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Spectral aspects of the light-induced drift (LID) velocity are investigated. A strong dependence 
of the spectral shape of the LID signal on the interparticle interaction potential is predicted. The 
Lennard-Jones and Sutherland models are used for the interparticle interaction potential. It is 
shown that the drift velocity as a function of the radiation frequency can have one, three, or five 
zeros. The main reason for the appearance of additional zeros in the drift velocity is the 
dependence on the velocity of the molecules of the relative difference of the collision frequency of 
the excited and unexcited particles. It is shown that the additional zeros of the drift velocity can 
arise even in the large collisional broadening limit. In the case of the Sutherland model it is shown 
that the presence of singular points in the drift velocity makes it possible to extract more detailed 
information about the interaction potentials from the experimental data. 

1. INTRODUCTION 

Since the prediction of light-induced drift (LID) ' and 
its first experimental observation2 a large number of experi- 
mental and theoretical studies have been carried out on this 
phenomenon. The present state of these investigations is well 
reflected in Ref. 3. The essence of the effect consists in the 
appearance of a macroscopic flux of absorbing particles in- 
teracting with a traveling light wave and undergoing colli- 
sions with the particles of the buffer gas. 

Light-induced drift belongs to the category of strongly 
nonequilibrium effects, and it can be described rigorously 
only for certain restrictions on the parameters of the system. 
Thus, at first it was possible to obtain a rigorous expression 
for the drift velocity only in the limit of large homogeneous 
half-width I? of the absorption line.4 In this connection, the 
importance of having models in the LID problem for which 
it is possible to obtain exact analytic solutions is obvious. In 
this sense, the greatest success in the theory of LID has been 
enjoyed by the strong collision model, which allows an exact 
solution to be obtained and understand the behavior of the 
drift velocity for arbitrary values of the field intensity and 
the parameter T/kE (Ref. S), where k is the wave number of 
the radiation k and ij is the mean thermal velocity. For cer- 
tain restrictions on the system parameters it is possible to 
obtain a rigorous solution in the case of a light buffer gas (the 
Fokker-Planck limit; Ref. 6 ) ,  for which, as for the strong 
collision limit, the transport collision cross sections u:,!" ( u )  
do not depend on the particle velocity. In the possible case of 
a heavy buffer gas (a  Lorentz gas) it is also possible to obtain 
a rigorous solution. The LID problem for a Lorentz gas was 

for the case of not too great radiation intensity 
under the assumption that the homogeneous half-width of 
the absorption line and also the relative difference of the 
transport cross sections for the excited ( m )  and unexcited 
(n)  absor6ing particles with the particles of the buffer gas 
are independent of velocity: 

( 1 )  om (v)-ad" ('I-- 
= const. 

onii' (v) 

An analysis of the influence on the spectral dependence of 
the light-induced drift velocity of the shape of the function 
T(v) was carried out in Ref. 9 for a Lorentz gas under as- 
sumption ( 1.2). A quantitative theory of LID, valid for arbi- 
trary masses of the buffer particles, was constructed in Refs. 
8 and 10 using the 13-moment Grad method. 

Figure 1 shows the characteristic dependence of the 
light-induced drift velocity u of two-level particles on the 
detuning fl= w - w,, of the radiation frequency w from 
the optical resonance frequency w,, . I  The antisymmetric 
character of u(f l )  with only one zero at a =  0 (Fig. 1) was 
reproduced in all of the cited papers. 

FIG. I .  Dependence of the drift velocity on the detuning fl for the case 
(1 .2 ) .  
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The question arises, is the spectral dependence of the 
drift depicted in Fig. 1 universal? The present paper is dedi- 
cated to the solution of this fundamental problem. Below we 
show that besides the spectral dependence with one zero il- 
lustrated in Fig. l ,  behavior with three and five zeros are also 
possible. The main reason for these anomalies is the nonde- 
finite character of the velocity dependence of the relative 
difference of the transport cross sections ac'(v) and 
a:'' (u), i.e., nonfulfillment of condition ( 1.2). This condi- 
tion is most strongly violated for the case of heavy buffer 
particles, i.e., for a Lorentz gas.' In this connection, in the 
analysis of the spectral properties of LID we have assigned 
particular importance to the Lorentz gas. The drift velocity 
depends antisymmetrically on the detuning, 
U(  - R )  = - u ( 0 ) ;  therefore, in what follows we will 
study u (0) only for positive detuning and speak of the num- 
ber of zeros of u ( 0 )  only in the region R>O. 

2. SOLUTION OFTHE KINETIC EQUATIONS FOR A LORENTZ 
GAS 

Let us consider the interaction of a traveling electro- 
magnetic wave E exp(iwt - ikr) + C.C. with two-level ab- 
sorbing particles mixed with the buffer gas. The evolution of 
the absorbing gas is described by the well-known kinetic 
equations for the density matrix pij (v) (Ref. 3 ) : 

where 

2 Ed*, 
p (v) =- - Re (iGap,, (v)) , G= - 

P 2h ' 

and p(v)  = p m  (v) +p ,  (v) is the velocity distribution of 
the absori:ng particles as a whole, being a sum of the velocity 
distributions of the exited p, (v )  p , ,  (v) and unexcited 
pn (v) = pnn ( v )  particles;pi ( v )  is normalized to the density 
pi,  dm, is the matrix element of the dipole moment for the 
m-n transition, and r, is the radiative decay rate of the mth 
level. For a Lorentz gas (M<Mb and p<pb,  where M and 
Mb are the masses of the absorbing and buffer particles, and 
p andp, are their densities) the collision integrals have the 
form 

1 a 
s,(V) =- ---(vzsi(v))+pbV j anr oi (u .  0) (p,(v)-pi(v1) 1. 

vZ av 
(2.3) 

Here 

- - 
is the flux of particles of type i = m, n in u space: 
li = (2k, T/M) I / * ,  

0:" (v) =2n do sin 8 (1 -cos 0) o. (v. 8). 
0 

V, (v)  =pbvoi(') (v)  , cos O=V'V/IJ~.  nr=v'/c, (2.4) 

o;. (v,8) is the elastic scattering ( u  = v')  cross section of the 
absorbing particles in the state i = m,n for scattering by a 
buffer particle; v and v' are the velocities of the absorbing 
particle before and after the collision. The differential and 
integral terms on the right-hand side of Eq. (2.3) describe 
respectively the variation of the magnitude and direction of 
the velocity of the light absorbing particles during their colli- 
sions with the heavy buffer particles. In what follows we will 
neglect phase memory effects, the effect of which on light- 
induced drift was investigated in Ref. 12; i.e., we will use the 
following simplification for the non-diagonal collision inte- 
gral: 

where y(v) and A(v) are the collisional broadening and 
collisional shift of the absorption line. 

In the present work we will restrict ourselves to the 
investigation of the spectral peculiarities of the drift velocity. 
Therefore, we will solve the kinetic equations (2.1 ) for the 
stationary and spatially homogeneous case. Noting the rela- 
tion r ( v )  = r,,/2 + y ( ~ )  between collisional y ( ~ )  and ho- 
mogeneous r(u) broadening of the absorption line, we re- 
write Eqs. (2.1 ) in the form 

From these equations it is clear that the distribution func- 
tions pi ( v )  depend only on v and the angle c between v and 
the wave vector k. This allows us to search for the solution of 
the kinetic equations (2.6) in the form of an expansion in 
Legendre polynomials P, (cos c) : 

The formal reason for the solvability of the kinetic equations 
for a Lorentz gas is the following property of the collision 
integrals? 

n 

1 
s:"(u)=-J Si(v)P1(cosc)sincd~ 

0 

=--- I a ( v  ( v - v '  ( v )  v ,  (2.8) 
U? av 

where 
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Substituting expansion (2.7) in Eq. (2.6) and using Eq. 
(2.8), we obtain the following equations for the moments 
pj" ( u )  of the distribution functions p i  ( v ) :  

s:;) (v)  +sIL1' (u)=O. (2.10) 

Here C .o are the Clebsch-Gordan coefficients; the mo- 
ments x"'(u) are expressed exactly in terms of the satura- 
tion parameter x(v)  as are the moments pjl)(u) in terms of 
pi (v)  [Eqs. (2.7) 1. In a Lorentz gas the magnitude of the 
velocity of the absorbing particles hardly varies during the 
collisions since the masses satisfy M< M,. This allows us to 
neglect diffusion in velocity space for 1> 1, i..e, the differen- 
tial term in Eq. (2.8). An exception is the case 1 = 0 in the 
second of Eqs. (2. lo), for which other relaxation processes 
are absent (vjO' (u )  = 0). 

Let us solve Eqs. (2.10) for fields of moderate intensity 
n 

This condition allows us to replacep(") ( u )  in the right-hand 
side of Eqs. (2.10) by pjO) (u)S1. ,  and obtain the following 
expressions for the moments p!') (u): 

( l )  (v) - d l J  (v) 
,,(I) ( v ) = ( v n  ) p? (v) ,  lar, (2.12) 

v,,(') (v) 

where 

( 0 )  x'" (v) 
p m  (u)= 

2 (I+%'O' (v) ) P'O' (u), 

The distributi~np'~)(u) is the solution of the second of Eqs. 
(2.10) for 1 = 0: 

I a --- - ( 0 )  ( 0 )  (V?.?(O' (0) ) =O, s(OJ ( v )  =sm ( v ) + s ,  (v) . 
v"v 

Hence it follows that s'" (u) = const/v2. However, the total 
flux of the absorbing particles s(v) in velocity space should 
be finite for all values of u; therefore s"' (v) = 0, whence 

Substituting p:' ( v )  from Eq. (2.13) in this equation, we 
find that the isotropic part p"' (u) of the distribution func- 
tion of the absorbing particles has the form 

I+X '~ '  (v) 
E (u) = 

l+(l+u(v)/2) x'O' (v) 

d a ( u t )  
x(O' ( u , ) - 7 -  

x e r p  1 rm out 
du. I 

r r  

and is different from the Maxwellian distribution 
W(u) = ( r E 2 )  - 3'2 exp( - u2/v2) if v, ( u )  # v, (u ) .  The de- 
pendence of the collision frequencies on the velocity in- 
fluences the shape of the absorption line, which is described 
by the probability of absorption per unit time 

3. THE DRIFT VELOCITY 

The drift velocity is expressed in terms of the first mo- 
ment of the distribution function: 

1 k 
U=-JYP(V)dV=4n-j d v v J p ~ ~ ( ~ ) .  

P 
(3.1) 

h - 0  

The solution (2.12)-(2.14) of the kinetic equations (2. lo),  
taking into account the explicit expressions for the first two 
moments of the saturation parameter (2.6) 

allows one to obtain the following expression for the light- 
induced c'rift velocity: 

where we have introduced the dimensionless velocity 
t = vfi, detuning x = (a - A(u))/kE, and homogeneous 
half-width y = T(u)/kiT, and also made use of the following 
notation: 

The functions f( t )  and $(t) are positive for t>O. 
In contrast with previous papers, here the relative dif- 

ference of the transport collision frequencies in the expres- 
sion for the drift velocity (3.2) is inside the integral. This 
result was first obtained in Ref. 12. Equation (3.2) shows 
that the dependence of the factor 
a ( u )  = [v ,  ( u )  - v, (u)]/v, ( u )  on thevelocity ucanqual- 
itatively alter the character of the spectral dependence of the 
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drift velocity u (even to the appearance of the additional 
zeros) if the sign of a ( v )  varies as v  varies. Below we will 
convince ourselves that such a property o f a ( v )  is not exotic. 

If the ends of the gas cell are closed, then the drift of the 
absorbing particles along the z axis (k, = k) leads to their 
accumulation at one of the ends of the cell. It can be shown 
that the corresponding distribution of the absorbing particle 
concentration for an optically thin medium has exponential 
form: 

Thanks to the difference of the transport cross sections of the 
excited and unexcited particles, the diffusion coefficient of 
the absorbing particles 

depends on the radiation parameters. It is not difficult to 
convince oneself that formula (3 .2 )  coincides with the cor- 
responding expression for the drift velocity in Ref. 8  if the 
hypothesis of similarity of cross sections ( 1.2) is fulfilled. 

4. THE LENNARPJONES AND SUTHERLAND MODELS 

There are two quite general interaction potentials 
which allow one to obtain simple analytical expressions for 
the scattering cross sections. We refer to the Lennard-Jones 
and Sutherland interaction potentials or models.I3 We will 
study the spectral properties of the light-induced drift veloc- 
ity in the case of these models, directing our main attention 
to the more realistic Sutherland model. 

1 .  The Lennard-Jones model. This model is based on 
the interaction potential 

in which the attractive part of the potentials is assumed to be 
small in comparison with its repulsive part (a' g a ) .  In the 
classical approximation the transport cross section for the 
Lennard-Jones model has the form (i = m,n)  

( 1 )  I' 
0 ,  ( v )  = 0 ~ t - ~ / ~ 1  (I +F,t41rl-Z s .  ) t = -  _ . 

v 
(4 .2 )  

where 

The values of the functions A ,  ( 7 )  an B,  ( T )  are given in Ref. 
13. The change in the transport collision frequencies during 
excitation 

is controlled by the four parameters T , ,  E* ,  a , ,  and a;  of the 
potential (4.1 ). If T, = T ,  = T, then the buffer particle, 
passing at a distance r from the absorbing particle, shifts the 
frequency of the absorbing particle by an amount propor- 
tional to r-'. According to Weisskopf-Lindholm theory 
such instantaneous shifts of the resonance frequency lead to 
collisional broadening y ( u )  and a shift A ( v )  of the absorp- 
tion linel4,I5 

The latter formula is valid for T > 3. The dependence of the 
collisional shift A ( v )  of the absorption line on the velocity 
must be taken into account in LID theory since A  ( v )  can be 
of the same order of magnitude as the collisional broadening 
y ( v ) ; ' )  for example, for the ratio A ( u ) / y ( v )  we obtain 

Note that the velocity dependence of the absorption line shift 
A ( v )  leads to a violation of the antisymmetric dependence of 
the LID velocity on fl.I2,l6 

2. The Sutherland model. In this model the molecules 
are smooth, rigid, elastic spheres of radius a ,  surrounded by 
weak attractive fields (a' 4 a )  : 

Formally, the Sutherland model can be considered as a par- 
ticular case of the Lennard-Jones model for T ,  = T ,  + CO. 

In the Sutherland model the transport cross section, the 
collisional broadening, and the absorption line shift in the 
classical approximation depend on the dimensionless veloc- 
ity t = v f i  in the following way: 

where 

The values of the integrals i, ( T )  are tabulated in Ref. 13. 
Optical excitation of the absorbing particle causes its 

transport collision frequency to change in the following way: 

Here 

Equations ( 4 . 3 )  and ( 4 . 7 )  directly demonstrate the possibil- 
ity of change of sign of a ( v )  = ( v ,  ( v )  - v, ( u ) ) / v ,  ( u )  
with variation of u. For example, if q > 0 in the Sutherland 
model (4 .3 ) ,  then the sign of a ( v )  changes at t = ql'*. As 
can be seen from Eq. ( 4 . 8 ) ,  the sign of a ( u )  changes if the 
attractive and repulsive parts of the Sutherland potential 
change in different directions; i.e., q >  0 if 
l,/<, < u , / u ,  < 1 or {, /{, <urn / u ,  < 1 .  In the Suther- 
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land model a ( u )  does not change its sign if the attractive 
part of the potential is absent ( t i  = 0). 

5. DEPENDENCE OFTHE DRIFT VELOCITY ON THE 
RADIATION FREQUENCY 

We proceed now to a direct study of the spectral proper- 
ties of the LID velocity. Toward this end, we restrict our- 
selves to the Sutherland model, but in addition we will take 
as given the following conditions, which are frequently real- 
ized in experiments: 

These nonessential restrictions allow us to substantially sim- 
plify the expression for the drift velocity ( 3 . 2 ) ,  ( 4 . 7 )  

and for the probability of absorption per unit time ( 2 . 1 5 )  

Many experimental papers on LID3," address the spec- 
tral properties not only of the drift velocity ( 5 . 2 ) ,  but also of 
the function @ associated with it8 

where 

is the transport collision frequency in the absence of radi- 
ation, related to the diffusion coefficient D, by the formula 
D, = ??/2C,. For the Sutherland model ( 4 . 5 )  the transport 
collision frequency is calculated exactly: 

Here 
m 

is the exponential integral function, which for small { be- 
haves like In y{, where y=: 1.781 is Euler's constant. 

If conditions ( 1 . 1  ) and ( 1.2)  are satisfied, then for 
r/kF 2 0.1 the function @ is essentially identical to the func- 
tion q, (Ref. 1 8 ) :  

( z )  =exp ( - z ' )  [ I  + J erp ( c 2 )  dc . I 
0 

A representation of the drift velocity similar to expression 
( 5 . 4 )  was first suggested in Ref. 18 with $ = p. 

The drift velocity ( 5 . 2 )  is equal to the integral of the 
product of the function f ( t )  [Eq. ( 3 . 3 )  ] and the function 
Q ( t )  [Eq. ( 5 . 2 )  1, which is proportional to the relative dif- 
ference of the transport collision frequencies ( 4 . 6 ) .  Such a 
representation for the drift velocity makes it possible to un- 
derstand in an easily visualized way the reason for the ap- 
pearance of additional zeros of the drift velocity and the 
function @ besides the one at R = 0. Of special interest for us 
is the region q > 0 since for negative values of q the function 
Q ( t )  is positive everywhere and, consequently, the drift ve- 
locity has no additional zeros. 

Let us consider the case of large Doppler broadening 

and 

Figure 2  shows how the functions Q ( t )  [Eq. ( 5 . 2 )  ] and f ( t )  
[Eq. ( 3 . 3 )  1 depend on the dimensionless velocity t  = v f i  
typical of the region ( 5 . 7 )  and ( 5 . 8 ) .  

For moderate detunings (OGX 5 1 ) the function f ( t )  
can be approximated in the limit ( 5 . 7 )  by the step function 
O ( t )  (curve I, Fig. 2 )  : 

i ( t )  =nxO (t-x) . ( 5 . 9 )  

The function Q ( t )  [Eq. ( 5 . 2 ) ]  changes sign at the point 
t  = q"'. In the limit x = R/kF-+O the dimensionless drift 

FIG. 2. Dependence of the function Q ( t )  ( 5 . 2 ) ,  proportional to the rela- 
tive change in the transport cross sections upon excitation, and the "field" 
function f ( t )  (3.3) on the dimensionless velocity t = u h ;  T ( u )  = T,,, 
r,,/kE = 0.1: I )  Q ( t )  x +, 2 )  f ( t )  for x=Sl/kii = 0.3, 3 )  f(t) X +  for 
x= Wki7 = 2. 
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velocity u, [Eq. (5.2)] is proportional to the difference of 
the areas under the positive part, Q +  (t), and the negative 
part, Q - (t) ,  of the function Q(t) (Fig. 2). If the area under 
Q - ( t )  is larger than the area under Q+ (t),  then for small 
values ofx the dimensionless drift velocity we have u, < 0. At 
the center of the absorption line (x = 0) the velocity satisfies 
u, = 0 since, according to relation (5.9), f(t)  -x. With in- 
creasing x the step function O ( t  - x)  decreases the contri- 
bution of the negative part of Q(t) to the integral u, (5.2). 
At some detuning x, the drift velocity vanishes and for x > x, 
its sign is reversed. 

Approximation (5.9) and condition Ji 4 1 [relation 
(4.6) 1 allow us to obtain the following expressions for the 
dimensionless drift velocity ( 5.2) : 

~ , - n ' ~ x ~  (x) (aZ (x) -q) , (5.10) 

where 

1-0 (2) exp (-2) 
a' (2) = >(I, P(X)= 

n 4  -u-@ ( x ) )  >O, 28 (2) 

The detuning fl, at which u, = 0 holds is the solution of the 
equation (x, = R,/kE) 

The dependence ofx, on the parameter q (4.8) is depicted in 
Fig. 3. The drift velocity u, is negative for x < x,, vanishes at 
x = x,, and is positive for x > x,. Note that the shape of the 
function r ( v )  of the condition for the appearance of the first 
additional zero x, (5.1 1 ) is independent of the drift velocity. 

With further increase of the dimensionless detuning 
x = Q/kE k 1 a second additional zero can appear. Looking 
at Fig. 2, we note that if the "step" function f( t )  departs 
from the region of values of x for which the function Q(t) is 
different from zero (curve 2 in Fig. 2), then the function 

Q(t) will be multiplied not by the step part (5.9) of the 
function f( t )  (3.3), but by its tail. In this case the areas 
under the positive and negative parts of Q(t) (Fig. 2) will be 
subtracted from one another with different weights than in 
the case 0 < x  5 1. For a quantitative illustration of what we 
have just said, consider the case x )  1. As a result of the fac- 
tor exp( - t 2 ,  the main contribution to the integral (5.2) 
comes from the values o f t  S 1. Therefore, in this region the 
tail of the function f( t )  depends on t like f( t )  ~ + y ( t / x ) ~ .  
Recall that y = T (v)/kE depends on t /vfi.  

Thus, the asymptotic limit of the drift velocity (5.2) at 
large detunings (O/kE) 1 ) has the form 

for T(v) = r , ( t )  (the Sutherland model), and 

for r ( v )  = r, = const. The obtained asymptotic depen- 
dences show that the condition for the appearance of a sec- 
ond additional zero of the drift velocity (q>  3/2 if 
T(v) = Tot, and q >  1 if T(v) = To), in contrast with Eq. 
(5.1 1 ), depends on the shape of the function T ( v )  . 

Figures 4 and 5 show the dependences on the detuning 
Q of the drift velocity u [Eq. (5.2) ] and the functions i$ [Eq. 
(5.4)] a n d p  [Eq. (5.6)]. Since u( - R )  = - u(R),  Figs. 
4 and 5 demonstrate the presence in the drift velocity u and 
the function i$ of three and five zeros. 

Is the appearance of additional zeros in the drift veloc- 
ity possible for large homogeneous broadening 

FIG. 3. Dependence of the first additional zero x , , = ~ , , / k E  (5.11) of the FIG. 4. Spectral dependence of the LID velocity (5.21, the functions + 
drift velocity on the parameter q (4.8), which characterizes the change in (5.4) and q (5.6) for low pressure of the buffer gas: T, JkSi = 0.1, 
the potential. q=O.6317,gm =O.O2,g,, =0.04. 
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FIG. 5. Spectral dependence of the LID velocity (5.2), the functions $ 
(5.4) and p (5.6) for low pressure of the buffer gas: T,,/ki = 0.1, q 
= 1.965,{,, =0.02,{, =0.04. 

At first glance, the answer to this question would appear to 
be negative. To a significant extent, the results of Ref. 8, 
obtained under assumptions ( 1.1 ) and ( 1.2),  support this 
conviction. However, as we will now see, when conditions 
( 1 . 1  ) and ( 1.2) are simultaneously violated the drift can 
disappear not only at SZ = 0, but elsewhere as well. Taking 
into account that in the homogeneous-broadening limit of 
the absorption line (5 .14)  the function f ( t )  given by Eq. 
( 3 . 3 )  is equal to +yxt 3 / ( y 2  + x ~ ) ~ ,  we note that the dimen- 
sionless drift velocity ( 5 . 2 )  at small detunings for 
r ( v )  = r o t  behaves like 

For large detunings ( I SZl% kE, T o )  the expression for the 
drift velocity coincides with expression (5 .12 )  if r ( v )  = Tot 
and the expression (5 .13)  if r ( v )  = To.  Here 
f = ({,,, +c")1'2. 

Formulas (5 .12)  and (5 .15 )  imply that the drift veloc- 
ity has an additional zero besides SZ = 0 if 

The results of numerical analysis of formulas (5 .2 )  and 
( 5 . 4 )  in the limit (5 .14)  confirm this (see Fig. 6 ) .  

As can be seen from Fig. 6 ,  the function 3 ( 5 . 4 ) ,  even in 
the limit (5 .14 ) ,  

FIG. 6. Spectral dependence of the LID velocity (5.2), the functions $ 
(5.4) and q, (5.6) for high pressure of the buffer gas: r,,/kii = lo, 
q = 0.6317,4, = 0.02,4, = 0.04. 

can differ greatly from q, given by ( 5 . 6 ) .  These two functions 
coincide exactly with each other 
(@ = q, = kEf2 / ( r2  + n2) ) only when conditions ( 1.1 ) and 
( 1.2) are simultaneously satisfied. For large detunings 
(0 % T )  the formula @ = (kE/f2) A, where A = 1 if both 
conditions are satisfied, is valid. If either of these two condi- 
tions is violated, A depends on the parameters of the interac- 
tion potential between the particles. Attention was first di- 
rected to this fact in Ref. 9 for the case ( 1.2).  

6. TEMPERATURE DEPENDENCE OF THE CONDITIONS FOR 
APPEARANCE OF ADDITIONAL ZEROS OFTHE DRIFT 
VELOCITY 

The condition for the appearance of additional zeros of 
the drift velocity depends on the parameter q given by Eqs. 
(4.61, (4.81, 

and f (5 .16) ,  

5= ( g n , + g a ) ' b ~  T-8. 
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The temperature dependence of these two parameters 
can be conveniently expressed in terms of their values at 
some fixed temperature To, e.g., room temperature: 

Let us consider first the case of large Doppler broaden- 
ing I' g kE. The first additional zero appears at the detuning 
determined by Eq. (5.1 1) (Fig. 3), which, taking Eqs. (6.1) 
into account, can be rewritten in the form 

From the definition of the function a (x )  of Eq. (5.10) it is 
not hard to see that a2 (x,) ~ x , a " ~  /2 holds for xo 1 (q < 1 ) 
and a(xo) z x 0  for x,) 1 (9% 1). Thus, from Eq. (6.2) we 
find that for small values of the parameter q (6.1 ) the posi- 
tion of the first zero depends on the temperature as 

As the parameter q the temperature dependence of x, be- 
comes weaker: 

T,, "= 
& S [ ~ ( T ~ ) ~ ]  . qB1. 

The second additional zero (5.12) arises if q >  3/2. 
Taking the temperature dependence of the parameter q 
(6.1 ) into account, we note that the second additional zero 
appears at temperatures 

In the opposite case of large collisional broadening 
(I') kE) the drift velocity has one additional zero if condi- 
tion (5.6) is satisfied, i.e., when the temperature is in the 
interval 

The temperature dependence of the spectral shape of the 
LID signal can be used to measure the parameter q (4.8), 
which characterizes the change in the interaction potential 
associated with optical excitation. 

7. CONCLUSION 

The appearance of additional zeros in the drift velocity 
makes it possible to extract more detailed information from 
the experimental data on the interaction potentials between 
the particles, specifically by measuring the change in the 
attractive and repulsive parts of the potential upon optical 
excitation. For example, for the Sutherland potential mea- 
suring the position of the first additional zero x, gives the 
value of the parameter q of Eq. (5.1 1 ) (Fig. 3 ) . The behavior 
of the drift velocity (5.2) at large detunings (5.12) allows 
one to measure 1 - a, /on. Next, with the help of the values 
of q and 1 - a,/a, thus found one can determine the 
change in the attractive part of the potential 
6, - 6, = (0, /urn - 1 ) (q + cn ). Here the parameters of 
the interaction potential for the unexcited particles are as- 
sumed to be known. Naturally, in the actual extraction of the 

parameters of the interaction potential from LID experi- 
ments, as in classical gas dynamics, it is necessary to choose 
an interaction potential model. 

Note that the results of the present work are not specific 
to the Lorentz gas (Mb/M)l) ;  i.e., analogous spectral 
properties should also hold for M,/M5 1. Indeed, the main 
reason for the spectral properties of the drift velocity ob- 
tained here is the dependence of the collision frequencies 
vi ( u )  on the velocity. In Ref. 8 it was shown that the depend- 
ence of vi ( u )  on u is the preserved even for Mb/MS: 1 and 
disappears completely only for heavy absorbing particles: 
Mb/M( 1. With the goal of carrying out a qualitative study 
of the effect of the mass ratio Mb/M on the spectral anoma- 
lies of LID we have, following Ref. 8, used the 13-moment 
Grad method. However, a comparison of the Grad expan- 
sion with the exact solution for a Lorentz gas (3.2), (5.2) 
shows that the convergence of the Grad method worsens 
drastically just in that region of the potential parameters 
where the spectral anomalies of the LID effect are observed. 

I t  is not difficult to convince oneself that analogous 
LID spectral anomalies should also be manifested in the 
light-induced heat flux and pressure tensor, in the effect of 
diffusive traction of particles into the light beam (or ejec- 
tion), and in other LID-related effects3 
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