [for the mappings 
( 17) and ( 18 ) 1 the stability condition corresponds to the 
multiplier A being equal to unity.'s4 One can then write con- 
dition (27) as follows 

where 

The quantities A ,  and A, show the growth of the perturba- 
tions for the mappings ( 17 ) and ( 18 ) , respectively. If a and b 
are the same the quantities A ,  and A, are equal to one an- 
other and are the same as the expression for the multiplier 
found in Ref. 13 in the study of the stability of the light 
dynamics of a thin film with an extra reflecting surface. 

We note a simple method for studying the stability ana- 
lytically. Instead of solving the algebraic nonlinear set of 
equations determining v,, and v,, it is much simpler to con- 
sider the inverse problem, i.e., to take as the known quanti- 
ties a + v,, and b + v,,. Afterwards one can easily calculate 
a, b, u,,, and v,, from Eqs. (24) and (25) and determine the 
stability of the system from (28) for some a, b, s, and C. 

4. INSTABILITY AND CHAOS 

We show that the light dynamics of coupled thin films 
described by the mappings (17) and (18) admits the pres- 
ence of complex regimes, including chaotic ones. It  makes 
sense to consider initially the symmetric case of equal ampli- 
tudes a and b. We show in Fig. 2 the bifurcation diagram for 
s = - 0.8 and C = 4. Along the vertical axis we plot the 
field amplitude after the first film, el + ) (z = 0) = a + u,, 
which is the same as el - ) (z = I) = b + v,,. The first bifur- 
cation of the loss of stability by the stationary regime occurs 
for a = b z  9.85 (it is not shown in the figure). For larger 
values of a self-oscillation regimes appear. The transition to 

FIG. 2. a: Bifurcation diagram for the case in which the incident waves 
have equal amplitudes a = b, for s = - 0.8, C = 4. Along the ordinate is 
plotted the amplitude of the field transmitted through the film, 
ej + ' (Z = 0 )  = ei - ' (Z = I). b: Lyupanov exponent as function of the am- 
plitude a. 

chaos occurs according to Feigenbaum's period doubling 
scenario." The chaos region is interrupted by regularity 
"windows" where periodic regimes, 3At, 5At, ... exist, and 
also their sequence with a doubled period. We show in Fig. 
2b the results of calculating the Lyapunov e~ponent"~  

1 A v m + 1  
UL =~irn-zl~ 1-1 

N-- AT ,,,=I Av, ' 

FIG. 3. The region where pulsation regimes exist is hatched in the planeof 
the control parameters a and b. The dashed section on the diagonal corre- 
sponds to theequal amplitudes case, shown in Fig. 2. The points A, B, and 
C correspond to different types of pulsating regimes. 
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where the range of values of the parameter a corresponds to 
Fig. 2a. In the bifurcation points a,, a,, a, the Lyapunov 
exponent vanishes. The regular regimes are characterized by 
negative values of uL and when there is the transition to 
chaos for a, ~ 9 . 9 7 3 6  the exponent becomes positive. The 
chaos region occupies a small range of values of the param- 
eter a and is shifted by 2At period oscillations which exist up 
to a= 18.8. Afterwards a stable stationary regime is again 
established which is determined by Eqs. (24) and (25). 

A more complete picture describing the dynamics of the 
system is given by Fig. 3. We show here the plane of the 
control parameters a and b fors = - 0.8 and C = 4 in which 
the hatched region corresponds to the loss of stability by the 
stationary regime. The curve bounding the region satisfies 
condition (28). Since the problem is symmetric in a and b it 
suffices to study the region of parameters bounded by the 
two diagonals (a  fourth part of the plane). For the whole 
plane the picture turns out to be symmetric with respect to 
the diagonals. The dashed section on the diagonal indicates 
the instability section corresponding to Fig. 2. One must 
note that we have indicated in Fig. 3 the region where the 
instability leads to pulsations. Moreover, since the system is 
multistable there exist regions where the instability leads to 
another stationary regime. The intersection of the dashed 
region with the abscissa axis ( b  = 0 )  means that pulsations 
appear in the case where the field is only incident from one 
direction onto the film. 

The calculation of the dynamics of the system using the 
mappings (17) and (18) with the initial condition (19) has 
shown that it is possible to establish different types of pulsat- 
ing regimes which are shown in Fig. 4. The pulsating regimes 
are shown after having been already established after finish- 
ing a transitional process. Along the vertical axis in Fig. 4 we 
have plotted the amplitudes of the fields transmitted 
through the first film (upper series) and through the second 
film (lower series) at the same time. The point A in Fig. 3 
corresponds to Fig. 4a, the point B to Fig. 4b, and the point C 
to Fig. 4c, and the A type of regimes occupy almost the whole 
dashed region. It is clear that A and B regimes correspond to 
a fourfold increase in period in contrast to the usual period 
doubling ( C  type). The B regimes occupy an intermediate 
parameter region between A and C. More complicated re- 
gimes, including chaotic ones, occupy a very small param- 
eter region around the dashed section of the diagonal. Note 
also that the regimes shown in Fig. 4 were obtained using the 
initial condition ( 19). For instance, a B type regime is possi- 

FIG. 4. Established regimes of the system ( 17) and (18)  with the 
initial condition ( 19): a, b, and ccorrespond to the points A, B, and 
C in Fig. 3. 

ble in the point A if we choose different initial conditions. 
Figure 4 thus demonstrates the possibility of a system of two 
bistable thin films as a multivibrator having a wealth of dy- 
namic regimes. 

We show in Fig. 5 the effect of the parameters, which 
characterizes the absorption power of the medium between 
the films, on the development of the instability in the system. 
If the value of s is close tb zero it means that the medium 
absorbs almost all the light transferred from one film to the 
other. There is no coupling between the films and no pulsa- 
tions appear [this is indicated by Eq. (28) in which we have 
IA / cc s2].  The hatched region shown in Fig. 5 shows that for 
small negative s pulsations appear in a narrow range in the 
parameter a, but this range broadens when Is/ increases, 
shifting in the large a direction. Pulsations are thus most 
probable if the distance between the films contains an odd 
number of half wavelengths while the medium is not very 
absorptive. 

We briefly discuss the role of the cooperative parameter 
Cin the nonlinear dynamics. For small values of C the prob- 
lem becomes nearly linear and there are neither bistability 
nor pulsations. When C increases the band in which pulsa- 
tions exist occupies an ever more extensive region; for in- 
stance, the "tongue" shown in Fig. 5 broadens and shifts in 
the large a direction. For sufficiently large values of the pa- 
rameter C the picture of the instability zones in the plane of 
the control parameters is rather complicated. An exhaustive 
study of all possible regimes becomes a very laborious prob- 
lem. 

CONCLUSION 

The results obtained in the present paper show that the 
dynamics of the passage of light through a system of two 
bistable thin films is complicated. The system repeats the 

FIG. 5. Zone in the a,  s plane where pulsations exist 
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properties of a separate bistable element if one can fit an 
integer number of wavelengths between the films. If, how- 
ever, the distance between the films contains an odd number 
of half-wavelengths, pulsations, including chaotic dynam- 
ics, may appear in the system if the absorption is weak. The 
system demonstrates multistability of different types of pul- 
sation regimes. 

If radiation with the same intensity is incident on the 
films from two sides the problem becomes symmetric and 
equivalent to the passage of light through a film with an 
additional reflecting surface. " 

We note that the thin films of two-level atoms consid- 
ered in our paper may turn out to be useful as a model for 
studying the nonlinear optical properties of thin semicon- 
ducting layers. Recent papers show that one can use the 
Bloch equations to describe both interband  transition^'^.^' 
as well as the exciton mechanism for the interaction of light 
with ~emiconductors.~~ The short relaxation times for semi- 
conducting materials produce a practical basis for the case of 
an inertialess medium considered in the present paper. 
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